tensorflow:: ops:: FusedBatchNormGrad
#include <nn_ops.h>
Gradient for batch normalization.
Summary
Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". The size of 1D Tensors matches the dimension C of the 4D Tensors.
Arguments:
- scope: A Scope object
- y_backprop: A 4D Tensor for the gradient with respect to y.
- x: A 4D Tensor for input data.
- scale: A 1D Tensor for scaling factor, to scale the normalized x.
- reserve_space_1: When is_training is True, a 1D Tensor for the computed batch mean to be reused in gradient computation. When is_training is False, a 1D Tensor for the population mean to be reused in both 1st and 2nd order gradient computation.
- reserve_space_2: When is_training is True, a 1D Tensor for the computed batch variance (inverted variance in the cuDNN case) to be reused in gradient computation. When is_training is False, a 1D Tensor for the population variance to be reused in both 1st and 2nd order gradient computation.
Optional attributes (see Attrs
):
- epsilon: A small float number added to the variance of x.
- data_format: The data format for y_backprop, x, x_backprop. Either "NHWC" (default) or "NCHW".
- is_training: A bool value to indicate the operation is for training (default) or inference.
Returns:
Output
x_backprop: A 4D Tensor for the gradient with respect to x.Output
scale_backprop: A 1D Tensor for the gradient with respect to scale.Output
offset_backprop: A 1D Tensor for the gradient with respect to offset.Output
reserve_space_3: Unused placeholder to match the mean input in FusedBatchNorm.Output
reserve_space_4: Unused placeholder to match the variance input in FusedBatchNorm.
Constructors and Destructors |
|
---|---|
FusedBatchNormGrad(const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2)
|
|
FusedBatchNormGrad(const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2, const FusedBatchNormGrad::Attrs & attrs)
|
Public attributes |
|
---|---|
offset_backprop
|
|
operation
|
|
reserve_space_3
|
|
reserve_space_4
|
|
scale_backprop
|
|
x_backprop
|
Public static functions |
|
---|---|
DataFormat(StringPiece x)
|
|
Epsilon(float x)
|
|
IsTraining(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for FusedBatchNormGrad. |
Public attributes
offset_backprop
::tensorflow::Output offset_backprop
operation
Operation operation
reserve_space_3
::tensorflow::Output reserve_space_3
reserve_space_4
::tensorflow::Output reserve_space_4
scale_backprop
::tensorflow::Output scale_backprop
x_backprop
::tensorflow::Output x_backprop
Public functions
FusedBatchNormGrad
FusedBatchNormGrad( const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2 )
FusedBatchNormGrad
FusedBatchNormGrad( const ::tensorflow::Scope & scope, ::tensorflow::Input y_backprop, ::tensorflow::Input x, ::tensorflow::Input scale, ::tensorflow::Input reserve_space_1, ::tensorflow::Input reserve_space_2, const FusedBatchNormGrad::Attrs & attrs )
Public static functions
DataFormat
Attrs DataFormat( StringPiece x )
Epsilon
Attrs Epsilon( float x )
IsTraining
Attrs IsTraining( bool x )