przepływ tensorowy:: ops:: Dekwantyzacja

#include <array_ops.h>

Dekwantyzuj tensor „wejściowy” na tensor zmiennoprzecinkowy.

Streszczenie

[min_range, max_range] to skalarne liczby zmiennoprzecinkowe, które określają zakres danych „wejściowych”. Atrybut „mode” dokładnie kontroluje, które obliczenia są używane do konwersji wartości zmiennoprzecinkowych na ich skwantowane odpowiedniki.

W trybie „MIN_COMBINED” każda wartość tensora zostanie poddana następującym czynnościom:

if T == qint8: in[i] += (range(T) + 1)/ 2.0
out[i] = min_range + (in[i]* (max_range - min_range) / range(T))
tutaj range(T) = numeric_limits ::max() - numeric_limits ::min() range(T) = numeric_limits ::max() - numeric_limits ::min() range(T) = numeric_limits ::max() - numeric_limits ::min()

Przykład trybu MIN_COMBINED

Jeśli dane wejściowe pochodzą z QuantizedRelu6 , typem wyjścia jest quint8 (zakres 0-255), ale możliwy zakres QuantizedRelu6 to 0-6. Wartości min_range i max_range wynoszą zatem 0,0 i 6,0. Dekwantyzacja na kwincie8 pobierze każdą wartość, rzutuje na liczbę zmiennoprzecinkową i pomnoży przez 6/255. Należy zauważyć, że jeśli typem kwantyzacji jest qint8, operacja dodatkowo doda każdą wartość o 128 przed rzutowaniem.

Jeśli tryb to „MIN_FIRST”, stosowane jest następujące podejście:

num_discrete_values = 1 << (# of bits in T)
range_adjust = num_discrete_values / (num_discrete_values - 1)
range = (range_max - range_min) * range_adjust
range_scale = range / num_discrete_values
const double offset_input = static_cast(input) - lowest_quantized;
result = range_min + ((input - numeric_limits::min()) * range_scale)

Tryb SKALOWANY Przykład

Tryb SCALED odpowiada podejściu kwantyzacji stosowanemu w QuantizeAndDequantize{V2|V3} .

Jeśli trybem jest SCALED , nie wykorzystujemy pełnego zakresu typu wyjścia, decydując się na pominięcie najniższej możliwej wartości symetrii (np. zakres wyjściowy wynosi -127 do 127, a nie -128 do 127 dla 8-bitowej kwantyzacji ze znakiem), tak, że 0.0 jest odwzorowane na 0.

Najpierw znajdujemy zakres wartości w naszym tensorze. Zakres, którego używamy, jest zawsze wyśrodkowany na 0, więc znajdujemy m takie, że

  m = max(abs(input_min), abs(input_max))

Nasz zakres tensora wejściowego wynosi wówczas [-m, m] .

Następnie wybieramy nasze zestawy kwantyzacji stałoprzecinkowej [min_fixed, max_fixed] . Jeśli T jest podpisane, tak jest

  num_bits = sizeof(T) * 8
  [min_fixed, max_fixed] =
      [-(1 << (num_bits - 1) - 1), (1 << (num_bits - 1)) - 1]

W przeciwnym razie, jeśli T jest bez znaku, zakres stałoprzecinkowy jest

  [min_fixed, max_fixed] = [0, (1 << num_bits) - 1]

Na tej podstawie obliczamy nasz współczynnik skalowania, s:

  s = (2 * m) / (max_fixed - min_fixed)

Teraz możemy zdekwantyzować elementy naszego tensora:

result = input * s

Argumenty:

  • zakres: Obiekt Scope
  • min_range: Minimalna wartość skalarna, jaka może zostać wygenerowana dla wejścia.
  • max_range: Maksymalna wartość skalarna, jaką można uzyskać dla wejścia.

Zwroty:

Konstruktory i destruktory

Dequantize (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input min_range, :: tensorflow::Input max_range)
Dequantize (const :: tensorflow::Scope & scope, :: tensorflow::Input input, :: tensorflow::Input min_range, :: tensorflow::Input max_range, const Dequantize::Attrs & attrs)

Atrybuty publiczne

operation
output

Funkcje publiczne

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

Publiczne funkcje statyczne

Mode (StringPiece x)

Struktury

tensorflow:: ops:: Dekwantyzacja:: Atrybuty

Opcjonalne ustawiacze atrybutów dla Dequantize .

Atrybuty publiczne

działanie

Operation operation

wyjście

::tensorflow::Output output

Funkcje publiczne

Dekwantyzacja

 Dequantize(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input input,
  ::tensorflow::Input min_range,
  ::tensorflow::Input max_range
)

Dekwantyzacja

 Dequantize(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input input,
  ::tensorflow::Input min_range,
  ::tensorflow::Input max_range,
  const Dequantize::Attrs & attrs
)

węzeł

::tensorflow::Node * node() const 

operator::tensorflow::Wejście

 operator::tensorflow::Input() const 

operator::tensorflow::Wyjście

 operator::tensorflow::Output() const 

Publiczne funkcje statyczne

Tryb

Attrs Mode(
  StringPiece x
)