Generowanie tekstu za pomocą RNN

Zobacz na TensorFlow.org Uruchom w Google Colab Wyświetl źródło na GitHub Pobierz notatnik

Ten samouczek pokazuje, jak generować tekst za pomocą RNN opartego na znakach. Będziesz pracować z zestawem danych z pism Szekspira z książki Andreja Karpathy'ego The Unreasonable Effectiveness of Recurrent Neural Networks . Mając sekwencję znaków z tych danych („Shakespear”), wytrenuj model, aby przewidywał następny znak w sekwencji („e”). Dłuższe sekwencje tekstu można generować przez wielokrotne wywoływanie modelu.

Ten samouczek zawiera uruchamialny kod zaimplementowany przy użyciu tf.keras i szybkiego wykonywania . Poniżej przedstawiono przykładowe dane wyjściowe, gdy model w tym samouczku został przeszkolony dla 30 epok i rozpoczął się od znaku zachęty „Q”:

QUEENE:
I had thought thou hadst a Roman; for the oracle,
Thus by All bids the man against the word,
Which are so weak of care, by old care done;
Your children were in your holy love,
And the precipitation through the bleeding throne.

BISHOP OF ELY:
Marry, and will, my lord, to weep in such a one were prettiest;
Yet now I was adopted heir
Of the world's lamentable day,
To watch the next way with his father with his face?

ESCALUS:
The cause why then we are all resolved more sons.

VOLUMNIA:
O, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, it is no sin it should be dead,
And love and pale as any will to that word.

QUEEN ELIZABETH:
But how long have I heard the soul for this world,
And show his hands of life be proved to stand.

PETRUCHIO:
I say he look'd on, if I must be content
To stay him from the fatal of our country's bliss.
His lordship pluck'd from this sentence then for prey,
And then let us twain, being the moon,
were she such a case as fills m

Podczas gdy niektóre zdania są gramatyczne, większość nie ma sensu. Model nie nauczył się znaczenia słów, ale rozważ:

  • Model jest oparty na postaciach. Kiedy rozpoczęło się szkolenie, model nie wiedział, jak przeliterować angielskie słowo, ani że słowa były nawet jednostką tekstu.

  • Struktura danych wyjściowych przypomina grę — bloki tekstu zwykle zaczynają się od nazwiska mówcy, pisanego wielkimi literami, podobnie jak w zbiorze danych.

  • Jak pokazano poniżej, model jest szkolony na małych partiach tekstu (100 znaków każda) i nadal jest w stanie wygenerować dłuższą sekwencję tekstu o spójnej strukturze.

Ustawiać

Importuj TensorFlow i inne biblioteki

import tensorflow as tf

import numpy as np
import os
import time

Pobierz zbiór danych Szekspira

Zmień następujący wiersz, aby uruchomić ten kod na własnych danych.

path_to_file = tf.keras.utils.get_file('shakespeare.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt')
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt
1122304/1115394 [==============================] - 0s 0us/step
1130496/1115394 [==============================] - 0s 0us/step

Przeczytaj dane

Najpierw spójrz w tekście:

# Read, then decode for py2 compat.
text = open(path_to_file, 'rb').read().decode(encoding='utf-8')
# length of text is the number of characters in it
print(f'Length of text: {len(text)} characters')
Length of text: 1115394 characters
# Take a look at the first 250 characters in text
print(text[:250])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

All:
Resolved. resolved.

First Citizen:
First, you know Caius Marcius is chief enemy to the people.
# The unique characters in the file
vocab = sorted(set(text))
print(f'{len(vocab)} unique characters')
65 unique characters

Przetwórz tekst

Wektoryzuj tekst

Przed szkoleniem musisz przekonwertować ciągi na reprezentację liczbową.

Warstwa tf.keras.layers.StringLookup może konwertować każdy znak na numeryczny identyfikator. Wystarczy najpierw podzielić tekst na tokeny.

example_texts = ['abcdefg', 'xyz']

chars = tf.strings.unicode_split(example_texts, input_encoding='UTF-8')
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

Teraz utwórz warstwę tf.keras.layers.StringLookup :

ids_from_chars = tf.keras.layers.StringLookup(
    vocabulary=list(vocab), mask_token=None)

Konwertuje z tokenów na identyfikatory znaków:

ids = ids_from_chars(chars)
ids
<tf.RaggedTensor [[40, 41, 42, 43, 44, 45, 46], [63, 64, 65]]>

Ponieważ celem tego samouczka jest wygenerowanie tekstu, ważne będzie również odwrócenie tej reprezentacji i odzyskanie z niej ciągów czytelnych dla człowieka. W tym celu możesz użyć tf.keras.layers.StringLookup(..., invert=True) .

chars_from_ids = tf.keras.layers.StringLookup(
    vocabulary=ids_from_chars.get_vocabulary(), invert=True, mask_token=None)

Ta warstwa odzyskuje znaki z wektorów identyfikatorów i zwraca je jako tf.RaggedTensor znaków:

chars = chars_from_ids(ids)
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

Możesz tf.strings.reduce_join połączyć znaki z powrotem w ciągi.

tf.strings.reduce_join(chars, axis=-1).numpy()
array([b'abcdefg', b'xyz'], dtype=object)
def text_from_ids(ids):
  return tf.strings.reduce_join(chars_from_ids(ids), axis=-1)

Zadanie przewidywania

Jaki jest najbardziej prawdopodobny następny znak przy danym znaku lub sekwencji znaków? To jest zadanie, do wykonania którego uczysz model. Dane wejściowe do modelu będą sekwencją znaków, a model jest wytrenowany w celu przewidywania danych wyjściowych — następujący znak w każdym kroku czasowym.

Ponieważ RNN utrzymują stan wewnętrzny, który zależy od poprzednio widzianych elementów, biorąc pod uwagę wszystkie znaki obliczone do tego momentu, jaki jest następny znak?

Twórz przykłady i cele szkoleniowe

Następnie podziel tekst na przykładowe sekwencje. Każda sekwencja wejściowa będzie zawierać znaki seq_length z tekstu.

Dla każdej sekwencji wejściowej odpowiednie cele zawierają tę samą długość tekstu, z wyjątkiem przesunięcia o jeden znak w prawo.

Więc podziel tekst na kawałki o seq_length+1 . Na przykład powiedzmy, że seq_length to 4, a nasz tekst to „Witaj”. Sekwencją wejściową byłoby „Hell”, a sekwencją docelową „ello”.

Aby to zrobić, najpierw użyj funkcji tf.data.Dataset.from_tensor_slices , aby przekonwertować wektor tekstu na strumień indeksów znaków.

all_ids = ids_from_chars(tf.strings.unicode_split(text, 'UTF-8'))
all_ids
<tf.Tensor: shape=(1115394,), dtype=int64, numpy=array([19, 48, 57, ..., 46,  9,  1])>
ids_dataset = tf.data.Dataset.from_tensor_slices(all_ids)
for ids in ids_dataset.take(10):
    print(chars_from_ids(ids).numpy().decode('utf-8'))
F
i
r
s
t
 
C
i
t
i
seq_length = 100
examples_per_epoch = len(text)//(seq_length+1)

Metoda batch pozwala łatwo przekonwertować te pojedyncze znaki na sekwencje o pożądanej wielkości.

sequences = ids_dataset.batch(seq_length+1, drop_remainder=True)

for seq in sequences.take(1):
  print(chars_from_ids(seq))
tf.Tensor(
[b'F' b'i' b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':'
 b'\n' b'B' b'e' b'f' b'o' b'r' b'e' b' ' b'w' b'e' b' ' b'p' b'r' b'o'
 b'c' b'e' b'e' b'd' b' ' b'a' b'n' b'y' b' ' b'f' b'u' b'r' b't' b'h'
 b'e' b'r' b',' b' ' b'h' b'e' b'a' b'r' b' ' b'm' b'e' b' ' b's' b'p'
 b'e' b'a' b'k' b'.' b'\n' b'\n' b'A' b'l' b'l' b':' b'\n' b'S' b'p' b'e'
 b'a' b'k' b',' b' ' b's' b'p' b'e' b'a' b'k' b'.' b'\n' b'\n' b'F' b'i'
 b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':' b'\n' b'Y'
 b'o' b'u' b' '], shape=(101,), dtype=string)
2022-01-26 01:13:19.940550: W tensorflow/core/data/root_dataset.cc:200] Optimization loop failed: CANCELLED: Operation was cancelled

Łatwiej jest zobaczyć, co to robi, jeśli połączysz tokeny z powrotem w ciągi:

for seq in sequences.take(5):
  print(text_from_ids(seq).numpy())
b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '
b'are all resolved rather to die than to famish?\n\nAll:\nResolved. resolved.\n\nFirst Citizen:\nFirst, you k'
b"now Caius Marcius is chief enemy to the people.\n\nAll:\nWe know't, we know't.\n\nFirst Citizen:\nLet us ki"
b"ll him, and we'll have corn at our own price.\nIs't a verdict?\n\nAll:\nNo more talking on't; let it be d"
b'one: away, away!\n\nSecond Citizen:\nOne word, good citizens.\n\nFirst Citizen:\nWe are accounted poor citi'

Do szkolenia potrzebujesz zestawu danych (input, label) par. Gdzie input i label to sekwencje. W każdym kroku wprowadzany jest bieżący znak, a etykieta kolejny znak.

Oto funkcja, która pobiera sekwencję jako dane wejściowe, duplikuje i przesuwa ją, aby wyrównać dane wejściowe i etykietę dla każdego kroku czasowego:

def split_input_target(sequence):
    input_text = sequence[:-1]
    target_text = sequence[1:]
    return input_text, target_text
split_input_target(list("Tensorflow"))
(['T', 'e', 'n', 's', 'o', 'r', 'f', 'l', 'o'],
 ['e', 'n', 's', 'o', 'r', 'f', 'l', 'o', 'w'])
dataset = sequences.map(split_input_target)
for input_example, target_example in dataset.take(1):
    print("Input :", text_from_ids(input_example).numpy())
    print("Target:", text_from_ids(target_example).numpy())
Input : b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou'
Target: b'irst Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '

Twórz partie treningowe

tf.data , aby podzielić tekst na łatwe do zarządzania sekwencje. Jednak przed wprowadzeniem tych danych do modelu należy je przetasować i spakować w partiach.

# Batch size
BATCH_SIZE = 64

# Buffer size to shuffle the dataset
# (TF data is designed to work with possibly infinite sequences,
# so it doesn't attempt to shuffle the entire sequence in memory. Instead,
# it maintains a buffer in which it shuffles elements).
BUFFER_SIZE = 10000

dataset = (
    dataset
    .shuffle(BUFFER_SIZE)
    .batch(BATCH_SIZE, drop_remainder=True)
    .prefetch(tf.data.experimental.AUTOTUNE))

dataset
<PrefetchDataset element_spec=(TensorSpec(shape=(64, 100), dtype=tf.int64, name=None), TensorSpec(shape=(64, 100), dtype=tf.int64, name=None))>

Zbuduj model

Ta sekcja definiuje model jako podklasę keras.Model (Aby uzyskać szczegółowe informacje, zobacz Tworzenie nowych warstw i modeli za pomocą podklas ).

Ten model ma trzy warstwy:

  • tf.keras.layers.Embedding : Warstwa wejściowa. Trenowalna tabela przeglądowa, która mapuje każdy identyfikator znaku na wektor o wymiarach embedding_dim ;
  • tf.keras.layers.GRU : Typ RNN o rozmiarze units=rnn_units (możesz tutaj również użyć warstwy LSTM.)
  • tf.keras.layers.Dense : Warstwa wyjściowa z danymi wyjściowymi vocab_size . Wyprowadza jeden logit na każdy znak w słowniku. Są to prawdopodobieństwo logarytmiczne każdej postaci zgodnie z modelem.
# Length of the vocabulary in chars
vocab_size = len(vocab)

# The embedding dimension
embedding_dim = 256

# Number of RNN units
rnn_units = 1024
class MyModel(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, rnn_units):
    super().__init__(self)
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(rnn_units,
                                   return_sequences=True,
                                   return_state=True)
    self.dense = tf.keras.layers.Dense(vocab_size)

  def call(self, inputs, states=None, return_state=False, training=False):
    x = inputs
    x = self.embedding(x, training=training)
    if states is None:
      states = self.gru.get_initial_state(x)
    x, states = self.gru(x, initial_state=states, training=training)
    x = self.dense(x, training=training)

    if return_state:
      return x, states
    else:
      return x
model = MyModel(
    # Be sure the vocabulary size matches the `StringLookup` layers.
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)

Dla każdego znaku model wyszukuje osadzanie, uruchamia GRU w jednym kroku czasowym z osadzaniem jako danymi wejściowymi i stosuje gęstą warstwę do generowania logitów przewidujących prawdopodobieństwo dziennika następnego znaku:

Rysunek danych przechodzących przez model

Wypróbuj model

Teraz uruchom model, aby zobaczyć, że zachowuje się zgodnie z oczekiwaniami.

Najpierw sprawdź kształt wyjścia:

for input_example_batch, target_example_batch in dataset.take(1):
    example_batch_predictions = model(input_example_batch)
    print(example_batch_predictions.shape, "# (batch_size, sequence_length, vocab_size)")
(64, 100, 66) # (batch_size, sequence_length, vocab_size)

W powyższym przykładzie długość sekwencji wejścia wynosi 100 , ale model można uruchomić na wejściach o dowolnej długości:

model.summary()
Model: "my_model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 embedding (Embedding)       multiple                  16896     
                                                                 
 gru (GRU)                   multiple                  3938304   
                                                                 
 dense (Dense)               multiple                  67650     
                                                                 
=================================================================
Total params: 4,022,850
Trainable params: 4,022,850
Non-trainable params: 0
_________________________________________________________________

Aby uzyskać rzeczywiste przewidywania z modelu, musisz pobrać próbkę z rozkładu wyjściowego, aby uzyskać rzeczywiste indeksy znaków. Ten rozkład jest określony przez logity w słowniku znaków.

Wypróbuj pierwszy przykład w partii:

sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)
sampled_indices = tf.squeeze(sampled_indices, axis=-1).numpy()

To daje nam, na każdym kroku, przewidywanie następnego indeksu znaku:

sampled_indices
array([29, 23, 11, 14, 42, 27, 56, 29, 14,  6,  9, 65, 22, 15, 34, 64, 44,
       41, 11, 51, 10, 44, 42, 56, 13, 50,  1, 33, 45, 23, 28, 43, 12, 62,
       45, 60, 43, 62, 38, 19, 50, 35, 19, 14, 60, 56, 10, 64, 39, 56,  2,
       51, 63, 42, 39, 64, 43, 20, 20, 17, 40, 15, 52, 46,  7, 25, 34, 43,
       11, 11, 31, 34, 38, 44, 22, 49, 23,  4, 27,  0, 31, 39,  5,  9, 43,
       58, 33, 30, 49,  6, 63,  5, 50,  4,  6, 14, 62,  3,  7, 35])

Odszyfruj je, aby zobaczyć tekst przewidywany przez ten niewytrenowany model:

print("Input:\n", text_from_ids(input_example_batch[0]).numpy())
print()
print("Next Char Predictions:\n", text_from_ids(sampled_indices).numpy())
Input:
 b":\nWherein the king stands generally condemn'd.\n\nBAGOT:\nIf judgement lie in them, then so do we,\nBeca"

Next Char Predictions:
 b"PJ:AcNqPA'.zIBUyeb:l3ecq?k\nTfJOd;wfudwYFkVFAuq3yZq lxcZydGGDaBmg,LUd::RUYeIjJ\\(N[UNK]RZ&.dsTQj'x&k\\)'Aw!,V"

Trenuj modelkę

W tym momencie problem można potraktować jako standardowy problem klasyfikacyjny. Biorąc pod uwagę poprzedni stan RNN i dane wejściowe w tym kroku czasowym, należy przewidzieć klasę następnego znaku.

Dołącz optymalizator i funkcję straty

W tym przypadku działa standardowa funkcja straty tf.keras.losses.sparse_categorical_crossentropy , ponieważ jest stosowana w ostatnim wymiarze prognoz.

Ponieważ twój model zwraca logity, musisz ustawić flagę from_logits .

loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
example_batch_mean_loss = loss(target_example_batch, example_batch_predictions)
print("Prediction shape: ", example_batch_predictions.shape, " # (batch_size, sequence_length, vocab_size)")
print("Mean loss:        ", example_batch_mean_loss)
Prediction shape:  (64, 100, 66)  # (batch_size, sequence_length, vocab_size)
Mean loss:         tf.Tensor(4.1895466, shape=(), dtype=float32)

Nowo zainicjowany model nie powinien być zbyt pewny siebie, wszystkie logity wyjściowe powinny mieć podobne wielkości. Aby to potwierdzić, możesz sprawdzić, czy wykładnicza średniej utraty jest w przybliżeniu równa wielkości słownictwa. Znacznie wyższa strata oznacza, że ​​model jest pewny swoich błędnych odpowiedzi i jest źle zainicjowany:

tf.exp(example_batch_mean_loss).numpy()
65.99286

Skonfiguruj procedurę uczenia przy użyciu metody tf.keras.Model.compile . Użyj tf.keras.optimizers.Adam z domyślnymi argumentami i funkcją utraty.

model.compile(optimizer='adam', loss=loss)

Skonfiguruj punkty kontrolne

Użyj tf.keras.callbacks.ModelCheckpoint , aby upewnić się, że punkty kontrolne są zapisywane podczas treningu:

# Directory where the checkpoints will be saved
checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_prefix,
    save_weights_only=True)

Przeprowadź szkolenie

Aby czas trenowania był rozsądny, użyj 10 epok do trenowania modelu. W Colab ustaw środowisko wykonawcze na GPU, aby przyspieszyć szkolenie.

EPOCHS = 20
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])
Epoch 1/20
172/172 [==============================] - 7s 25ms/step - loss: 2.7409
Epoch 2/20
172/172 [==============================] - 5s 24ms/step - loss: 2.0092
Epoch 3/20
172/172 [==============================] - 5s 24ms/step - loss: 1.7211
Epoch 4/20
172/172 [==============================] - 5s 24ms/step - loss: 1.5550
Epoch 5/20
172/172 [==============================] - 5s 24ms/step - loss: 1.4547
Epoch 6/20
172/172 [==============================] - 5s 24ms/step - loss: 1.3865
Epoch 7/20
172/172 [==============================] - 5s 24ms/step - loss: 1.3325
Epoch 8/20
172/172 [==============================] - 5s 24ms/step - loss: 1.2875
Epoch 9/20
172/172 [==============================] - 5s 24ms/step - loss: 1.2474
Epoch 10/20
172/172 [==============================] - 5s 24ms/step - loss: 1.2066
Epoch 11/20
172/172 [==============================] - 5s 24ms/step - loss: 1.1678
Epoch 12/20
172/172 [==============================] - 5s 24ms/step - loss: 1.1270
Epoch 13/20
172/172 [==============================] - 5s 24ms/step - loss: 1.0842
Epoch 14/20
172/172 [==============================] - 5s 24ms/step - loss: 1.0388
Epoch 15/20
172/172 [==============================] - 5s 24ms/step - loss: 0.9909
Epoch 16/20
172/172 [==============================] - 5s 24ms/step - loss: 0.9409
Epoch 17/20
172/172 [==============================] - 5s 24ms/step - loss: 0.8887
Epoch 18/20
172/172 [==============================] - 5s 24ms/step - loss: 0.8373
Epoch 19/20
172/172 [==============================] - 5s 24ms/step - loss: 0.7849
Epoch 20/20
172/172 [==============================] - 5s 24ms/step - loss: 0.7371

Generuj tekst

Najprostszym sposobem wygenerowania tekstu za pomocą tego modelu jest uruchomienie go w pętli i śledzenie wewnętrznego stanu modelu podczas jego wykonywania.

Aby wygenerować tekst, dane wyjściowe modelu są przesyłane z powrotem do danych wejściowych

Za każdym razem, gdy wywołujesz model, przekazujesz go w jakimś tekście i stanie wewnętrznym. Model zwraca prognozę dla następnego znaku i jego nowego stanu. Przekaż prognozę i stan z powrotem, aby kontynuować generowanie tekstu.

Poniżej przedstawiamy jednoetapową prognozę:

class OneStep(tf.keras.Model):
  def __init__(self, model, chars_from_ids, ids_from_chars, temperature=1.0):
    super().__init__()
    self.temperature = temperature
    self.model = model
    self.chars_from_ids = chars_from_ids
    self.ids_from_chars = ids_from_chars

    # Create a mask to prevent "[UNK]" from being generated.
    skip_ids = self.ids_from_chars(['[UNK]'])[:, None]
    sparse_mask = tf.SparseTensor(
        # Put a -inf at each bad index.
        values=[-float('inf')]*len(skip_ids),
        indices=skip_ids,
        # Match the shape to the vocabulary
        dense_shape=[len(ids_from_chars.get_vocabulary())])
    self.prediction_mask = tf.sparse.to_dense(sparse_mask)

  @tf.function
  def generate_one_step(self, inputs, states=None):
    # Convert strings to token IDs.
    input_chars = tf.strings.unicode_split(inputs, 'UTF-8')
    input_ids = self.ids_from_chars(input_chars).to_tensor()

    # Run the model.
    # predicted_logits.shape is [batch, char, next_char_logits]
    predicted_logits, states = self.model(inputs=input_ids, states=states,
                                          return_state=True)
    # Only use the last prediction.
    predicted_logits = predicted_logits[:, -1, :]
    predicted_logits = predicted_logits/self.temperature
    # Apply the prediction mask: prevent "[UNK]" from being generated.
    predicted_logits = predicted_logits + self.prediction_mask

    # Sample the output logits to generate token IDs.
    predicted_ids = tf.random.categorical(predicted_logits, num_samples=1)
    predicted_ids = tf.squeeze(predicted_ids, axis=-1)

    # Convert from token ids to characters
    predicted_chars = self.chars_from_ids(predicted_ids)

    # Return the characters and model state.
    return predicted_chars, states
one_step_model = OneStep(model, chars_from_ids, ids_from_chars)

Uruchom go w pętli, aby wygenerować jakiś tekst. Patrząc na wygenerowany tekst, zobaczysz, że model wie, kiedy używać wielkich liter, tworzyć akapity i imitować słownictwo pisane w stylu Szekspira. Przy niewielkiej liczbie epok treningowych nie nauczył się jeszcze formułować spójnych zdań.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result[0].numpy().decode('utf-8'), '\n\n' + '_'*80)
print('\nRun time:', end - start)
ROMEO:
This is not your comfort, when you see--
Huntsmit, we have already, let us she so hard,
Matters there well. Thou camallo, this night, you should her.
Gar of all the world to save my life,
I'll do well for one boy, and fetch she pass
The shadow with others' sole.

First Huntsman:
O rude blue, come,' to woe, and beat my beauty is ears.
An, thither, be ruled betimes, be cruel wonder
That hath but adainst my head.

Nurse:
Peter, your ancest-ticked faint.

MIRANDA:
More of Hereford, speak you: father, for our gentleman
Who do I not? look, soars!

CORIOLANUS:
Why, sir, what was done to brine? I pray, how many mouth
A brave defence speak to us: he has not out
To hold my soldiers; like one another smiled
Than a mad father's boots, you know, my lord,
Where is he was better than you see, of the
town, our kindred heart, that would sudden to the worse,
An if I met, yet fetch him own.

LUCENTIO:
I may be relight.

MENENIUS:
Ay, with sixteen years, finders both,
and as the most proportion's mooners 

________________________________________________________________________________

Run time: 2.67258358001709

Najłatwiejszą rzeczą, jaką możesz zrobić, aby poprawić wyniki, jest trenowanie go dłużej (spróbuj EPOCHS = 30 ).

Możesz także poeksperymentować z innym ciągiem początkowym, spróbować dodać kolejną warstwę RNN, aby poprawić dokładność modelu, lub dostosować parametr temperatury, aby wygenerować mniej lub bardziej losowe prognozy.

Jeśli chcesz, aby model szybciej generował tekst, najłatwiejszą rzeczą, jaką możesz zrobić, jest generowanie tekstu wsadowego. W poniższym przykładzie model generuje 5 wyników w mniej więcej tym samym czasie, jaki zajęło wygenerowanie 1 powyżej.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result, '\n\n' + '_'*80)
print('\nRun time:', end - start)
tf.Tensor(
[b"ROMEO:\nThe execution forbear that I was a kiss\nA mother in their ownsation with out the rest;\nNor seal'd-me to tell thee joyful? what said Yor Marcius! woe\nThat banish'd unrever-elent I confess\nA husband.\n\nLADY ANNE:\nTo men of summon encest wond\nlike him, Anding your freth hate for vain\nMay hardly slakes meer's name, o' no voice,\nBegail that passing child that valour'd gown?\n\nWARWICK:\nOxford, how much that made the rock Tarpeian?\n\nLUCENTIO:\nImirougester: I am too your freeds.\n\nCAPULET:\nThen I will wash\nBecause the effect of the citizens,\nOur skifts are born. Know the most patards time and will\nwomen! compare of the coronation, I did\nif you find it won to him and I.\n\nROMEO:\nGood evil; get you gone, let me have married me but yet.\n\nWARWICK:\nWhy, thou hast said his hastings? King Henry's head,\nAnd doth our scene stubility in merit ot perils\nHere to revenge, I say, proud queen,\nUnless you hence, my sons of weary perfects;\nReshon'd the prisoner in blood of jocund\nIn every scoutness' gentle Rucuov"
 b"ROMEO: go. Take it on yon placking for me, if thou didst love so blunt,\nLest old Lucio, whom I defy years, fellow-hands,\nThis very approbation lives.\n\nLADY ANNE:\nThat's your yel; if it come.\n\nKATHARINA:\nI'll pray you, sit,\nPut not your boot of such as they were, at length\nWas grieved for grept Hanting, on my service, kill, kill, kissis;\nAnd yet I was an Edward in every but a\ngreat maker your flesh and gold, another fear,\nAnd this, before your brother's son,\nWith its strange: but he will set upon you.\n\nCORIOLANUS:\nAy, my lord.\n\nFRIAR LAURENCE:\nRomeo! O, ho! first let remembers to piece away.\nThis is the Tower.\n\nThird Citizen:\nBehold, the matter?\n\nDUKE VINCENTIO:\nYou are too blind so many; yet so I did will take Mercutio,\nI may be jogging whiles; he sees it.\n\nCLARENCE:\nMethought that evil weeps so Romeo?\nWho be so heavy? I think they speak,\nBefore she will be flight.\n\nAll:\nOl, is become of such hath call'd hims, study and dance.\nIf that my powerful sings\nshould be a beacheries. Edward as 'lon "
 b"ROMEO:\nThe son, peace! thy sacred lizer throne,\nRather my tongue upon't. I can, bethick your help!\nJust of a king, woe's stand and love.\n\nBRUTUS:\nI can better divish'd and not all under affect:\nO, be quickly, villain, to report this school,\nI had none seen the dust of Hortensio.\n\nBIANCA:\nGod's good, my lord, to help your rece,ter famina,\nAnd Juliet like my hold, Liest your best:\nTo-morrow that I keep in some villaging\nAnd make her beauty continued in pees.\nMethoughts to London with our bodies in bounting love,\nCompliment by ups my green as I do favours\nWith a precious wind with child by adly way in love\nUnder the world; and so it is the malmsey-butt in\nThe very new offing to your follies.\n\nJULIET:\nCome on, lay here in hazarring her to bring me. I less there\nEscaped for flight, we may do infringe him.\n\nKeeper:\nMy lord, I have no other bent.\nWhere be the ped-she king's great aid;\nIf you'll more entertainment from you betred,\nThe secrets me to keep him soft; to curse the war,\nThe care colour. W"
 b"ROMEO:\nGood vows. Thou dead to lurp!\nO God! I cannot make, you have desert\nThan my passes to women all hopes with him?\n\nSecond Musician:\nNo, my liege, in gistocking a cockle or a month o' the peoper.\n\nDUKE VINCENTIO:\nNow, hark! the day; and therefore stand at safe\nWill come, to accuse my dusy hath done, upon you\nBut your will make me out in high forget. If you're past me leave,\nIf not, Saint George I bid thee here,\nMy father, eyes; and I fear any think\nTo the purpose magiin: I find thou refuse\nAnd bethink me to the earth the dire part and day strike.\n\nKING EDWARD IV:\nWhat were you lose. Father, I fear\nIs true the liquid dress: but 'tis a wildly\nkindly, proud I am severe;\nThe time shall point your state as voices and chartels\nclow the king's, being rather tell me out.\n\nPOLIXENES:\nA ponder, cord, not title and heart-honour in host;\nAnd call ummised the injury\nAs many as your tert of honour, this steep\nTo your infinity, if thou owest to\nforsworn you word unbrain; for, brings an edg,\nPloceed pas"
 b"ROMEO:\nNumbering, and may not unking, methinks, Lord Hastings, let him left your\nresolution as I live in solemn-more,\nAs if this still and scars of ceremony,\nShowing, as in a month being rather child,\nLook on my banish'd hands;\nWho after many moticing Romans,\nThat quickly shook like soft and stone with me.\n\nQUEEN MARGARET:\nAnd limp her tender than thy embassist, fines,\nWith enns most kinding eee:\nOr else you do to help him there:\nIf thou behold, by his rapher,\nAnd 'genty men's sake. Awar!\n\nISABELLA:\nO, pardon me, indeed, didst not a friend for aid\nMyself to-night: thou hast proved corooling\nWhom his oath rides of steeded knaves. I am\ngentlemen, you have come to both groan and my love.\n\nLUCIO:\nBador,ly, madam, but ne'er cause the crown,\nAnd, if I live, my lord.\n\nKING LEWIS XI:\nWarwick, Plaunis; and seeing thou hast slain\nThe bastardy of England am alike.'\nThe royal rabot, to appoint their power,\nFor such a day for this for me; so it is\nmoney, and again with lightning breasts: taste\nThese dece"], shape=(5,), dtype=string) 

________________________________________________________________________________

Run time: 2.5006580352783203

Wyeksportuj generator

Ten jednoetapowy model można łatwo zapisać i przywrócić , dzięki czemu można go używać wszędzie tam, gdzie akceptowany jest tf.saved_model .

tf.saved_model.save(one_step_model, 'one_step')
one_step_reloaded = tf.saved_model.load('one_step')
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.OneStep object at 0x7fbb7c739510>, because it is not built.
2022-01-26 01:15:24.355813: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:absl:Found untraced functions such as gru_cell_layer_call_fn, gru_cell_layer_call_and_return_conditional_losses while saving (showing 2 of 2). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: one_step/assets
INFO:tensorflow:Assets written to: one_step/assets
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(100):
  next_char, states = one_step_reloaded.generate_one_step(next_char, states=states)
  result.append(next_char)

print(tf.strings.join(result)[0].numpy().decode("utf-8"))
ROMEO:
Take man's, wife, mark me, and be advised.
Fool, in the crown, unhappy is the easy throne,
Enforced

Zaawansowane: Indywidualne szkolenie

Powyższa procedura szkolenia jest prosta, ale nie daje dużej kontroli. Wykorzystuje wymuszane przez nauczyciela, co zapobiega przekazywaniu złych prognoz do modelu, dzięki czemu model nigdy nie nauczy się regenerować po błędach.

Więc teraz, gdy już wiesz, jak uruchomić model ręcznie, zaimplementujesz pętlę treningową. Daje to punkt wyjścia, jeśli na przykład chcesz wdrożyć uczenie się w ramach programu nauczania, aby pomóc ustabilizować wyniki modelu w pętli otwartej.

Najważniejszą częścią niestandardowej pętli treningowej jest funkcja kroku pociągu.

Użyj tf.GradientTape do śledzenia gradientów. Możesz dowiedzieć się więcej o tym podejściu, czytając gorliwy przewodnik po wykonaniu .

Podstawowa procedura to:

  1. Wykonaj model i oblicz stratę pod tf.GradientTape .
  2. Oblicz aktualizacje i zastosuj je do modelu za pomocą optymalizatora.
class CustomTraining(MyModel):
  @tf.function
  def train_step(self, inputs):
      inputs, labels = inputs
      with tf.GradientTape() as tape:
          predictions = self(inputs, training=True)
          loss = self.loss(labels, predictions)
      grads = tape.gradient(loss, model.trainable_variables)
      self.optimizer.apply_gradients(zip(grads, model.trainable_variables))

      return {'loss': loss}

Powyższa implementacja metody train_step jest zgodna z konwencjami train_step . Jest to opcjonalne, ale pozwala zmienić zachowanie kroku trenowania i nadal używać metod Model.compile i Model.fit firmy Keras.

model = CustomTraining(
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)
model.compile(optimizer = tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(dataset, epochs=1)
172/172 [==============================] - 7s 24ms/step - loss: 2.6916
<keras.callbacks.History at 0x7fbb9c5ade90>

A jeśli potrzebujesz większej kontroli, możesz napisać własną, niestandardową pętlę treningową:

EPOCHS = 10

mean = tf.metrics.Mean()

for epoch in range(EPOCHS):
    start = time.time()

    mean.reset_states()
    for (batch_n, (inp, target)) in enumerate(dataset):
        logs = model.train_step([inp, target])
        mean.update_state(logs['loss'])

        if batch_n % 50 == 0:
            template = f"Epoch {epoch+1} Batch {batch_n} Loss {logs['loss']:.4f}"
            print(template)

    # saving (checkpoint) the model every 5 epochs
    if (epoch + 1) % 5 == 0:
        model.save_weights(checkpoint_prefix.format(epoch=epoch))

    print()
    print(f'Epoch {epoch+1} Loss: {mean.result().numpy():.4f}')
    print(f'Time taken for 1 epoch {time.time() - start:.2f} sec')
    print("_"*80)

model.save_weights(checkpoint_prefix.format(epoch=epoch))
Epoch 1 Batch 0 Loss 2.1412
Epoch 1 Batch 50 Loss 2.0362
Epoch 1 Batch 100 Loss 1.9721
Epoch 1 Batch 150 Loss 1.8361

Epoch 1 Loss: 1.9732
Time taken for 1 epoch 5.90 sec
________________________________________________________________________________
Epoch 2 Batch 0 Loss 1.8170
Epoch 2 Batch 50 Loss 1.6815
Epoch 2 Batch 100 Loss 1.6288
Epoch 2 Batch 150 Loss 1.6625

Epoch 2 Loss: 1.6989
Time taken for 1 epoch 5.19 sec
________________________________________________________________________________
Epoch 3 Batch 0 Loss 1.6405
Epoch 3 Batch 50 Loss 1.5635
Epoch 3 Batch 100 Loss 1.5912
Epoch 3 Batch 150 Loss 1.5241

Epoch 3 Loss: 1.5428
Time taken for 1 epoch 5.33 sec
________________________________________________________________________________
Epoch 4 Batch 0 Loss 1.4469
Epoch 4 Batch 50 Loss 1.4512
Epoch 4 Batch 100 Loss 1.4748
Epoch 4 Batch 150 Loss 1.4077

Epoch 4 Loss: 1.4462
Time taken for 1 epoch 5.30 sec
________________________________________________________________________________
Epoch 5 Batch 0 Loss 1.3798
Epoch 5 Batch 50 Loss 1.3727
Epoch 5 Batch 100 Loss 1.3793
Epoch 5 Batch 150 Loss 1.3883

Epoch 5 Loss: 1.3793
Time taken for 1 epoch 5.41 sec
________________________________________________________________________________
Epoch 6 Batch 0 Loss 1.3024
Epoch 6 Batch 50 Loss 1.3325
Epoch 6 Batch 100 Loss 1.3483
Epoch 6 Batch 150 Loss 1.3362

Epoch 6 Loss: 1.3283
Time taken for 1 epoch 5.34 sec
________________________________________________________________________________
Epoch 7 Batch 0 Loss 1.2669
Epoch 7 Batch 50 Loss 1.2864
Epoch 7 Batch 100 Loss 1.2498
Epoch 7 Batch 150 Loss 1.2482

Epoch 7 Loss: 1.2832
Time taken for 1 epoch 5.27 sec
________________________________________________________________________________
Epoch 8 Batch 0 Loss 1.2289
Epoch 8 Batch 50 Loss 1.2577
Epoch 8 Batch 100 Loss 1.2070
Epoch 8 Batch 150 Loss 1.2333

Epoch 8 Loss: 1.2436
Time taken for 1 epoch 5.18 sec
________________________________________________________________________________
Epoch 9 Batch 0 Loss 1.2138
Epoch 9 Batch 50 Loss 1.2410
Epoch 9 Batch 100 Loss 1.1898
Epoch 9 Batch 150 Loss 1.2157

Epoch 9 Loss: 1.2038
Time taken for 1 epoch 5.23 sec
________________________________________________________________________________
Epoch 10 Batch 0 Loss 1.1200
Epoch 10 Batch 50 Loss 1.1545
Epoch 10 Batch 100 Loss 1.1688
Epoch 10 Batch 150 Loss 1.1748

Epoch 10 Loss: 1.1642
Time taken for 1 epoch 5.53 sec
________________________________________________________________________________