Veja no TensorFlow.org | Executar no Google Colab | Ver fonte no GitHub | Baixar caderno |
Visão geral
Os Estimadores do TensorFlow são compatíveis com o TensorFlow e podem ser criados a partir de modelos tf.keras
novos e existentes. Este tutorial contém um exemplo mínimo completo desse processo.
Configurar
import tensorflow as tf
import numpy as np
import tensorflow_datasets as tfds
Crie um modelo Keras simples.
No Keras, você monta camadas para construir modelos . Um modelo é (geralmente) um gráfico de camadas. O tipo mais comum de modelo é uma pilha de camadas: o modelo tf.keras.Sequential
.
Para construir uma rede simples e totalmente conectada (ou seja, perceptron multicamada):
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(16, activation='relu', input_shape=(4,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(3)
])
Compile o modelo e obtenha um resumo.
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer='adam')
model.summary()
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 16) 80 dropout (Dropout) (None, 16) 0 dense_1 (Dense) (None, 3) 51 ================================================================= Total params: 131 Trainable params: 131 Non-trainable params: 0 _________________________________________________________________
Criar uma função de entrada
Use a API Datasets para dimensionar para grandes conjuntos de dados ou treinamento em vários dispositivos.
Os estimadores precisam controlar quando e como seu pipeline de entrada é construído. Para permitir isso, eles exigem uma "função de entrada" ou input_fn
. O Estimator
chamará esta função sem argumentos. O input_fn
deve retornar um tf.data.Dataset
.
def input_fn():
split = tfds.Split.TRAIN
dataset = tfds.load('iris', split=split, as_supervised=True)
dataset = dataset.map(lambda features, labels: ({'dense_input':features}, labels))
dataset = dataset.batch(32).repeat()
return dataset
Teste seu input_fn
for features_batch, labels_batch in input_fn().take(1):
print(features_batch)
print(labels_batch)
{'dense_input': <tf.Tensor: shape=(32, 4), dtype=float32, numpy= array([[5.1, 3.4, 1.5, 0.2], [7.7, 3. , 6.1, 2.3], [5.7, 2.8, 4.5, 1.3], [6.8, 3.2, 5.9, 2.3], [5.2, 3.4, 1.4, 0.2], [5.6, 2.9, 3.6, 1.3], [5.5, 2.6, 4.4, 1.2], [5.5, 2.4, 3.7, 1. ], [4.6, 3.4, 1.4, 0.3], [7.7, 2.8, 6.7, 2. ], [7. , 3.2, 4.7, 1.4], [4.6, 3.2, 1.4, 0.2], [6.5, 3. , 5.2, 2. ], [5.5, 4.2, 1.4, 0.2], [5.4, 3.9, 1.3, 0.4], [5. , 3.5, 1.3, 0.3], [5.1, 3.8, 1.5, 0.3], [4.8, 3. , 1.4, 0.1], [6.5, 3. , 5.8, 2.2], [7.6, 3. , 6.6, 2.1], [6.7, 3.3, 5.7, 2.1], [7.9, 3.8, 6.4, 2. ], [6.7, 3. , 5.2, 2.3], [5.8, 4. , 1.2, 0.2], [6.3, 2.5, 5. , 1.9], [5. , 3. , 1.6, 0.2], [6.9, 3.1, 5.1, 2.3], [6.1, 3. , 4.6, 1.4], [5.8, 2.7, 4.1, 1. ], [5.2, 2.7, 3.9, 1.4], [6.7, 3. , 5. , 1.7], [5.7, 2.6, 3.5, 1. ]], dtype=float32)>} tf.Tensor([0 2 1 2 0 1 1 1 0 2 1 0 2 0 0 0 0 0 2 2 2 2 2 0 2 0 2 1 1 1 1 1], shape=(32,), dtype=int64)
Crie um Estimador a partir do modelo tf.keras.
Um tf.keras.Model
pode ser treinado com a API tf.estimator
convertendo o modelo em um objeto tf.estimator.Estimator
com tf.keras.estimator.model_to_estimator
.
import tempfile
model_dir = tempfile.mkdtemp()
keras_estimator = tf.keras.estimator.model_to_estimator(
keras_model=model, model_dir=model_dir)
INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using the Keras model provided. INFO:tensorflow:Using the Keras model provided. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/backend.py:450: UserWarning: `tf.keras.backend.set_learning_phase` is deprecated and will be removed after 2020-10-11. To update it, simply pass a True/False value to the `training` argument of the `__call__` method of your layer or model. warnings.warn('`tf.keras.backend.set_learning_phase` is deprecated and ' INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp2jzrjbqb', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp2jzrjbqb', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
Treinar e avaliar o estimador.
keras_estimator.train(input_fn=input_fn, steps=500)
eval_result = keras_estimator.evaluate(input_fn=input_fn, steps=10)
print('Eval result: {}'.format(eval_result))
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmp2jzrjbqb/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={}) INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmp2jzrjbqb/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={}) INFO:tensorflow:Warm-starting from: /tmp/tmp2jzrjbqb/keras/keras_model.ckpt INFO:tensorflow:Warm-starting from: /tmp/tmp2jzrjbqb/keras/keras_model.ckpt INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES. INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES. INFO:tensorflow:Warm-started 4 variables. INFO:tensorflow:Warm-started 4 variables. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 3.2731433, step = 0 INFO:tensorflow:loss = 3.2731433, step = 0 INFO:tensorflow:global_step/sec: 19.6463 INFO:tensorflow:global_step/sec: 19.6463 INFO:tensorflow:loss = 1.012466, step = 100 (5.092 sec) INFO:tensorflow:loss = 1.012466, step = 100 (5.092 sec) INFO:tensorflow:global_step/sec: 19.705 INFO:tensorflow:global_step/sec: 19.705 INFO:tensorflow:loss = 0.9225232, step = 200 (5.075 sec) INFO:tensorflow:loss = 0.9225232, step = 200 (5.075 sec) INFO:tensorflow:global_step/sec: 19.9236 INFO:tensorflow:global_step/sec: 19.9236 INFO:tensorflow:loss = 0.8686823, step = 300 (5.019 sec) INFO:tensorflow:loss = 0.8686823, step = 300 (5.019 sec) INFO:tensorflow:global_step/sec: 19.8862 INFO:tensorflow:global_step/sec: 19.8862 INFO:tensorflow:loss = 0.6412657, step = 400 (5.029 sec) INFO:tensorflow:loss = 0.6412657, step = 400 (5.029 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 500... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 500... INFO:tensorflow:Saving checkpoints for 500 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Saving checkpoints for 500 into /tmp/tmp2jzrjbqb/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 500... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 500... INFO:tensorflow:Loss for final step: 0.65391386. INFO:tensorflow:Loss for final step: 0.65391386. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/training_v1.py:2057: UserWarning: `Model.state_updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically. updates = self.state_updates INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-01-26T06:39:31 INFO:tensorflow:Starting evaluation at 2022-01-26T06:39:31 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp2jzrjbqb/model.ckpt-500 INFO:tensorflow:Restoring parameters from /tmp/tmp2jzrjbqb/model.ckpt-500 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.63967s INFO:tensorflow:Inference Time : 0.63967s INFO:tensorflow:Finished evaluation at 2022-01-26-06:39:31 INFO:tensorflow:Finished evaluation at 2022-01-26-06:39:31 INFO:tensorflow:Saving dict for global step 500: global_step = 500, loss = 0.6503415 INFO:tensorflow:Saving dict for global step 500: global_step = 500, loss = 0.6503415 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 500: /tmp/tmp2jzrjbqb/model.ckpt-500 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 500: /tmp/tmp2jzrjbqb/model.ckpt-500 Eval result: {'loss': 0.6503415, 'global_step': 500}