Mejor rendimiento con tf.function

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHubDescargar libreta

En TensorFlow 2, la ejecución ansiosa está activada de forma predeterminada. La interfaz de usuario es intuitiva y flexible (ejecutar operaciones únicas es mucho más fácil y rápido), pero esto puede ser a expensas del rendimiento y la capacidad de implementación.

Puede usar tf.function para hacer gráficos a partir de sus programas. Es una herramienta de transformación que crea gráficos de flujo de datos independientes de Python a partir de su código Python. Esto lo ayudará a crear modelos portátiles y de alto rendimiento, y es necesario para usar SavedModel .

Esta guía lo ayudará a conceptualizar cómo funciona tf.function bajo el capó, para que pueda usarlo de manera efectiva.

Las principales conclusiones y recomendaciones son:

  • Depure en modo impaciente, luego decore con @tf.function .
  • No confíe en los efectos secundarios de Python, como la mutación de objetos o los anexos de listas.
  • tf.function funciona mejor con TensorFlow ops; Las llamadas a NumPy y Python se convierten en constantes.

Configuración

import tensorflow as tf

Defina una función auxiliar para demostrar los tipos de errores que puede encontrar:

import traceback
import contextlib

# Some helper code to demonstrate the kinds of errors you might encounter.
@contextlib.contextmanager
def assert_raises(error_class):
  try:
    yield
  except error_class as e:
    print('Caught expected exception \n  {}:'.format(error_class))
    traceback.print_exc(limit=2)
  except Exception as e:
    raise e
  else:
    raise Exception('Expected {} to be raised but no error was raised!'.format(
        error_class))

Lo esencial

Uso

Una Function que defina (por ejemplo, al aplicar el decorador @tf.function ) es como una operación principal de TensorFlow: puede ejecutarla con entusiasmo; puede calcular gradientes; y así.

@tf.function  # The decorator converts `add` into a `Function`.
def add(a, b):
  return a + b

add(tf.ones([2, 2]), tf.ones([2, 2]))  #  [[2., 2.], [2., 2.]]
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[2., 2.],
       [2., 2.]], dtype=float32)>
v = tf.Variable(1.0)
with tf.GradientTape() as tape:
  result = add(v, 1.0)
tape.gradient(result, v)
<tf.Tensor: shape=(), dtype=float32, numpy=1.0>

Puede usar Function s dentro de otras Function s.

@tf.function
def dense_layer(x, w, b):
  return add(tf.matmul(x, w), b)

dense_layer(tf.ones([3, 2]), tf.ones([2, 2]), tf.ones([2]))
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[3., 3.],
       [3., 3.],
       [3., 3.]], dtype=float32)>

Function pueden ser más rápidas que el código ansioso, especialmente para gráficos con muchas operaciones pequeñas. Pero para gráficos con algunas operaciones costosas (como circunvoluciones), es posible que no vea mucha aceleración.

import timeit
conv_layer = tf.keras.layers.Conv2D(100, 3)

@tf.function
def conv_fn(image):
  return conv_layer(image)

image = tf.zeros([1, 200, 200, 100])
# Warm up
conv_layer(image); conv_fn(image)
print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10))
print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10))
print("Note how there's not much difference in performance for convolutions")
Eager conv: 0.006058974999177735
Function conv: 0.005791576000774512
Note how there's not much difference in performance for convolutions

Rastreo

En esta sección, se expone cómo Function bajo el capó, incluidos los detalles de implementación que pueden cambiar en el futuro . Sin embargo, una vez que comprenda por qué y cuándo ocurre el rastreo, ¡es mucho más fácil usar tf.function de manera efectiva!

¿Qué es "rastrear"?

Una Function ejecuta su programa en un gráfico de TensorFlow . Sin embargo, un tf.Graph no puede representar todas las cosas que escribiría en un programa ansioso de TensorFlow. Por ejemplo, Python admite polimorfismo, pero tf.Graph requiere que sus entradas tengan un tipo de datos y una dimensión específicos. O puede realizar tareas secundarias como leer argumentos de la línea de comandos, generar un error o trabajar con un objeto de Python más complejo; ninguna de estas cosas puede ejecutarse en un tf.Graph .

Function cierra esta brecha al separar su código en dos etapas:

1) En la primera etapa, denominada " seguimiento ", Function crea un nuevo tf.Graph . El código de Python se ejecuta normalmente, pero todas las operaciones de TensorFlow (como agregar dos tensores) se tf.Graph y no se ejecutan.

2) En la segunda etapa se ejecuta un tf.Graph que contiene todo lo diferido en la primera etapa. Esta etapa es mucho más rápida que la etapa de rastreo.

Dependiendo de sus entradas, Function no siempre ejecutará la primera etapa cuando se la llame. Consulte las "Reglas de seguimiento" a continuación para tener una mejor idea de cómo toma esa determinación. Omitir la primera etapa y ejecutar solo la segunda etapa es lo que le brinda el alto rendimiento de TensorFlow.

Cuando Function decide rastrear, la etapa de rastreo es seguida inmediatamente por la segunda etapa, por lo que llamar a Function crea y ejecuta el tf.Graph . Más adelante verá cómo puede ejecutar solo la etapa de seguimiento con get_concrete_function .

Cuando pasa argumentos de diferentes tipos a una Function , se ejecutan ambas etapas:

@tf.function
def double(a):
  print("Tracing with", a)
  return a + a

print(double(tf.constant(1)))
print()
print(double(tf.constant(1.1)))
print()
print(double(tf.constant("a")))
print()
Tracing with Tensor("a:0", shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)

Tracing with Tensor("a:0", shape=(), dtype=float32)
tf.Tensor(2.2, shape=(), dtype=float32)

Tracing with Tensor("a:0", shape=(), dtype=string)
tf.Tensor(b'aa', shape=(), dtype=string)

Tenga en cuenta que si llama repetidamente a una Function con el mismo tipo de argumento, TensorFlow omitirá la etapa de seguimiento y reutilizará un gráfico previamente trazado, ya que el gráfico generado sería idéntico.

# This doesn't print 'Tracing with ...'
print(double(tf.constant("b")))
tf.Tensor(b'bb', shape=(), dtype=string)

Puede usar pretty_printed_concrete_signatures() para ver todos los rastros disponibles:

print(double.pretty_printed_concrete_signatures())
double(a)
  Args:
    a: int32 Tensor, shape=()
  Returns:
    int32 Tensor, shape=()

double(a)
  Args:
    a: float32 Tensor, shape=()
  Returns:
    float32 Tensor, shape=()

double(a)
  Args:
    a: string Tensor, shape=()
  Returns:
    string Tensor, shape=()

Hasta ahora, ha visto que tf.function crea una capa de distribución dinámica en caché sobre la lógica de seguimiento de gráficos de TensorFlow. Para ser más específicos sobre la terminología:

  • Un tf.Graph es la representación portátil sin procesar, independiente del idioma, de un cálculo de TensorFlow.
  • Una ConcreteFunction envuelve un tf.Graph .
  • Una Function administra un caché de funciones ConcreteFunction y elige la correcta para sus entradas.
  • tf.function envuelve una función de Python y devuelve un objeto Function .
  • Tracing crea un tf.Graph y lo envuelve en una ConcreteFunction , también conocida como trace.

Reglas de rastreo

Una Function determina si se reutiliza una función ConcreteFunction rastreada mediante el cálculo de una clave de caché a partir de los argumentos y kwargs de una entrada. Una clave de caché es una clave que identifica una función ConcreteFunction según los argumentos de entrada y los kwargs de la llamada de Function , de acuerdo con las siguientes reglas (que pueden cambiar):

  • La clave generada para un tf.Tensor es su forma y tipo.
  • La clave generada para un tf.Variable es una identificación de variable única.
  • La clave generada para una primitiva de Python (como int , float , str ) es su valor.
  • La clave generada para dict s, list s, tuple s, namedtuple s y attr s anidados es la tupla aplanada de claves de hoja (ver nest.flatten ). (Como resultado de este aplanamiento, llamar a una función concreta con una estructura de anidamiento diferente a la utilizada durante el seguimiento dará como resultado un TypeError).
  • Para todos los demás tipos de Python, la clave es única para el objeto. De esta manera, una función o método se rastrea de forma independiente para cada instancia con la que se llama.

Controlando el retroceso

Retracing, que es cuando su Function crea más de un seguimiento, ayuda a garantizar que TensorFlow genere gráficos correctos para cada conjunto de entradas. Sin embargo, ¡rastrear es una operación costosa! Si su Function vuelve a trazar un nuevo gráfico para cada llamada, encontrará que su código se ejecuta más lentamente que si no usara tf.function .

Para controlar el comportamiento de seguimiento, puede utilizar las siguientes técnicas:

  • Especifique input_signature en tf.function para limitar el seguimiento.
@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))
def next_collatz(x):
  print("Tracing with", x)
  return tf.where(x % 2 == 0, x // 2, 3 * x + 1)

print(next_collatz(tf.constant([1, 2])))
# You specified a 1-D tensor in the input signature, so this should fail.
with assert_raises(ValueError):
  next_collatz(tf.constant([[1, 2], [3, 4]]))

# You specified an int32 dtype in the input signature, so this should fail.
with assert_raises(ValueError):
  next_collatz(tf.constant([1.0, 2.0]))
Tracing with Tensor("x:0", shape=(None,), dtype=int32)
tf.Tensor([4 1], shape=(2,), dtype=int32)
Caught expected exception 
  <class 'ValueError'>:
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/1851403433.py", line 9, in <module>
    next_collatz(tf.constant([[1, 2], [3, 4]]))
ValueError: Python inputs incompatible with input_signature:
  inputs: (
    tf.Tensor(
[[1 2]
 [3 4]], shape=(2, 2), dtype=int32))
  input_signature: (
    TensorSpec(shape=(None,), dtype=tf.int32, name=None)).
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/1851403433.py", line 13, in <module>
    next_collatz(tf.constant([1.0, 2.0]))
ValueError: Python inputs incompatible with input_signature:
  inputs: (
    tf.Tensor([1. 2.], shape=(2,), dtype=float32))
  input_signature: (
    TensorSpec(shape=(None,), dtype=tf.int32, name=None)).
  • Especifique una dimensión [Ninguna] en tf.TensorSpec para permitir flexibilidad en la reutilización de seguimiento.

    Dado que TensorFlow hace coincidir los tensores en función de su forma, el uso de una dimensión None como comodín permitirá que las Function reutilicen las trazas para entradas de tamaño variable. La entrada de tamaño variable puede ocurrir si tiene secuencias de diferente duración o imágenes de diferentes tamaños para cada lote (consulte los tutoriales de Transformer y Deep Dream , por ejemplo).

@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))
def g(x):
  print('Tracing with', x)
  return x

# No retrace!
print(g(tf.constant([1, 2, 3])))
print(g(tf.constant([1, 2, 3, 4, 5])))
Tracing with Tensor("x:0", shape=(None,), dtype=int32)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor([1 2 3 4 5], shape=(5,), dtype=int32)
  • Transmita argumentos de Python a tensores para reducir el retroceso.

    A menudo, los argumentos de Python se usan para controlar los hiperparámetros y las construcciones de gráficos, por ejemplo, num_layers=10 o training=True o nonlinearity='relu' . Entonces, si el argumento de Python cambia, tiene sentido que tenga que volver sobre el gráfico.

    Sin embargo, es posible que no se utilice un argumento de Python para controlar la construcción de gráficos. En estos casos, un cambio en el valor de Python puede desencadenar un retroceso innecesario. Tome, por ejemplo, este ciclo de entrenamiento, que AutoGraph desplegará dinámicamente. A pesar de las múltiples trazas, el gráfico generado es en realidad idéntico, por lo que no es necesario volver a trazar.

def train_one_step():
  pass

@tf.function
def train(num_steps):
  print("Tracing with num_steps = ", num_steps)
  tf.print("Executing with num_steps = ", num_steps)
  for _ in tf.range(num_steps):
    train_one_step()

print("Retracing occurs for different Python arguments.")
train(num_steps=10)
train(num_steps=20)

print()
print("Traces are reused for Tensor arguments.")
train(num_steps=tf.constant(10))
train(num_steps=tf.constant(20))
Retracing occurs for different Python arguments.
Tracing with num_steps =  10
Executing with num_steps =  10
Tracing with num_steps =  20
Executing with num_steps =  20

Traces are reused for Tensor arguments.
Tracing with num_steps =  Tensor("num_steps:0", shape=(), dtype=int32)
Executing with num_steps =  10
Executing with num_steps =  20

Si necesita forzar el retroceso, cree una nueva Function . Se garantiza que los objetos de Function separados no compartirán rastros.

def f():
  print('Tracing!')
  tf.print('Executing')

tf.function(f)()
tf.function(f)()
Tracing!
Executing
Tracing!
Executing

Obtención de funciones concretas

Cada vez que se traza una función, se crea una nueva función concreta. Puede obtener directamente una función concreta utilizando get_concrete_function .

print("Obtaining concrete trace")
double_strings = double.get_concrete_function(tf.constant("a"))
print("Executing traced function")
print(double_strings(tf.constant("a")))
print(double_strings(a=tf.constant("b")))
Obtaining concrete trace
Executing traced function
tf.Tensor(b'aa', shape=(), dtype=string)
tf.Tensor(b'bb', shape=(), dtype=string)
# You can also call get_concrete_function on an InputSpec
double_strings_from_inputspec = double.get_concrete_function(tf.TensorSpec(shape=[], dtype=tf.string))
print(double_strings_from_inputspec(tf.constant("c")))
tf.Tensor(b'cc', shape=(), dtype=string)

Imprimir una ConcreteFunction muestra un resumen de sus argumentos de entrada (con tipos) y su tipo de salida.

print(double_strings)
ConcreteFunction double(a)
  Args:
    a: string Tensor, shape=()
  Returns:
    string Tensor, shape=()

También puede recuperar directamente la firma de una función concreta.

print(double_strings.structured_input_signature)
print(double_strings.structured_outputs)
((TensorSpec(shape=(), dtype=tf.string, name='a'),), {})
Tensor("Identity:0", shape=(), dtype=string)

El uso de un seguimiento concreto con tipos incompatibles arrojará un error

with assert_raises(tf.errors.InvalidArgumentError):
  double_strings(tf.constant(1))
Caught expected exception 
  <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3196284684.py", line 2, in <module>
    double_strings(tf.constant(1))
tensorflow.python.framework.errors_impl.InvalidArgumentError: cannot compute __inference_double_162 as input #0(zero-based) was expected to be a string tensor but is a int32 tensor [Op:__inference_double_162]

Puede notar que los argumentos de Python reciben un tratamiento especial en la firma de entrada de una función concreta. Antes de TensorFlow 2.3, los argumentos de Python simplemente se eliminaban de la firma de la función concreta. A partir de TensorFlow 2.3, los argumentos de Python permanecen en la firma, pero están restringidos a tomar el valor establecido durante el seguimiento.

@tf.function
def pow(a, b):
  return a ** b

square = pow.get_concrete_function(a=tf.TensorSpec(None, tf.float32), b=2)
print(square)
ConcreteFunction pow(a, b=2)
  Args:
    a: float32 Tensor, shape=<unknown>
  Returns:
    float32 Tensor, shape=<unknown>
assert square(tf.constant(10.0)) == 100

with assert_raises(TypeError):
  square(tf.constant(10.0), b=3)
Caught expected exception 
  <class 'TypeError'>:
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 1721, in _call_impl
    cancellation_manager)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 1765, in _call_with_flat_signature
    raise TypeError(f"{self._flat_signature_summary()} got unexpected "
TypeError: pow(a) got unexpected keyword arguments: b.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/2310937119.py", line 4, in <module>
    square(tf.constant(10.0), b=3)
TypeError: ConcreteFunction pow(a, b) was constructed with int value 2 in b, but was called with int value 3.

Obtención de gráficos

Cada función concreta es un contenedor invocable alrededor de un tf.Graph . Aunque recuperar el objeto tf.Graph real no es algo que necesite hacer normalmente, puede obtenerlo fácilmente desde cualquier función concreta.

graph = double_strings.graph
for node in graph.as_graph_def().node:
  print(f'{node.input} -> {node.name}')
[] -> a
['a', 'a'] -> add
['add'] -> Identity

depuración

En general, el código de depuración es más fácil en modo ansioso que dentro de tf.function . Debe asegurarse de que su código se ejecute sin errores en modo ansioso antes de decorar con tf.function . Para ayudar en el proceso de depuración, puede llamar a tf.config.run_functions_eagerly(True) para deshabilitar y volver a habilitar globalmente tf.function .

Al rastrear problemas que solo aparecen dentro de tf.function , aquí hay algunos consejos:

  • Las antiguas llamadas print de Python solo se ejecutan durante el seguimiento, lo que lo ayuda a rastrear cuándo se (re)traza su función.
  • Las llamadas tf.print se ejecutarán cada vez y pueden ayudarlo a rastrear valores intermedios durante la ejecución.
  • tf.debugging.enable_check_numerics es una manera fácil de rastrear dónde se crean NaN e Inf.
  • pdb (el depurador de Python ) puede ayudarlo a comprender lo que sucede durante el seguimiento. (Advertencia: pdb lo llevará al código fuente transformado por AutoGraph).

Transformaciones de AutoGraph

AutoGraph es una biblioteca que está activada de forma predeterminada en tf.function y transforma un subconjunto de código ansioso de Python en operaciones de TensorFlow compatibles con gráficos. Esto incluye flujo de control como if , for , while .

Las operaciones de TensorFlow como tf.cond y tf.while_loop continúan funcionando, pero el flujo de control suele ser más fácil de escribir y comprender cuando se escribe en Python.

# A simple loop

@tf.function
def f(x):
  while tf.reduce_sum(x) > 1:
    tf.print(x)
    x = tf.tanh(x)
  return x

f(tf.random.uniform([5]))
[0.666458249 0.713946581 0.723879576 0.330758929 0.184087753]
[0.582645297 0.613145649 0.619306684 0.319202513 0.182036072]
[0.524585426 0.546337605 0.550645113 0.308785647 0.18005164]
[0.481231302 0.497770309 0.501003504 0.299331933 0.178130865]
[0.447229207 0.460361809 0.462906033 0.290701121 0.176270396]
[0.419618756 0.430379033 0.432449728 0.282779962 0.174467146]
[0.396609187 0.405638 0.407366514 0.275476 0.172718227]
[0.377043903 0.384762734 0.386234313 0.268712848 0.17102097]
[0.360137492 0.366836458 0.368109286 0.262426734 0.169372901]
[0.345335096 0.351221472 0.352336824 0.256563932 0.167771652]
[0.332231969 0.337458342 0.338446289 0.251078814 0.166215062]
[0.320524871 0.325206399 0.326089561 0.24593246 0.164701089]
[0.309981436 0.314206958 0.31500268 0.241091311 0.163227797]
[0.300420195 0.304259449 0.304981351 0.236526251 0.161793426]
[0.291697085 0.295205742 0.295864582 0.232211992 0.160396278]
[0.283696055 0.286919087 0.287523568 0.228126258 0.159034774]
[0.276322395 0.279296666 0.27985391 0.224249557 0.157707423]
[0.269497961 0.272254 0.272769839 0.220564634 0.15641281]
[0.263157606 0.265720904 0.266200244 0.21705614 0.155149609]
[0.257246554 0.259638608 0.260085613 0.213710397 0.153916568]
[0.251718313 0.25395745 0.254375577 0.210515186 0.152712509]
[0.246533215 0.248635098 0.249027327 0.207459539 0.151536316]
[0.241657034 0.243635193 0.244004101 0.204533577 0.15038693]
[0.237060249 0.238926381 0.239274174 0.201728329 0.149263337]
[0.232717097 0.234481394 0.234810054 0.199035719 0.148164615]
[0.228605017 0.230276451 0.230587661 0.196448416 0.147089839]
[0.224704206 0.226290658 0.22658591 0.193959698 0.14603813]
[0.220997125 0.222505584 0.222786173 0.191563457 0.145008713]
<tf.Tensor: shape=(5,), dtype=float32, numpy=
array([0.21746822, 0.21890487, 0.21917202, 0.18925412, 0.14400077],
      dtype=float32)>

Si tiene curiosidad, puede inspeccionar el código que genera el autógrafo.

print(tf.autograph.to_code(f.python_function))
def tf__f(x):
    with ag__.FunctionScope('f', 'fscope', ag__.ConversionOptions(recursive=True, user_requested=True, optional_features=(), internal_convert_user_code=True)) as fscope:
        do_return = False
        retval_ = ag__.UndefinedReturnValue()

        def get_state():
            return (x,)

        def set_state(vars_):
            nonlocal x
            (x,) = vars_

        def loop_body():
            nonlocal x
            ag__.converted_call(ag__.ld(tf).print, (ag__.ld(x),), None, fscope)
            x = ag__.converted_call(ag__.ld(tf).tanh, (ag__.ld(x),), None, fscope)

        def loop_test():
            return (ag__.converted_call(ag__.ld(tf).reduce_sum, (ag__.ld(x),), None, fscope) > 1)
        ag__.while_stmt(loop_test, loop_body, get_state, set_state, ('x',), {})
        try:
            do_return = True
            retval_ = ag__.ld(x)
        except:
            do_return = False
            raise
        return fscope.ret(retval_, do_return)

Condicionales

AutoGraph convertirá algunas sentencias if <condition> en llamadas tf.cond equivalentes. Esta sustitución se realiza si <condition> es un tensor. De lo contrario, la instrucción if se ejecuta como un condicional de Python.

Un condicional de Python se ejecuta durante el seguimiento, por lo que se agregará exactamente una rama del condicional al gráfico. Sin AutoGraph, este gráfico trazado no podría tomar la rama alternativa si hay un flujo de control dependiente de los datos.

tf.cond rastrea y agrega ambas ramas del condicional al gráfico, seleccionando dinámicamente una rama en el momento de la ejecución. El rastreo puede tener efectos secundarios no deseados; Consulte los efectos de trazado de AutoGraph para obtener más información.

@tf.function
def fizzbuzz(n):
  for i in tf.range(1, n + 1):
    print('Tracing for loop')
    if i % 15 == 0:
      print('Tracing fizzbuzz branch')
      tf.print('fizzbuzz')
    elif i % 3 == 0:
      print('Tracing fizz branch')
      tf.print('fizz')
    elif i % 5 == 0:
      print('Tracing buzz branch')
      tf.print('buzz')
    else:
      print('Tracing default branch')
      tf.print(i)

fizzbuzz(tf.constant(5))
fizzbuzz(tf.constant(20))
Tracing for loop
Tracing fizzbuzz branch
Tracing fizz branch
Tracing buzz branch
Tracing default branch
1
2
fizz
4
buzz
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
16
17
fizz
19
buzz

Consulte la documentación de referencia para obtener restricciones adicionales sobre declaraciones if convertidas en AutoGraph.

Bucles

AutoGraph convertirá algunas declaraciones for y while en las operaciones de bucle de TensorFlow equivalentes, como tf.while_loop . Si no se convierte, el bucle for o while se ejecuta como un bucle de Python.

Esta sustitución se realiza en las siguientes situaciones:

  • for x in y : si y es un tensor, conviértalo en tf.while_loop . En el caso especial donde y es un tf.data.Dataset , se genera una combinación de operaciones tf.data.Dataset .
  • while <condition> : si <condition> es un tensor, convertir a tf.while_loop .

Un bucle de Python se ejecuta durante el seguimiento, agregando operaciones adicionales al tf.Graph para cada iteración del bucle.

Un bucle TensorFlow rastrea el cuerpo del bucle y selecciona dinámicamente cuántas iteraciones ejecutar en el momento de la ejecución. El cuerpo del bucle solo aparece una vez en el tf.Graph generado.

Consulte la documentación de referencia para obtener restricciones adicionales sobre las sentencias for y while convertidas en AutoGraph.

Recorriendo los datos de Python

Un error común es hacer un bucle sobre los datos de Python/NumPy dentro de una tf.function . Este ciclo se ejecutará durante el proceso de rastreo, agregando una copia de su modelo al tf.Graph para cada iteración del ciclo.

Si desea envolver todo el ciclo de entrenamiento en tf.function , la forma más segura de hacerlo es envolver sus datos como tf.data.Dataset para que AutoGraph despliegue dinámicamente el ciclo de entrenamiento.

def measure_graph_size(f, *args):
  g = f.get_concrete_function(*args).graph
  print("{}({}) contains {} nodes in its graph".format(
      f.__name__, ', '.join(map(str, args)), len(g.as_graph_def().node)))

@tf.function
def train(dataset):
  loss = tf.constant(0)
  for x, y in dataset:
    loss += tf.abs(y - x) # Some dummy computation.
  return loss

small_data = [(1, 1)] * 3
big_data = [(1, 1)] * 10
measure_graph_size(train, small_data)
measure_graph_size(train, big_data)

measure_graph_size(train, tf.data.Dataset.from_generator(
    lambda: small_data, (tf.int32, tf.int32)))
measure_graph_size(train, tf.data.Dataset.from_generator(
    lambda: big_data, (tf.int32, tf.int32)))
train([(1, 1), (1, 1), (1, 1)]) contains 11 nodes in its graph
train([(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)]) contains 32 nodes in its graph
train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 6 nodes in its graph
train(<FlatMapDataset shapes: (<unknown>, <unknown>), types: (tf.int32, tf.int32)>) contains 6 nodes in its graph

Al envolver datos de Python/NumPy en un conjunto de datos, tenga en cuenta tf.data.Dataset.from_generator frente tf.data.Dataset.from_tensors . El primero mantendrá los datos en Python y los obtendrá a través tf.py_function , lo que puede tener implicaciones en el rendimiento, mientras que el segundo agrupará una copia de los datos como un gran nodo tf.constant() en el gráfico, lo que puede tener implicaciones en la memoria.

La lectura de datos de archivos a través de TFRecordDataset , CsvDataset , etc. es la forma más efectiva de consumir datos, ya que TensorFlow puede administrar la carga asíncrona y la obtención previa de datos, sin tener que involucrar a Python. Para obtener más información, consulte la tf.data : Build TensorFlow input pipelines .

Acumulación de valores en un bucle

Un patrón común es acumular valores intermedios de un ciclo. Normalmente, esto se logra agregando a una lista de Python o agregando entradas a un diccionario de Python. Sin embargo, como estos son efectos secundarios de Python, no funcionarán como se espera en un bucle desenrollado dinámicamente. Use tf.TensorArray para acumular resultados de un bucle desenrollado dinámicamente.

batch_size = 2
seq_len = 3
feature_size = 4

def rnn_step(inp, state):
  return inp + state

@tf.function
def dynamic_rnn(rnn_step, input_data, initial_state):
  # [batch, time, features] -> [time, batch, features]
  input_data = tf.transpose(input_data, [1, 0, 2])
  max_seq_len = input_data.shape[0]

  states = tf.TensorArray(tf.float32, size=max_seq_len)
  state = initial_state
  for i in tf.range(max_seq_len):
    state = rnn_step(input_data[i], state)
    states = states.write(i, state)
  return tf.transpose(states.stack(), [1, 0, 2])

dynamic_rnn(rnn_step,
            tf.random.uniform([batch_size, seq_len, feature_size]),
            tf.zeros([batch_size, feature_size]))
<tf.Tensor: shape=(2, 3, 4), dtype=float32, numpy=
array([[[0.06309307, 0.9938811 , 0.90789986, 0.42136216],
        [0.44997275, 1.9107027 , 1.0716251 , 0.717237  ],
        [0.6026064 , 2.1622117 , 1.4164022 , 1.4153863 ]],

       [[0.04946005, 0.69127274, 0.56848884, 0.22406638],
        [0.8148316 , 1.0278493 , 0.6207781 , 1.1935129 ],
        [0.9178308 , 1.320889  , 0.989761  , 2.0120025 ]]], dtype=float32)>

Limitaciones

Function TensorFlow tiene algunas limitaciones por diseño que debe tener en cuenta al convertir una función de Python en una Function .

Ejecutando los efectos secundarios de Python

Los efectos secundarios, como imprimir, agregar a listas y mutar globales, pueden comportarse de manera inesperada dentro de una Function , a veces ejecutándose dos veces o no todas. Solo ocurren la primera vez que llama a una Function con un conjunto de entradas. Posteriormente, se vuelve a ejecutar el tf.Graph trazado, sin ejecutar el código de Python.

La regla general es evitar confiar en los efectos secundarios de Python en su lógica y solo usarlos para depurar sus rastros. De lo contrario, las API de TensorFlow como tf.data , tf.print , tf.summary , tf.Variable.assign y tf.TensorArray son la mejor manera de garantizar que el tiempo de ejecución de TensorFlow ejecute su código con cada llamada.

@tf.function
def f(x):
  print("Traced with", x)
  tf.print("Executed with", x)

f(1)
f(1)
f(2)
Traced with 1
Executed with 1
Executed with 1
Traced with 2
Executed with 2

Si desea ejecutar el código de Python durante cada invocación de una Function , tf.py_function es una escotilla de salida. El inconveniente de tf.py_function es que no es portátil ni tiene un rendimiento especial, no se puede guardar con el modelo guardado y no funciona bien en configuraciones distribuidas (multi-GPU, TPU). Además, dado que tf.py_function debe conectarse al gráfico, convierte todas las entradas/salidas en tensores.

Cambio de variables globales y libres de Python

Cambiar las variables globales y libres de Python cuenta como un efecto secundario de Python, por lo que solo ocurre durante el seguimiento.

external_list = []

@tf.function
def side_effect(x):
  print('Python side effect')
  external_list.append(x)

side_effect(1)
side_effect(1)
side_effect(1)
# The list append only happened once!
assert len(external_list) == 1
Python side effect

A veces, los comportamientos inesperados son muy difíciles de notar. En el ejemplo siguiente, el counter está destinado a salvaguardar el incremento de una variable. Sin embargo, debido a que es un número entero de Python y no un objeto de TensorFlow, su valor se captura durante el primer seguimiento. Cuando se usa la función tf.function ., la assign_add se registrará incondicionalmente en el gráfico subyacente. Por lo tanto, v aumentará en 1 cada vez que se llame a la tf.function . Este problema es común entre los usuarios que intentan migrar su código Tensorflow en modo Grpah a Tensorflow 2 usando decoradores tf.function , cuando los efectos secundarios de python (el counter en el ejemplo) se usan para determinar qué operaciones ejecutar ( assign_add en el ejemplo ). Por lo general, los usuarios se dan cuenta de esto solo después de ver resultados numéricos sospechosos o un rendimiento significativamente más bajo de lo esperado (por ejemplo, si la operación protegida es muy costosa).

class Model(tf.Module):
  def __init__(self):
    self.v = tf.Variable(0)
    self.counter = 0

  @tf.function
  def __call__(self):
    if self.counter == 0:
      # A python side-effect
      self.counter += 1
      self.v.assign_add(1)

    return self.v

m = Model()
for n in range(3):
  print(m().numpy()) # prints 1, 2, 3
1
2
3

Una solución para lograr el comportamiento esperado es usar tf.init_scope para sacar las operaciones fuera del gráfico de funciones. Esto asegura que el incremento variable solo se realice una vez durante el tiempo de seguimiento. Cabe señalar que init_scope tiene otros efectos secundarios, incluido el flujo de control despejado y la cinta de gradiente. A veces, el uso de init_scope puede volverse demasiado complejo para administrarlo de manera realista.

class Model(tf.Module):
  def __init__(self):
    self.v = tf.Variable(0)
    self.counter = 0

  @tf.function
  def __call__(self):
    if self.counter == 0:
      # Lifts ops out of function-building graphs
      with tf.init_scope():
        self.counter += 1
        self.v.assign_add(1)

    return self.v

m = Model()
for n in range(3):
  print(m().numpy()) # prints 1, 1, 1
1
1
1

En resumen, como regla general, debe evitar mutar objetos de python, como números enteros o contenedores como listas que viven fuera de la Function . En su lugar, utilice argumentos y objetos TF. Por ejemplo, la sección "Acumulación de valores en un bucle" tiene un ejemplo de cómo se pueden implementar operaciones similares a listas.

Puede, en algunos casos, capturar y manipular el estado si es una tf.Variable . Así es como se actualizan los pesos de los modelos de Keras con llamadas repetidas a la misma ConcreteFunction .

Uso de iteradores y generadores de Python

Muchas funciones de Python, como generadores e iteradores, se basan en el tiempo de ejecución de Python para realizar un seguimiento del estado. En general, si bien estas construcciones funcionan como se esperaba en el modo ansioso, son ejemplos de los efectos secundarios de Python y, por lo tanto, solo ocurren durante el seguimiento.

@tf.function
def buggy_consume_next(iterator):
  tf.print("Value:", next(iterator))

iterator = iter([1, 2, 3])
buggy_consume_next(iterator)
# This reuses the first value from the iterator, rather than consuming the next value.
buggy_consume_next(iterator)
buggy_consume_next(iterator)
Value: 1
Value: 1
Value: 1

Al igual que TensorFlow tiene un tf.TensorArray especializado para construcciones de lista, tiene un tf.data.Iterator especializado para construcciones de iteración. Consulte la sección sobre transformaciones de AutoGraph para obtener una descripción general. Además, la API tf.data puede ayudar a implementar patrones generadores:

@tf.function
def good_consume_next(iterator):
  # This is ok, iterator is a tf.data.Iterator
  tf.print("Value:", next(iterator))

ds = tf.data.Dataset.from_tensor_slices([1, 2, 3])
iterator = iter(ds)
good_consume_next(iterator)
good_consume_next(iterator)
good_consume_next(iterator)
Value: 1
Value: 2
Value: 3

Todas las salidas de una función tf. deben ser valores de retorno

Con la excepción de tf.Variable s, una tf.function debe devolver todas sus salidas. Intentar acceder directamente a cualquier tensor desde una función sin pasar por los valores devueltos provoca "fugas".

Por ejemplo, la siguiente función "filtra" el tensor a través de Python global x :

x = None

@tf.function
def leaky_function(a):
  global x
  x = a + 1  # Bad - leaks local tensor
  return a + 2

correct_a = leaky_function(tf.constant(1))

print(correct_a.numpy())  # Good - value obtained from function's returns
try:
  x.numpy()  # Bad - tensor leaked from inside the function, cannot be used here
except AttributeError as expected:
  print(expected)
3
'Tensor' object has no attribute 'numpy'

Esto es cierto incluso si también se devuelve el valor filtrado:

@tf.function
def leaky_function(a):
  global x
  x = a + 1  # Bad - leaks local tensor
  return x  # Good - uses local tensor

correct_a = leaky_function(tf.constant(1))

print(correct_a.numpy())  # Good - value obtained from function's returns
try:
  x.numpy()  # Bad - tensor leaked from inside the function, cannot be used here
except AttributeError as expected:
  print(expected)

@tf.function
def captures_leaked_tensor(b):
  b += x  # Bad - `x` is leaked from `leaky_function`
  return b

with assert_raises(TypeError):
  captures_leaked_tensor(tf.constant(2))
2
'Tensor' object has no attribute 'numpy'
Caught expected exception 
  <class 'TypeError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/566849597.py", line 21, in <module>
    captures_leaked_tensor(tf.constant(2))
TypeError: Originated from a graph execution error.

The graph execution error is detected at a node built at (most recent call last):
>>>  File /usr/lib/python3.7/runpy.py, line 193, in _run_module_as_main
>>>  File /usr/lib/python3.7/runpy.py, line 85, in _run_code
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py, line 16, in <module>
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/traitlets/config/application.py, line 846, in launch_instance
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelapp.py, line 677, in start
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tornado/platform/asyncio.py, line 199, in start
>>>  File /usr/lib/python3.7/asyncio/base_events.py, line 534, in run_forever
>>>  File /usr/lib/python3.7/asyncio/base_events.py, line 1771, in _run_once
>>>  File /usr/lib/python3.7/asyncio/events.py, line 88, in _run
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 457, in dispatch_queue
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 446, in process_one
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 353, in dispatch_shell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/kernelbase.py, line 648, in execute_request
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/ipkernel.py, line 353, in do_execute
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel/zmqshell.py, line 533, in run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 2902, in run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 2947, in _run_cell
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/async_helpers.py, line 68, in _pseudo_sync_runner
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3173, in run_cell_async
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3364, in run_ast_nodes
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/IPython/core/interactiveshell.py, line 3444, in run_code
>>>  File /tmp/ipykernel_26244/566849597.py, line 7, in <module>
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 910, in __call__
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 958, in _call
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 781, in _initialize
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3157, in _get_concrete_function_internal_garbage_collected
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3557, in _maybe_define_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py, line 3402, in _create_graph_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 1143, in func_graph_from_py_func
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py, line 672, in wrapped_fn
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 1125, in autograph_handler
>>>  File /tmp/ipykernel_26244/566849597.py, line 4, in leaky_function
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py, line 1383, in binary_op_wrapper
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/traceback_utils.py, line 150, in error_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py, line 1096, in op_dispatch_handler
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py, line 1737, in _add_dispatch
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/gen_math_ops.py, line 476, in add_v2
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py, line 746, in _apply_op_helper
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py, line 691, in _create_op_internal
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/ops.py, line 3705, in _create_op_internal
>>>  File /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/ops.py, line 2101, in __init__

Error detected in node 'add' defined at: File "/tmp/ipykernel_26244/566849597.py", line 4, in leaky_function

TypeError: tf.Graph captured an external symbolic tensor. The symbolic tensor 'add:0' created by node 'add' is captured by the tf.Graph being executed as an input. But a tf.Graph is not allowed to take symbolic tensors from another graph as its inputs. Make sure all captured inputs of the executing tf.Graph are not symbolic tensors. Use return values, explicit Python locals or TensorFlow collections to access it. Please see https://www.tensorflow.org/guide/function#all_outputs_of_a_tffunction_must_be_return_values for more information.

Por lo general, las fugas como estas ocurren cuando usa declaraciones o estructuras de datos de Python. Además de filtrar tensores inaccesibles, es probable que tales declaraciones también sean incorrectas porque cuentan como efectos secundarios de Python y no se garantiza que se ejecuten en cada llamada de función.

Las formas comunes de filtrar tensores locales también incluyen mutar una colección externa de Python o un objeto:

class MyClass:

  def __init__(self):
    self.field = None

external_list = []
external_object = MyClass()

def leaky_function():
  a = tf.constant(1)
  external_list.append(a)  # Bad - leaks tensor
  external_object.field = a  # Bad - leaks tensor

Las funciones tf. recursivas no son compatibles

Las Function recursivas no son compatibles y podrían causar bucles infinitos. Por ejemplo,

@tf.function
def recursive_fn(n):
  if n > 0:
    return recursive_fn(n - 1)
  else:
    return 1

with assert_raises(Exception):
  recursive_fn(tf.constant(5))  # Bad - maximum recursion error.
Caught expected exception 
  <class 'Exception'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/2233998312.py", line 9, in <module>
    recursive_fn(tf.constant(5))  # Bad - maximum recursion error.
tensorflow.python.autograph.impl.api.StagingError: in user code:

    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 4, in recursive_fn  *
        return recursive_fn(n - 1)
    File "/tmp/ipykernel_26244/2233998312.py", line 3, in recursive_fn  *
        if n > 0:
    File "/usr/lib/python3.7/abc.py", line 139, in __instancecheck__
        return _abc_instancecheck(cls, instance)

    RecursionError: maximum recursion depth exceeded while calling a Python object

Incluso si una Function recursiva parece funcionar, la función de python se rastreará varias veces y podría tener una implicación en el rendimiento. Por ejemplo,

@tf.function
def recursive_fn(n):
  if n > 0:
    print('tracing')
    return recursive_fn(n - 1)
  else:
    return 1

recursive_fn(5)  # Warning - multiple tracings
tracing
tracing
tracing
tracing
tracing
<tf.Tensor: shape=(), dtype=int32, numpy=1>

Problemas conocidos

Si su Function no se evalúa correctamente, el error puede deberse a estos problemas conocidos que se planean solucionar en el futuro.

Dependiendo de las variables globales y libres de Python

Function crea una nueva ConcreteFunction cuando se llama con un nuevo valor de un argumento de Python. Sin embargo, no hace eso para el cierre de Python, los globales o los no locales de esa Function . Si su valor cambia entre llamadas a la Function , la Function seguirá usando los valores que tenía cuando se rastreó. Esto es diferente de cómo funcionan las funciones regulares de Python.

Por esa razón, debe seguir un estilo de programación funcional que use argumentos en lugar de cerrarse sobre nombres externos.

@tf.function
def buggy_add():
  return 1 + foo

@tf.function
def recommended_add(foo):
  return 1 + foo

foo = 1
print("Buggy:", buggy_add())
print("Correct:", recommended_add(foo))
Buggy: tf.Tensor(2, shape=(), dtype=int32)
Correct: tf.Tensor(2, shape=(), dtype=int32)
print("Updating the value of `foo` to 100!")
foo = 100
print("Buggy:", buggy_add())  # Did not change!
print("Correct:", recommended_add(foo))
Updating the value of `foo` to 100!
Buggy: tf.Tensor(2, shape=(), dtype=int32)
Correct: tf.Tensor(101, shape=(), dtype=int32)

Otra forma de actualizar un valor global es convertirlo en tf.Variable y usar el método Variable.assign en su lugar.

@tf.function
def variable_add():
  return 1 + foo

foo = tf.Variable(1)
print("Variable:", variable_add())
Variable: tf.Tensor(2, shape=(), dtype=int32)
print("Updating the value of `foo` to 100!")
foo.assign(100)
print("Variable:", variable_add())
Updating the value of `foo` to 100!
Variable: tf.Tensor(101, shape=(), dtype=int32)

Dependiendo de los objetos de Python

La recomendación de pasar objetos de Python como argumentos a tf.function tiene una serie de problemas conocidos que se espera que se solucionen en el futuro. En general, puede confiar en un seguimiento coherente si usa una estructura primitiva de Python o compatible con tf.nest como argumento o si pasa una instancia diferente de un objeto a una Function . Sin embargo, Function no creará una nueva traza cuando pase el mismo objeto y solo cambiará sus atributos .

class SimpleModel(tf.Module):
  def __init__(self):
    # These values are *not* tf.Variables.
    self.bias = 0.
    self.weight = 2.

@tf.function
def evaluate(model, x):
  return model.weight * x + model.bias

simple_model = SimpleModel()
x = tf.constant(10.)
print(evaluate(simple_model, x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
simple_model.bias += 5.0
print(evaluate(simple_model, x))  # Didn't change :(
Adding bias!
tf.Tensor(20.0, shape=(), dtype=float32)

El uso de la misma Function para evaluar la instancia actualizada del modelo tendrá errores, ya que el modelo actualizado tiene la misma clave de caché que el modelo original.

Por esa razón, se recomienda escribir su Function para evitar depender de atributos de objetos mutables o crear nuevos objetos.

Si eso no es posible, una solución es crear nuevas Function cada vez que modifique su objeto para forzar el retroceso:

def evaluate(model, x):
  return model.weight * x + model.bias

new_model = SimpleModel()
evaluate_no_bias = tf.function(evaluate).get_concrete_function(new_model, x)
# Don't pass in `new_model`, `Function` already captured its state during tracing.
print(evaluate_no_bias(x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
new_model.bias += 5.0
# Create new Function and ConcreteFunction since you modified new_model.
evaluate_with_bias = tf.function(evaluate).get_concrete_function(new_model, x)
print(evaluate_with_bias(x)) # Don't pass in `new_model`.
Adding bias!
tf.Tensor(25.0, shape=(), dtype=float32)

Como volver a rastrear puede ser costoso , puede usar tf.Variable s como atributos de objeto, que se pueden mutar (pero no cambiar, ¡cuidado!) para obtener un efecto similar sin necesidad de volver a rastrear.

class BetterModel:

  def __init__(self):
    self.bias = tf.Variable(0.)
    self.weight = tf.Variable(2.)

@tf.function
def evaluate(model, x):
  return model.weight * x + model.bias

better_model = BetterModel()
print(evaluate(better_model, x))
tf.Tensor(20.0, shape=(), dtype=float32)
print("Adding bias!")
better_model.bias.assign_add(5.0)  # Note: instead of better_model.bias += 5
print(evaluate(better_model, x))  # This works!
Adding bias!
tf.Tensor(25.0, shape=(), dtype=float32)

Creando tf.Variables

Function solo admite singleton tf.Variable . Variable s creada una vez en la primera llamada y reutilizada en llamadas de función posteriores. El fragmento de código siguiente crearía una nueva tf.Variable en cada llamada de función, lo que da como resultado una excepción ValueError .

Ejemplo:

@tf.function
def f(x):
  v = tf.Variable(1.0)
  return v

with assert_raises(ValueError):
  f(1.0)
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3018268426.py", line 7, in <module>
    f(1.0)
ValueError: in user code:

    File "/tmp/ipykernel_26244/3018268426.py", line 3, in f  *
        v = tf.Variable(1.0)

    ValueError: tf.function only supports singleton tf.Variables created on the first call. Make sure the tf.Variable is only created once or created outside tf.function. See https://www.tensorflow.org/guide/function#creating_tfvariables for more information.

Un patrón común que se usa para evitar esta limitación es comenzar con un valor de Python Ninguno y luego crear condicionalmente la tf.Variable si el valor es Ninguno:

class Count(tf.Module):
  def __init__(self):
    self.count = None

  @tf.function
  def __call__(self):
    if self.count is None:
      self.count = tf.Variable(0)
    return self.count.assign_add(1)

c = Count()
print(c())
print(c())
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)

Uso con múltiples optimizadores de Keras

Puede encontrar ValueError: tf.function only supports singleton tf.Variables created on the first call. cuando se usa más de un optimizador de Keras con una tf.function . Este error ocurre porque los optimizadores crean internamente tf.Variables cuando aplican degradados por primera vez.

opt1 = tf.keras.optimizers.Adam(learning_rate = 1e-2)
opt2 = tf.keras.optimizers.Adam(learning_rate = 1e-3)

@tf.function
def train_step(w, x, y, optimizer):
   with tf.GradientTape() as tape:
       L = tf.reduce_sum(tf.square(w*x - y))
   gradients = tape.gradient(L, [w])
   optimizer.apply_gradients(zip(gradients, [w]))

w = tf.Variable(2.)
x = tf.constant([-1.])
y = tf.constant([2.])

train_step(w, x, y, opt1)
print("Calling `train_step` with different optimizer...")
with assert_raises(ValueError):
  train_step(w, x, y, opt2)
Calling `train_step` with different optimizer...
Caught expected exception 
  <class 'ValueError'>:
Traceback (most recent call last):
  File "/tmp/ipykernel_26244/3551158538.py", line 8, in assert_raises
    yield
  File "/tmp/ipykernel_26244/3167358578.py", line 18, in <module>
    train_step(w, x, y, opt2)
ValueError: in user code:

    File "/tmp/ipykernel_26244/3167358578.py", line 9, in train_step  *
        optimizer.apply_gradients(zip(gradients, [w]))
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 639, in apply_gradients  **
        self._create_all_weights(var_list)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 828, in _create_all_weights
        _ = self.iterations
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 835, in __getattribute__
        return super(OptimizerV2, self).__getattribute__(name)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 995, in iterations
        aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/optimizer_v2.py", line 1202, in add_weight
        aggregation=aggregation)
    File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer_utils.py", line 129, in make_variable
        shape=variable_shape if variable_shape else None)

    ValueError: tf.function only supports singleton tf.Variables created on the first call. Make sure the tf.Variable is only created once or created outside tf.function. See https://www.tensorflow.org/guide/function#creating_tfvariables for more information.

Si necesita cambiar el optimizador durante el entrenamiento, una solución es crear una nueva Function para cada optimizador, llamando directamente a ConcreteFunction .

opt1 = tf.keras.optimizers.Adam(learning_rate = 1e-2)
opt2 = tf.keras.optimizers.Adam(learning_rate = 1e-3)

# Not a tf.function.
def train_step(w, x, y, optimizer):
   with tf.GradientTape() as tape:
       L = tf.reduce_sum(tf.square(w*x - y))
   gradients = tape.gradient(L, [w])
   optimizer.apply_gradients(zip(gradients, [w]))

w = tf.Variable(2.)
x = tf.constant([-1.])
y = tf.constant([2.])

# Make a new Function and ConcreteFunction for each optimizer.
train_step_1 = tf.function(train_step).get_concrete_function(w, x, y, opt1)
train_step_2 = tf.function(train_step).get_concrete_function(w, x, y, opt2)
for i in range(10):
  if i % 2 == 0:
    train_step_1(w, x, y) # `opt1` is not used as a parameter. 
  else:
    train_step_2(w, x, y) # `opt2` is not used as a parameter.

Uso con varios modelos de Keras

También puede encontrar ValueError: tf.function only supports singleton tf.Variables created on the first call. al pasar diferentes instancias del modelo a la misma Function .

Este error se produce porque los modelos de Keras (que no tienen definida su forma de entrada ) y las capas de Keras crean tf.Variables cuando se les llama por primera vez. Puede estar intentando inicializar esas variables dentro de una Function , que ya ha sido llamada. Para evitar este error, intente llamar a model.build(input_shape) para inicializar todos los pesos antes de entrenar el modelo.

Otras lecturas

Para obtener información sobre cómo exportar y cargar una Function , consulte la guía del modelo guardado. Para obtener más información sobre las optimizaciones de gráficos que se realizan después del rastreo, consulte la guía de Grappler . Para obtener información sobre cómo optimizar su canalización de datos y perfilar su modelo, consulte la guía Profiler .