Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir la source sur GitHub | Télécharger le cahier |
Ce tutoriel vous montre comment générer des notes de musique à l'aide d'un simple RNN. Vous entraînerez un modèle à l'aide d'une collection de fichiers MIDI de piano issus du jeu de données MAESTRO . Étant donné une séquence de notes, votre modèle apprendra à prédire la note suivante dans la séquence. Vous pouvez générer des séquences de notes plus longues en appelant le modèle à plusieurs reprises.
Ce tutoriel contient le code complet pour analyser et créer des fichiers MIDI. Vous pouvez en savoir plus sur le fonctionnement des RNN en visitant Génération de texte avec un RNN .
Installer
Ce didacticiel utilise la bibliothèque pretty_midi
pour créer et analyser des fichiers MIDI, et pyfluidsynth
pour générer une lecture audio dans Colab.
sudo apt install -y fluidsynth
The following packages were automatically installed and are no longer required: linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043 linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049 linux-headers-5.4.0-1049-gcp linux-image-5.4.0-1049-gcp linux-modules-5.4.0-1049-gcp linux-modules-extra-5.4.0-1049-gcp Use 'sudo apt autoremove' to remove them. The following additional packages will be installed: fluid-soundfont-gm libasyncns0 libdouble-conversion1 libevdev2 libflac8 libfluidsynth1 libgudev-1.0-0 libinput-bin libinput10 libjack-jackd2-0 libmtdev1 libogg0 libpulse0 libqt5core5a libqt5dbus5 libqt5gui5 libqt5network5 libqt5svg5 libqt5widgets5 libqt5x11extras5 libsamplerate0 libsndfile1 libvorbis0a libvorbisenc2 libwacom-bin libwacom-common libwacom2 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-randr0 libxcb-render-util0 libxcb-shape0 libxcb-util1 libxcb-xinerama0 libxcb-xkb1 libxkbcommon-x11-0 qsynth qt5-gtk-platformtheme qttranslations5-l10n Suggested packages: fluid-soundfont-gs timidity jackd2 pulseaudio qt5-image-formats-plugins qtwayland5 jackd The following NEW packages will be installed: fluid-soundfont-gm fluidsynth libasyncns0 libdouble-conversion1 libevdev2 libflac8 libfluidsynth1 libgudev-1.0-0 libinput-bin libinput10 libjack-jackd2-0 libmtdev1 libogg0 libpulse0 libqt5core5a libqt5dbus5 libqt5gui5 libqt5network5 libqt5svg5 libqt5widgets5 libqt5x11extras5 libsamplerate0 libsndfile1 libvorbis0a libvorbisenc2 libwacom-bin libwacom-common libwacom2 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-randr0 libxcb-render-util0 libxcb-shape0 libxcb-util1 libxcb-xinerama0 libxcb-xkb1 libxkbcommon-x11-0 qsynth qt5-gtk-platformtheme qttranslations5-l10n 0 upgraded, 41 newly installed, 0 to remove and 120 not upgraded. Need to get 132 MB of archives. After this operation, 198 MB of additional disk space will be used. Get:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libogg0 amd64 1.3.2-1 [17.2 kB] Get:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libdouble-conversion1 amd64 2.0.1-4ubuntu1 [33.0 kB] Get:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5core5a amd64 5.9.5+dfsg-0ubuntu2.6 [2035 kB] Get:4 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libevdev2 amd64 1.5.8+dfsg-1ubuntu0.1 [28.9 kB] Get:5 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libmtdev1 amd64 1.1.5-1ubuntu3 [13.8 kB] Get:6 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libgudev-1.0-0 amd64 1:232-2 [13.6 kB] Get:7 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libwacom-common all 0.29-1 [36.9 kB] Get:8 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libwacom2 amd64 0.29-1 [17.7 kB] Get:9 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libinput-bin amd64 1.10.4-1ubuntu0.18.04.2 [11.2 kB] Get:10 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libinput10 amd64 1.10.4-1ubuntu0.18.04.2 [86.2 kB] Get:11 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5dbus5 amd64 5.9.5+dfsg-0ubuntu2.6 [195 kB] Get:12 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5network5 amd64 5.9.5+dfsg-0ubuntu2.6 [634 kB] Get:13 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-icccm4 amd64 0.4.1-1ubuntu1 [10.4 kB] Get:14 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-util1 amd64 0.4.0-0ubuntu3 [11.2 kB] Get:15 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-image0 amd64 0.4.0-1build1 [12.3 kB] Get:16 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-keysyms1 amd64 0.4.0-1 [8406 B] Get:17 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-randr0 amd64 1.13-2~ubuntu18.04 [16.4 kB] Get:18 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libxcb-render-util0 amd64 0.3.9-1 [9638 B] Get:19 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-shape0 amd64 1.13-2~ubuntu18.04 [5972 B] Get:20 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-xinerama0 amd64 1.13-2~ubuntu18.04 [5264 B] Get:21 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxcb-xkb1 amd64 1.13-2~ubuntu18.04 [30.1 kB] Get:22 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libxkbcommon-x11-0 amd64 0.8.2-1~ubuntu18.04.1 [13.4 kB] Get:23 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5gui5 amd64 5.9.5+dfsg-0ubuntu2.6 [2568 kB] Get:24 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5widgets5 amd64 5.9.5+dfsg-0ubuntu2.6 [2203 kB] Get:25 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libqt5svg5 amd64 5.9.5-0ubuntu1.1 [129 kB] Get:26 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 fluid-soundfont-gm all 3.1-5.1 [119 MB] Get:27 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libsamplerate0 amd64 0.1.9-1 [938 kB] Get:28 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libjack-jackd2-0 amd64 1.9.12~dfsg-2 [263 kB] Get:29 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libasyncns0 amd64 0.8-6 [12.1 kB] Get:30 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libflac8 amd64 1.3.2-1 [213 kB] Get:31 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbis0a amd64 1.3.5-4.2 [86.4 kB] Get:32 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbisenc2 amd64 1.3.5-4.2 [70.7 kB] Get:33 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libsndfile1 amd64 1.0.28-4ubuntu0.18.04.2 [170 kB] Get:34 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libpulse0 amd64 1:11.1-1ubuntu7.11 [266 kB] Get:35 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 libfluidsynth1 amd64 1.1.9-1 [137 kB] Get:36 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 fluidsynth amd64 1.1.9-1 [20.7 kB] Get:37 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 libqt5x11extras5 amd64 5.9.5-0ubuntu1 [8596 B] Get:38 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libwacom-bin amd64 0.29-1 [4712 B] Get:39 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 qsynth amd64 0.5.0-2 [191 kB] Get:40 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 qt5-gtk-platformtheme amd64 5.9.5+dfsg-0ubuntu2.6 [117 kB] Get:41 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 qttranslations5-l10n all 5.9.5-0ubuntu1 [1485 kB] Fetched 132 MB in 9s (14.0 MB/s) Extracting templates from packages: 100% 7[0;23r8[1ASelecting previously unselected package libogg0:amd64. (Reading database ... 285125 files and directories currently installed.) Preparing to unpack .../00-libogg0_1.3.2-1_amd64.deb ... 7[24;0fProgress: [ 0%] [..........................................................] 8Unpacking libogg0:amd64 (1.3.2-1) ... 7[24;0fProgress: [ 1%] [..........................................................] 8Selecting previously unselected package libdouble-conversion1:amd64. Preparing to unpack .../01-libdouble-conversion1_2.0.1-4ubuntu1_amd64.deb ... Unpacking libdouble-conversion1:amd64 (2.0.1-4ubuntu1) ... 7[24;0fProgress: [ 2%] [#.........................................................] 8Selecting previously unselected package libqt5core5a:amd64. Preparing to unpack .../02-libqt5core5a_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... 7[24;0fProgress: [ 3%] [#.........................................................] 8Unpacking libqt5core5a:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 4%] [##........................................................] 8Selecting previously unselected package libevdev2:amd64. Preparing to unpack .../03-libevdev2_1.5.8+dfsg-1ubuntu0.1_amd64.deb ... Unpacking libevdev2:amd64 (1.5.8+dfsg-1ubuntu0.1) ... 7[24;0fProgress: [ 5%] [###.......................................................] 8Selecting previously unselected package libmtdev1:amd64. Preparing to unpack .../04-libmtdev1_1.1.5-1ubuntu3_amd64.deb ... 7[24;0fProgress: [ 6%] [###.......................................................] 8Unpacking libmtdev1:amd64 (1.1.5-1ubuntu3) ... 7[24;0fProgress: [ 7%] [####......................................................] 8Selecting previously unselected package libgudev-1.0-0:amd64. Preparing to unpack .../05-libgudev-1.0-0_1%3a232-2_amd64.deb ... Unpacking libgudev-1.0-0:amd64 (1:232-2) ... 7[24;0fProgress: [ 8%] [####......................................................] 8Selecting previously unselected package libwacom-common. Preparing to unpack .../06-libwacom-common_0.29-1_all.deb ... 7[24;0fProgress: [ 9%] [#####.....................................................] 8Unpacking libwacom-common (0.29-1) ... 7[24;0fProgress: [ 10%] [#####.....................................................] 8Selecting previously unselected package libwacom2:amd64. Preparing to unpack .../07-libwacom2_0.29-1_amd64.deb ... Unpacking libwacom2:amd64 (0.29-1) ... 7[24;0fProgress: [ 11%] [######....................................................] 8Selecting previously unselected package libinput-bin. Preparing to unpack .../08-libinput-bin_1.10.4-1ubuntu0.18.04.2_amd64.deb ... 7[24;0fProgress: [ 12%] [#######...................................................] 8Unpacking libinput-bin (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 13%] [#######...................................................] 8Selecting previously unselected package libinput10:amd64. Preparing to unpack .../09-libinput10_1.10.4-1ubuntu0.18.04.2_amd64.deb ... Unpacking libinput10:amd64 (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 14%] [########..................................................] 8Selecting previously unselected package libqt5dbus5:amd64. Preparing to unpack .../10-libqt5dbus5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... 7[24;0fProgress: [ 15%] [########..................................................] 8Unpacking libqt5dbus5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 16%] [#########.................................................] 8Selecting previously unselected package libqt5network5:amd64. Preparing to unpack .../11-libqt5network5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... Unpacking libqt5network5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 17%] [##########................................................] 8Selecting previously unselected package libxcb-icccm4:amd64. Preparing to unpack .../12-libxcb-icccm4_0.4.1-1ubuntu1_amd64.deb ... Unpacking libxcb-icccm4:amd64 (0.4.1-1ubuntu1) ... 7[24;0fProgress: [ 18%] [##########................................................] 8Selecting previously unselected package libxcb-util1:amd64. Preparing to unpack .../13-libxcb-util1_0.4.0-0ubuntu3_amd64.deb ... 7[24;0fProgress: [ 19%] [###########...............................................] 8Unpacking libxcb-util1:amd64 (0.4.0-0ubuntu3) ... 7[24;0fProgress: [ 20%] [###########...............................................] 8Selecting previously unselected package libxcb-image0:amd64. Preparing to unpack .../14-libxcb-image0_0.4.0-1build1_amd64.deb ... Unpacking libxcb-image0:amd64 (0.4.0-1build1) ... 7[24;0fProgress: [ 21%] [############..............................................] 8Selecting previously unselected package libxcb-keysyms1:amd64. Preparing to unpack .../15-libxcb-keysyms1_0.4.0-1_amd64.deb ... 7[24;0fProgress: [ 22%] [############..............................................] 8Unpacking libxcb-keysyms1:amd64 (0.4.0-1) ... 7[24;0fProgress: [ 23%] [#############.............................................] 8Selecting previously unselected package libxcb-randr0:amd64. Preparing to unpack .../16-libxcb-randr0_1.13-2~ubuntu18.04_amd64.deb ... Unpacking libxcb-randr0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 24%] [##############............................................] 8Selecting previously unselected package libxcb-render-util0:amd64. Preparing to unpack .../17-libxcb-render-util0_0.3.9-1_amd64.deb ... 7[24;0fProgress: [ 25%] [##############............................................] 8Unpacking libxcb-render-util0:amd64 (0.3.9-1) ... 7[24;0fProgress: [ 26%] [###############...........................................] 8Selecting previously unselected package libxcb-shape0:amd64. Preparing to unpack .../18-libxcb-shape0_1.13-2~ubuntu18.04_amd64.deb ... Unpacking libxcb-shape0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 27%] [###############...........................................] 8Selecting previously unselected package libxcb-xinerama0:amd64. Preparing to unpack .../19-libxcb-xinerama0_1.13-2~ubuntu18.04_amd64.deb ... 7[24;0fProgress: [ 28%] [################..........................................] 8Unpacking libxcb-xinerama0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 29%] [################..........................................] 8Selecting previously unselected package libxcb-xkb1:amd64. Preparing to unpack .../20-libxcb-xkb1_1.13-2~ubuntu18.04_amd64.deb ... Unpacking libxcb-xkb1:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 30%] [#################.........................................] 8Selecting previously unselected package libxkbcommon-x11-0:amd64. Preparing to unpack .../21-libxkbcommon-x11-0_0.8.2-1~ubuntu18.04.1_amd64.deb ... 7[24;0fProgress: [ 31%] [##################........................................] 8Unpacking libxkbcommon-x11-0:amd64 (0.8.2-1~ubuntu18.04.1) ... 7[24;0fProgress: [ 32%] [##################........................................] 8Selecting previously unselected package libqt5gui5:amd64. Preparing to unpack .../22-libqt5gui5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... Unpacking libqt5gui5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 33%] [###################.......................................] 8Selecting previously unselected package libqt5widgets5:amd64. Preparing to unpack .../23-libqt5widgets5_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... Unpacking libqt5widgets5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 34%] [###################.......................................] 8Selecting previously unselected package libqt5svg5:amd64. Preparing to unpack .../24-libqt5svg5_5.9.5-0ubuntu1.1_amd64.deb ... 7[24;0fProgress: [ 35%] [####################......................................] 8Unpacking libqt5svg5:amd64 (5.9.5-0ubuntu1.1) ... 7[24;0fProgress: [ 36%] [#####################.....................................] 8Selecting previously unselected package fluid-soundfont-gm. Preparing to unpack .../25-fluid-soundfont-gm_3.1-5.1_all.deb ... Unpacking fluid-soundfont-gm (3.1-5.1) ... 7[24;0fProgress: [ 37%] [#####################.....................................] 8Selecting previously unselected package libsamplerate0:amd64. Preparing to unpack .../26-libsamplerate0_0.1.9-1_amd64.deb ... 7[24;0fProgress: [ 38%] [######################....................................] 8Unpacking libsamplerate0:amd64 (0.1.9-1) ... 7[24;0fProgress: [ 39%] [######################....................................] 8Selecting previously unselected package libjack-jackd2-0:amd64. Preparing to unpack .../27-libjack-jackd2-0_1.9.12~dfsg-2_amd64.deb ... Unpacking libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ... 7[24;0fProgress: [ 40%] [#######################...................................] 8Selecting previously unselected package libasyncns0:amd64. Preparing to unpack .../28-libasyncns0_0.8-6_amd64.deb ... 7[24;0fProgress: [ 41%] [#######################...................................] 8Unpacking libasyncns0:amd64 (0.8-6) ... 7[24;0fProgress: [ 42%] [########################..................................] 8Selecting previously unselected package libflac8:amd64. Preparing to unpack .../29-libflac8_1.3.2-1_amd64.deb ... Unpacking libflac8:amd64 (1.3.2-1) ... 7[24;0fProgress: [ 43%] [#########################.................................] 8Selecting previously unselected package libvorbis0a:amd64. Preparing to unpack .../30-libvorbis0a_1.3.5-4.2_amd64.deb ... 7[24;0fProgress: [ 44%] [#########################.................................] 8Unpacking libvorbis0a:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 45%] [##########################................................] 8Selecting previously unselected package libvorbisenc2:amd64. Preparing to unpack .../31-libvorbisenc2_1.3.5-4.2_amd64.deb ... Unpacking libvorbisenc2:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 46%] [##########################................................] 8Selecting previously unselected package libsndfile1:amd64. Preparing to unpack .../32-libsndfile1_1.0.28-4ubuntu0.18.04.2_amd64.deb ... 7[24;0fProgress: [ 47%] [###########################...............................] 8Unpacking libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ... 7[24;0fProgress: [ 48%] [###########################...............................] 8Selecting previously unselected package libpulse0:amd64. Preparing to unpack .../33-libpulse0_1%3a11.1-1ubuntu7.11_amd64.deb ... Unpacking libpulse0:amd64 (1:11.1-1ubuntu7.11) ... 7[24;0fProgress: [ 49%] [############################..............................] 8Selecting previously unselected package libfluidsynth1:amd64. Preparing to unpack .../34-libfluidsynth1_1.1.9-1_amd64.deb ... 7[24;0fProgress: [ 50%] [#############################.............................] 8Unpacking libfluidsynth1:amd64 (1.1.9-1) ... Selecting previously unselected package fluidsynth. Preparing to unpack .../35-fluidsynth_1.1.9-1_amd64.deb ... 7[24;0fProgress: [ 51%] [#############################.............................] 8Unpacking fluidsynth (1.1.9-1) ... 7[24;0fProgress: [ 52%] [##############################............................] 8Selecting previously unselected package libqt5x11extras5:amd64. Preparing to unpack .../36-libqt5x11extras5_5.9.5-0ubuntu1_amd64.deb ... Unpacking libqt5x11extras5:amd64 (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 53%] [##############################............................] 8Selecting previously unselected package libwacom-bin. Preparing to unpack .../37-libwacom-bin_0.29-1_amd64.deb ... 7[24;0fProgress: [ 54%] [###############################...........................] 8Unpacking libwacom-bin (0.29-1) ... 7[24;0fProgress: [ 55%] [################################..........................] 8Selecting previously unselected package qsynth. Preparing to unpack .../38-qsynth_0.5.0-2_amd64.deb ... Unpacking qsynth (0.5.0-2) ... 7[24;0fProgress: [ 56%] [################################..........................] 8Selecting previously unselected package qt5-gtk-platformtheme:amd64. Preparing to unpack .../39-qt5-gtk-platformtheme_5.9.5+dfsg-0ubuntu2.6_amd64.deb ... 7[24;0fProgress: [ 57%] [#################################.........................] 8Unpacking qt5-gtk-platformtheme:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 58%] [#################################.........................] 8Selecting previously unselected package qttranslations5-l10n. Preparing to unpack .../40-qttranslations5-l10n_5.9.5-0ubuntu1_all.deb ... Unpacking qttranslations5-l10n (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 59%] [##################################........................] 8Setting up libxcb-xinerama0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 60%] [##################################........................] 8Setting up libxcb-render-util0:amd64 (0.3.9-1) ... 7[24;0fProgress: [ 61%] [###################################.......................] 8Setting up libxcb-randr0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 62%] [####################################......................] 8Setting up libxcb-icccm4:amd64 (0.4.1-1ubuntu1) ... 7[24;0fProgress: [ 63%] [####################################......................] 8Setting up libasyncns0:amd64 (0.8-6) ... 7[24;0fProgress: [ 64%] [#####################################.....................] 8Setting up libwacom-common (0.29-1) ... 7[24;0fProgress: [ 65%] [#####################################.....................] 8Setting up libdouble-conversion1:amd64 (2.0.1-4ubuntu1) ... 7[24;0fProgress: [ 66%] [######################################....................] 8Setting up libevdev2:amd64 (1.5.8+dfsg-1ubuntu0.1) ... 7[24;0fProgress: [ 67%] [#######################################...................] 8Setting up fluid-soundfont-gm (3.1-5.1) ... 7[24;0fProgress: [ 68%] [#######################################...................] 8Setting up libxcb-util1:amd64 (0.4.0-0ubuntu3) ... 7[24;0fProgress: [ 69%] [########################################..................] 8Setting up libogg0:amd64 (1.3.2-1) ... 7[24;0fProgress: [ 70%] [########################################..................] 8Setting up qttranslations5-l10n (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 71%] [#########################################.................] 8Setting up libmtdev1:amd64 (1.1.5-1ubuntu3) ... 7[24;0fProgress: [ 72%] [#########################################.................] 8Setting up libxcb-shape0:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 73%] [##########################################................] 8Setting up libgudev-1.0-0:amd64 (1:232-2) ... 7[24;0fProgress: [ 74%] [###########################################...............] 8Setting up libxcb-keysyms1:amd64 (0.4.0-1) ... 7[24;0fProgress: [ 75%] [###########################################...............] 8Setting up libsamplerate0:amd64 (0.1.9-1) ... 7[24;0fProgress: [ 76%] [############################################..............] 8Setting up libvorbis0a:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 77%] [############################################..............] 8Setting up libxcb-xkb1:amd64 (1.13-2~ubuntu18.04) ... 7[24;0fProgress: [ 78%] [#############################################.............] 8Setting up libqt5core5a:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 79%] [#############################################.............] 8Setting up libqt5dbus5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 80%] [##############################################............] 8Setting up libqt5network5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 81%] [###############################################...........] 8Setting up libwacom2:amd64 (0.29-1) ... 7[24;0fProgress: [ 82%] [###############################################...........] 8Setting up libxcb-image0:amd64 (0.4.0-1build1) ... 7[24;0fProgress: [ 83%] [################################################..........] 8Setting up libflac8:amd64 (1.3.2-1) ... Setting up libinput-bin (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 84%] [################################################..........] 8Setting up libxkbcommon-x11-0:amd64 (0.8.2-1~ubuntu18.04.1) ... 7[24;0fProgress: [ 85%] [#################################################.........] 8Setting up libwacom-bin (0.29-1) ... 7[24;0fProgress: [ 86%] [##################################################........] 8Setting up libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ... 7[24;0fProgress: [ 87%] [##################################################........] 8Setting up libvorbisenc2:amd64 (1.3.5-4.2) ... 7[24;0fProgress: [ 88%] [###################################################.......] 8Setting up libinput10:amd64 (1.10.4-1ubuntu0.18.04.2) ... 7[24;0fProgress: [ 89%] [###################################################.......] 8Setting up libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ... 7[24;0fProgress: [ 90%] [####################################################......] 8Setting up libqt5gui5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 91%] [####################################################......] 8Setting up qt5-gtk-platformtheme:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 92%] [#####################################################.....] 8Setting up libqt5x11extras5:amd64 (5.9.5-0ubuntu1) ... 7[24;0fProgress: [ 93%] [######################################################....] 8Setting up libqt5widgets5:amd64 (5.9.5+dfsg-0ubuntu2.6) ... 7[24;0fProgress: [ 94%] [######################################################....] 8Setting up libpulse0:amd64 (1:11.1-1ubuntu7.11) ... 7[24;0fProgress: [ 95%] [#######################################################...] 8Setting up libqt5svg5:amd64 (5.9.5-0ubuntu1.1) ... 7[24;0fProgress: [ 96%] [#######################################################...] 8Setting up libfluidsynth1:amd64 (1.1.9-1) ... 7[24;0fProgress: [ 97%] [########################################################..] 8Setting up fluidsynth (1.1.9-1) ... 7[24;0fProgress: [ 98%] [########################################################..] 8Setting up qsynth (0.5.0-2) ... 7[24;0fProgress: [ 99%] [#########################################################.] 8Processing triggers for hicolor-icon-theme (0.17-2) ... Processing triggers for mime-support (3.60ubuntu1) ... Processing triggers for libc-bin (2.27-3ubuntu1.2) ... Processing triggers for udev (237-3ubuntu10.50) ... Processing triggers for man-db (2.8.3-2ubuntu0.1) ... 7[0;24r8[1A[J
pip install --upgrade pyfluidsynth
pip install pretty_midi
import collections
import datetime
import fluidsynth
import glob
import numpy as np
import pathlib
import pandas as pd
import pretty_midi
import seaborn as sns
import tensorflow as tf
from IPython import display
from matplotlib import pyplot as plt
from typing import Dict, List, Optional, Sequence, Tuple
seed = 42
tf.random.set_seed(seed)
np.random.seed(seed)
# Sampling rate for audio playback
_SAMPLING_RATE = 16000
Télécharger le jeu de données Maestro
data_dir = pathlib.Path('data/maestro-v2.0.0')
if not data_dir.exists():
tf.keras.utils.get_file(
'maestro-v2.0.0-midi.zip',
origin='https://storage.googleapis.com/magentadata/datasets/maestro/v2.0.0/maestro-v2.0.0-midi.zip',
extract=True,
cache_dir='.', cache_subdir='data',
)
Downloading data from https://storage.googleapis.com/magentadata/datasets/maestro/v2.0.0/maestro-v2.0.0-midi.zip 59244544/59243107 [==============================] - 3s 0us/step 59252736/59243107 [==============================] - 3s 0us/step
Le jeu de données contient environ 1 200 fichiers MIDI.
filenames = glob.glob(str(data_dir/'**/*.mid*'))
print('Number of files:', len(filenames))
Number of files: 1282
Traiter un fichier MIDI
Tout d'abord, utilisez pretty_midi
pour analyser un seul fichier MIDI et inspecter le format des notes. Si vous souhaitez télécharger le fichier MIDI ci-dessous pour jouer sur votre ordinateur, vous pouvez le faire dans colab en écrivant files.download(sample_file)
.
sample_file = filenames[1]
print(sample_file)
data/maestro-v2.0.0/2013/ORIG-MIDI_02_7_6_13_Group__MID--AUDIO_08_R1_2013_wav--3.midi
Générez un objet PrettyMIDI
pour l'exemple de fichier MIDI.
pm = pretty_midi.PrettyMIDI(sample_file)
Lisez le fichier d'exemple. Le widget de lecture peut prendre plusieurs secondes à se charger.
def display_audio(pm: pretty_midi.PrettyMIDI, seconds=30):
waveform = pm.fluidsynth(fs=_SAMPLING_RATE)
# Take a sample of the generated waveform to mitigate kernel resets
waveform_short = waveform[:seconds*_SAMPLING_RATE]
return display.Audio(waveform_short, rate=_SAMPLING_RATE)
display_audio(pm)
Faites une inspection sur le fichier MIDI. Quels types d'instruments sont utilisés ?
print('Number of instruments:', len(pm.instruments))
instrument = pm.instruments[0]
instrument_name = pretty_midi.program_to_instrument_name(instrument.program)
print('Instrument name:', instrument_name)
Number of instruments: 1 Instrument name: Acoustic Grand Piano
Extraire des notes
for i, note in enumerate(instrument.notes[:10]):
note_name = pretty_midi.note_number_to_name(note.pitch)
duration = note.end - note.start
print(f'{i}: pitch={note.pitch}, note_name={note_name},'
f' duration={duration:.4f}')
0: pitch=56, note_name=G#3, duration=0.0352 1: pitch=44, note_name=G#2, duration=0.0417 2: pitch=68, note_name=G#4, duration=0.0651 3: pitch=80, note_name=G#5, duration=0.1693 4: pitch=78, note_name=F#5, duration=0.1523 5: pitch=76, note_name=E5, duration=0.1120 6: pitch=75, note_name=D#5, duration=0.0612 7: pitch=49, note_name=C#3, duration=0.0378 8: pitch=85, note_name=C#6, duration=0.0352 9: pitch=37, note_name=C#2, duration=0.0417
Vous utiliserez trois variables pour représenter une note lors de la formation du modèle : pitch
, step
et duration
. La hauteur est la qualité perceptuelle du son sous la forme d'un numéro de note MIDI. Le step
est le temps écoulé depuis la note précédente ou le début de la piste. La duration
correspond à la durée de lecture de la note en secondes et correspond à la différence entre les temps de fin et de début de note.
Extrayez les notes de l'échantillon de fichier MIDI.
def midi_to_notes(midi_file: str) -> pd.DataFrame:
pm = pretty_midi.PrettyMIDI(midi_file)
instrument = pm.instruments[0]
notes = collections.defaultdict(list)
# Sort the notes by start time
sorted_notes = sorted(instrument.notes, key=lambda note: note.start)
prev_start = sorted_notes[0].start
for note in sorted_notes:
start = note.start
end = note.end
notes['pitch'].append(note.pitch)
notes['start'].append(start)
notes['end'].append(end)
notes['step'].append(start - prev_start)
notes['duration'].append(end - start)
prev_start = start
return pd.DataFrame({name: np.array(value) for name, value in notes.items()})
raw_notes = midi_to_notes(sample_file)
raw_notes.head()
Il peut être plus facile d'interpréter les noms de note plutôt que les hauteurs, vous pouvez donc utiliser la fonction ci-dessous pour convertir les valeurs numériques de hauteur en noms de note. Le nom de la note indique le type de note, l'altération et le numéro d'octave (par exemple C#4).
get_note_names = np.vectorize(pretty_midi.note_number_to_name)
sample_note_names = get_note_names(raw_notes['pitch'])
sample_note_names[:10]
array(['G#3', 'G#5', 'G#4', 'G#2', 'F#5', 'E5', 'D#5', 'C#3', 'C#6', 'C#5'], dtype='<U3')
Pour visualiser la pièce musicale, tracez la hauteur de la note, le début et la fin sur toute la longueur de la piste (c'est-à-dire piano roll). Commencez par les 100 premières notes
def plot_piano_roll(notes: pd.DataFrame, count: Optional[int] = None):
if count:
title = f'First {count} notes'
else:
title = f'Whole track'
count = len(notes['pitch'])
plt.figure(figsize=(20, 4))
plot_pitch = np.stack([notes['pitch'], notes['pitch']], axis=0)
plot_start_stop = np.stack([notes['start'], notes['end']], axis=0)
plt.plot(
plot_start_stop[:, :count], plot_pitch[:, :count], color="b", marker=".")
plt.xlabel('Time [s]')
plt.ylabel('Pitch')
_ = plt.title(title)
plot_piano_roll(raw_notes, count=100)
Tracez les notes pour toute la piste.
plot_piano_roll(raw_notes)
Vérifiez la distribution de chaque variable de note.
def plot_distributions(notes: pd.DataFrame, drop_percentile=2.5):
plt.figure(figsize=[15, 5])
plt.subplot(1, 3, 1)
sns.histplot(notes, x="pitch", bins=20)
plt.subplot(1, 3, 2)
max_step = np.percentile(notes['step'], 100 - drop_percentile)
sns.histplot(notes, x="step", bins=np.linspace(0, max_step, 21))
plt.subplot(1, 3, 3)
max_duration = np.percentile(notes['duration'], 100 - drop_percentile)
sns.histplot(notes, x="duration", bins=np.linspace(0, max_duration, 21))
plot_distributions(raw_notes)
Créer un fichier MIDI
Vous pouvez générer votre propre fichier MIDI à partir d'une liste de notes en utilisant la fonction ci-dessous.
def notes_to_midi(
notes: pd.DataFrame,
out_file: str,
instrument_name: str,
velocity: int = 100, # note loudness
) -> pretty_midi.PrettyMIDI:
pm = pretty_midi.PrettyMIDI()
instrument = pretty_midi.Instrument(
program=pretty_midi.instrument_name_to_program(
instrument_name))
prev_start = 0
for i, note in notes.iterrows():
start = float(prev_start + note['step'])
end = float(start + note['duration'])
note = pretty_midi.Note(
velocity=velocity,
pitch=int(note['pitch']),
start=start,
end=end,
)
instrument.notes.append(note)
prev_start = start
pm.instruments.append(instrument)
pm.write(out_file)
return pm
example_file = 'example.midi'
example_pm = notes_to_midi(
raw_notes, out_file=example_file, instrument_name=instrument_name)
Lisez le fichier MIDI généré et voyez s'il y a une différence.
display_audio(example_pm)
Comme précédemment, vous pouvez écrire files.download(example_file)
pour télécharger et lire ce fichier.
Créer l'ensemble de données d'entraînement
Créez l'ensemble de données d'entraînement en extrayant les notes des fichiers MIDI. Vous pouvez commencer par utiliser un petit nombre de fichiers et expérimenter plus tard avec d'autres. Cela peut prendre quelques minutes.
num_files = 5
all_notes = []
for f in filenames[:num_files]:
notes = midi_to_notes(f)
all_notes.append(notes)
all_notes = pd.concat(all_notes)
n_notes = len(all_notes)
print('Number of notes parsed:', n_notes)
Number of notes parsed: 23163
Ensuite, créez un tf.data.Dataset à partir des notes analysées.
key_order = ['pitch', 'step', 'duration']
train_notes = np.stack([all_notes[key] for key in key_order], axis=1)
notes_ds = tf.data.Dataset.from_tensor_slices(train_notes)
notes_ds.element_spec
TensorSpec(shape=(3,), dtype=tf.float64, name=None)
Vous entraînerez le modèle sur des lots de séquences de notes. Chaque exemple consistera en une séquence de notes en tant qu'entités d'entrée et en une note suivante en tant qu'étiquette. De cette façon, le modèle sera formé pour prédire la note suivante dans une séquence. Vous pouvez trouver un diagramme expliquant ce processus (et plus de détails) dans Classification de texte avec un RNN .
Vous pouvez utiliser la fonction de fenêtre pratique avec la taille seq_length
pour créer les entités et les étiquettes dans ce format.
def create_sequences(
dataset: tf.data.Dataset,
seq_length: int,
vocab_size = 128,
) -> tf.data.Dataset:
"""Returns TF Dataset of sequence and label examples."""
seq_length = seq_length+1
# Take 1 extra for the labels
windows = dataset.window(seq_length, shift=1, stride=1,
drop_remainder=True)
# `flat_map` flattens the" dataset of datasets" into a dataset of tensors
flatten = lambda x: x.batch(seq_length, drop_remainder=True)
sequences = windows.flat_map(flatten)
# Normalize note pitch
def scale_pitch(x):
x = x/[vocab_size,1.0,1.0]
return x
# Split the labels
def split_labels(sequences):
inputs = sequences[:-1]
labels_dense = sequences[-1]
labels = {key:labels_dense[i] for i,key in enumerate(key_order)}
return scale_pitch(inputs), labels
return sequences.map(split_labels, num_parallel_calls=tf.data.AUTOTUNE)
Définissez la longueur de la séquence pour chaque exemple. Expérimentez avec différentes longueurs (par exemple 50, 100, 150) pour voir celle qui fonctionne le mieux pour les données, ou utilisez le réglage des hyperparamètres . La taille du vocabulaire ( vocab_size
) est fixée à 128 représentant toutes les hauteurs supportées par pretty_midi
.
seq_length = 25
vocab_size = 128
seq_ds = create_sequences(notes_ds, seq_length, vocab_size)
seq_ds.element_spec
(TensorSpec(shape=(25, 3), dtype=tf.float64, name=None), {'pitch': TensorSpec(shape=(), dtype=tf.float64, name=None), 'step': TensorSpec(shape=(), dtype=tf.float64, name=None), 'duration': TensorSpec(shape=(), dtype=tf.float64, name=None)})
La forme de l'ensemble de données est (100,1)
, ce qui signifie que le modèle prendra 100 notes en entrée et apprendra à prédire la note suivante en sortie.
for seq, target in seq_ds.take(1):
print('sequence shape:', seq.shape)
print('sequence elements (first 10):', seq[0: 10])
print()
print('target:', target)
sequence shape: (25, 3) sequence elements (first 10): tf.Tensor( [[0.578125 0. 0.1484375 ] [0.390625 0.00130208 0.0390625 ] [0.3828125 0.03255208 0.07421875] [0.390625 0.08203125 0.14713542] [0.5625 0.14973958 0.07421875] [0.546875 0.09375 0.07421875] [0.5390625 0.12239583 0.04947917] [0.296875 0.01692708 0.31119792] [0.5234375 0.09895833 0.04036458] [0.5078125 0.12369792 0.06380208]], shape=(10, 3), dtype=float64) target: {'pitch': <tf.Tensor: shape=(), dtype=float64, numpy=67.0>, 'step': <tf.Tensor: shape=(), dtype=float64, numpy=0.1171875>, 'duration': <tf.Tensor: shape=(), dtype=float64, numpy=0.04947916666666652>}
Regroupez les exemples et configurez l'ensemble de données pour les performances.
batch_size = 64
buffer_size = n_notes - seq_length # the number of items in the dataset
train_ds = (seq_ds
.shuffle(buffer_size)
.batch(batch_size, drop_remainder=True)
.cache()
.prefetch(tf.data.experimental.AUTOTUNE))
train_ds.element_spec
(TensorSpec(shape=(64, 25, 3), dtype=tf.float64, name=None), {'pitch': TensorSpec(shape=(64,), dtype=tf.float64, name=None), 'step': TensorSpec(shape=(64,), dtype=tf.float64, name=None), 'duration': TensorSpec(shape=(64,), dtype=tf.float64, name=None)})
Créer et entraîner le modèle
Le modèle aura trois sorties, une pour chaque variable de note. Pour pitch
et la duration
, vous utiliserez une fonction de perte personnalisée basée sur l'erreur quadratique moyenne qui encourage le modèle à générer des valeurs non négatives.
def mse_with_positive_pressure(y_true: tf.Tensor, y_pred: tf.Tensor):
mse = (y_true - y_pred) ** 2
positive_pressure = 10 * tf.maximum(-y_pred, 0.0)
return tf.reduce_mean(mse + positive_pressure)
input_shape = (seq_length, 3)
learning_rate = 0.005
inputs = tf.keras.Input(input_shape)
x = tf.keras.layers.LSTM(128)(inputs)
outputs = {
'pitch': tf.keras.layers.Dense(128, name='pitch')(x),
'step': tf.keras.layers.Dense(1, name='step')(x),
'duration': tf.keras.layers.Dense(1, name='duration')(x),
}
model = tf.keras.Model(inputs, outputs)
loss = {
'pitch': tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True),
'step': mse_with_positive_pressure,
'duration': mse_with_positive_pressure,
}
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
model.compile(loss=loss, optimizer=optimizer)
model.summary()
Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 25, 3)] 0 [] lstm (LSTM) (None, 128) 67584 ['input_1[0][0]'] duration (Dense) (None, 1) 129 ['lstm[0][0]'] pitch (Dense) (None, 128) 16512 ['lstm[0][0]'] step (Dense) (None, 1) 129 ['lstm[0][0]'] ================================================================================================== Total params: 84,354 Trainable params: 84,354 Non-trainable params: 0 __________________________________________________________________________________________________
En testant la fonction model.evaluate
, vous pouvez voir que la perte de pitch
est nettement supérieure aux pertes de step
et de duration
. Notez que la loss
est la perte totale calculée en additionnant toutes les autres pertes et est actuellement dominée par la perte de pitch
.
losses = model.evaluate(train_ds, return_dict=True)
losses
361/361 [==============================] - 6s 4ms/step - loss: 5.0011 - duration_loss: 0.1213 - pitch_loss: 4.8476 - step_loss: 0.0322 {'loss': 5.001128196716309, 'duration_loss': 0.12134315073490143, 'pitch_loss': 4.847629547119141, 'step_loss': 0.03215572610497475}
Une façon d'équilibrer cela consiste à utiliser l'argument loss_weights
pour compiler :
model.compile(
loss=loss,
loss_weights={
'pitch': 0.05,
'step': 1.0,
'duration':1.0,
},
optimizer=optimizer,
)
La loss
devient alors la somme pondérée des pertes individuelles.
model.evaluate(train_ds, return_dict=True)
361/361 [==============================] - 2s 4ms/step - loss: 0.3959 - duration_loss: 0.1213 - pitch_loss: 4.8476 - step_loss: 0.0322 {'loss': 0.39588069915771484, 'duration_loss': 0.12134315073490143, 'pitch_loss': 4.847629547119141, 'step_loss': 0.03215572610497475}
Entraînez le modèle.
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
filepath='./training_checkpoints/ckpt_{epoch}',
save_weights_only=True),
tf.keras.callbacks.EarlyStopping(
monitor='loss',
patience=5,
verbose=1,
restore_best_weights=True),
]
%%time
epochs = 50
history = model.fit(
train_ds,
epochs=epochs,
callbacks=callbacks,
)
Epoch 1/50 361/361 [==============================] - 4s 5ms/step - loss: 0.3075 - duration_loss: 0.0732 - pitch_loss: 4.0974 - step_loss: 0.0294 Epoch 2/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2950 - duration_loss: 0.0696 - pitch_loss: 3.9526 - step_loss: 0.0278 Epoch 3/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2927 - duration_loss: 0.0682 - pitch_loss: 3.9372 - step_loss: 0.0276 Epoch 4/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2918 - duration_loss: 0.0681 - pitch_loss: 3.9232 - step_loss: 0.0275 Epoch 5/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2874 - duration_loss: 0.0657 - pitch_loss: 3.9079 - step_loss: 0.0264 Epoch 6/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2842 - duration_loss: 0.0653 - pitch_loss: 3.8509 - step_loss: 0.0263 Epoch 7/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2820 - duration_loss: 0.0650 - pitch_loss: 3.8090 - step_loss: 0.0265 Epoch 8/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2806 - duration_loss: 0.0654 - pitch_loss: 3.7903 - step_loss: 0.0257 Epoch 9/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2806 - duration_loss: 0.0651 - pitch_loss: 3.7888 - step_loss: 0.0261 Epoch 10/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2778 - duration_loss: 0.0637 - pitch_loss: 3.7690 - step_loss: 0.0256 Epoch 11/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2762 - duration_loss: 0.0624 - pitch_loss: 3.7704 - step_loss: 0.0253 Epoch 12/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2746 - duration_loss: 0.0616 - pitch_loss: 3.7644 - step_loss: 0.0248 Epoch 13/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2728 - duration_loss: 0.0604 - pitch_loss: 3.7591 - step_loss: 0.0244 Epoch 14/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2710 - duration_loss: 0.0584 - pitch_loss: 3.7573 - step_loss: 0.0247 Epoch 15/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2694 - duration_loss: 0.0574 - pitch_loss: 3.7610 - step_loss: 0.0239 Epoch 16/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2686 - duration_loss: 0.0569 - pitch_loss: 3.7529 - step_loss: 0.0240 Epoch 17/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2695 - duration_loss: 0.0577 - pitch_loss: 3.7486 - step_loss: 0.0243 Epoch 18/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2663 - duration_loss: 0.0560 - pitch_loss: 3.7473 - step_loss: 0.0229 Epoch 19/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2642 - duration_loss: 0.0543 - pitch_loss: 3.7366 - step_loss: 0.0231 Epoch 20/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2691 - duration_loss: 0.0587 - pitch_loss: 3.7421 - step_loss: 0.0233 Epoch 21/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2636 - duration_loss: 0.0547 - pitch_loss: 3.7314 - step_loss: 0.0223 Epoch 22/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2613 - duration_loss: 0.0533 - pitch_loss: 3.7313 - step_loss: 0.0215 Epoch 23/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2595 - duration_loss: 0.0516 - pitch_loss: 3.7219 - step_loss: 0.0218 Epoch 24/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2548 - duration_loss: 0.0493 - pitch_loss: 3.7148 - step_loss: 0.0198 Epoch 25/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2539 - duration_loss: 0.0483 - pitch_loss: 3.7150 - step_loss: 0.0199 Epoch 26/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2526 - duration_loss: 0.0474 - pitch_loss: 3.7138 - step_loss: 0.0196 Epoch 27/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2502 - duration_loss: 0.0460 - pitch_loss: 3.7036 - step_loss: 0.0190 Epoch 28/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2467 - duration_loss: 0.0442 - pitch_loss: 3.6970 - step_loss: 0.0177 Epoch 29/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2458 - duration_loss: 0.0438 - pitch_loss: 3.6938 - step_loss: 0.0172 Epoch 30/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2434 - duration_loss: 0.0418 - pitch_loss: 3.6836 - step_loss: 0.0174 Epoch 31/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2404 - duration_loss: 0.0403 - pitch_loss: 3.6703 - step_loss: 0.0166 Epoch 32/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2421 - duration_loss: 0.0412 - pitch_loss: 3.6833 - step_loss: 0.0168 Epoch 33/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2391 - duration_loss: 0.0399 - pitch_loss: 3.6585 - step_loss: 0.0163 Epoch 34/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2376 - duration_loss: 0.0390 - pitch_loss: 3.6467 - step_loss: 0.0163 Epoch 35/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2403 - duration_loss: 0.0417 - pitch_loss: 3.6448 - step_loss: 0.0164 Epoch 36/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2394 - duration_loss: 0.0417 - pitch_loss: 3.6218 - step_loss: 0.0166 Epoch 37/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2337 - duration_loss: 0.0369 - pitch_loss: 3.6155 - step_loss: 0.0161 Epoch 38/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2320 - duration_loss: 0.0357 - pitch_loss: 3.6080 - step_loss: 0.0158 Epoch 39/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2291 - duration_loss: 0.0353 - pitch_loss: 3.5896 - step_loss: 0.0143 Epoch 40/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2285 - duration_loss: 0.0352 - pitch_loss: 3.5784 - step_loss: 0.0144 Epoch 41/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2276 - duration_loss: 0.0338 - pitch_loss: 3.5928 - step_loss: 0.0142 Epoch 42/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2233 - duration_loss: 0.0316 - pitch_loss: 3.5582 - step_loss: 0.0137 Epoch 43/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2211 - duration_loss: 0.0304 - pitch_loss: 3.5453 - step_loss: 0.0134 Epoch 44/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2206 - duration_loss: 0.0307 - pitch_loss: 3.5396 - step_loss: 0.0129 Epoch 45/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2223 - duration_loss: 0.0322 - pitch_loss: 3.5352 - step_loss: 0.0133 Epoch 46/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2213 - duration_loss: 0.0312 - pitch_loss: 3.5323 - step_loss: 0.0135 Epoch 47/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2240 - duration_loss: 0.0329 - pitch_loss: 3.5405 - step_loss: 0.0142 Epoch 48/50 361/361 [==============================] - 2s 6ms/step - loss: 0.2217 - duration_loss: 0.0322 - pitch_loss: 3.5160 - step_loss: 0.0137 Epoch 49/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2167 - duration_loss: 0.0296 - pitch_loss: 3.4894 - step_loss: 0.0126 Epoch 50/50 361/361 [==============================] - 2s 5ms/step - loss: 0.2142 - duration_loss: 0.0278 - pitch_loss: 3.4757 - step_loss: 0.0126 CPU times: user 2min 16s, sys: 23.9 s, total: 2min 40s Wall time: 1min 41s
plt.plot(history.epoch, history.history['loss'], label='total loss')
plt.show()
Générer des notes
Pour utiliser le modèle pour générer des notes, vous devez d'abord fournir une séquence de notes de départ. La fonction ci-dessous génère une note à partir d'une séquence de notes.
Pour la hauteur des notes, il tire un échantillon de la distribution softmax des notes produites par le modèle, et ne sélectionne pas simplement la note avec la probabilité la plus élevée. Toujours choisir la note avec la probabilité la plus élevée entraînerait la génération de séquences répétitives de notes.
Le paramètre de temperature
peut être utilisé pour contrôler le caractère aléatoire des notes générées. Vous pouvez trouver plus de détails sur la température dans Génération de texte avec un RNN .
def predict_next_note(
notes: np.ndarray,
keras_model: tf.keras.Model,
temperature: float = 1.0) -> int:
"""Generates a note IDs using a trained sequence model."""
assert temperature > 0
# Add batch dimension
inputs = tf.expand_dims(notes, 0)
predictions = model.predict(inputs)
pitch_logits = predictions['pitch']
step = predictions['step']
duration = predictions['duration']
pitch_logits /= temperature
pitch = tf.random.categorical(pitch_logits, num_samples=1)
pitch = tf.squeeze(pitch, axis=-1)
duration = tf.squeeze(duration, axis=-1)
step = tf.squeeze(step, axis=-1)
# `step` and `duration` values should be non-negative
step = tf.maximum(0, step)
duration = tf.maximum(0, duration)
return int(pitch), float(step), float(duration)
Générez maintenant quelques notes. Vous pouvez jouer avec la température et la séquence de démarrage dans next_notes
et voir ce qui se passe.
temperature = 2.0
num_predictions = 120
sample_notes = np.stack([raw_notes[key] for key in key_order], axis=1)
# The initial sequence of notes; pitch is normalized similar to training
# sequences
input_notes = (
sample_notes[:seq_length] / np.array([vocab_size, 1, 1]))
generated_notes = []
prev_start = 0
for _ in range(num_predictions):
pitch, step, duration = predict_next_note(input_notes, model, temperature)
start = prev_start + step
end = start + duration
input_note = (pitch, step, duration)
generated_notes.append((*input_note, start, end))
input_notes = np.delete(input_notes, 0, axis=0)
input_notes = np.append(input_notes, np.expand_dims(input_note, 0), axis=0)
prev_start = start
generated_notes = pd.DataFrame(
generated_notes, columns=(*key_order, 'start', 'end'))
generated_notes.head(10)
out_file = 'output.mid'
out_pm = notes_to_midi(
generated_notes, out_file=out_file, instrument_name=instrument_name)
display_audio(out_pm)
Vous pouvez également télécharger le fichier audio en ajoutant les deux lignes ci-dessous :
from google.colab import files
files.download(out_file)
Visualisez les notes générées.
plot_piano_roll(generated_notes)
Vérifiez les distributions de pitch
, de step
et de duration
.
plot_distributions(generated_notes)
Dans les graphiques ci-dessus, vous remarquerez le changement de distribution des variables de note. Puisqu'il existe une boucle de rétroaction entre les sorties et les entrées du modèle, le modèle a tendance à générer des séquences de sorties similaires pour réduire la perte. Ceci est particulièrement pertinent pour l' step
et la duration
, qui utilisent la perte MSE. Pour pitch
, vous pouvez augmenter le caractère aléatoire en augmentant la temperature
dans predict_next_note
.
Prochaines étapes
Ce didacticiel a démontré les mécanismes d'utilisation d'un RNN pour générer des séquences de notes à partir d'un ensemble de données de fichiers MIDI. Pour en savoir plus, vous pouvez visiter le tutoriel Génération de texte étroitement lié avec un tutoriel RNN , qui contient des diagrammes et des explications supplémentaires.
Une alternative à l'utilisation des RNN pour la génération de musique consiste à utiliser les GAN. Plutôt que de générer de l'audio, une approche basée sur GAN peut générer une séquence entière en parallèle. L'équipe Magenta a fait un travail impressionnant sur cette approche avec GANSynth . Vous pouvez également trouver de nombreux projets musicaux et artistiques merveilleux et du code open source sur le site Web du projet Magenta .