TFX 是一个端到端平台,用于部署生产环境机器学习流水线
当您准备好将模型从研究状态切换到生产状态时,可以使用 TFX 创建和管理生产流水线。
工作原理
TFX 流水线是实现机器学习流水线的一系列组件,专门用于可扩容的高性能机器学习任务。这些组件使用 TFX 库构建而成,您也可以单独使用这些组件。
常见问题的解决方案
浏览分步教程以帮助您完成项目。

此指南会训练一个对服饰(例如运动鞋和衬衫)图像进行分类的神经网络模型,保存训练过的模型,然后使用 TensorFlow Serving 应用此模型。重点是 TensorFlow Serving,而不是在 TensorFlow 中进行建模和训练。

本教程介绍了如何使用 TFX 和 Cloud AI Platform Pipelines 在 Google Cloud 上创建您自己的机器学习流水线。您将遵循典型的机器学习开发流程,即从检查数据集开始,最后得到一个完整且有效的流水线。

了解 TFX 如何创建和评估将部署到设备上的机器学习模型。TFX 现已提供对 TFLite 的原生支持,因此提高了在移动设备上进行推断的效率。
Simulated Spotify Listening Experiences for Reinforcement Learning with TensorFlow and TF-Agents
Many of our music recommendation problems involve providing users with ordered sets of items that satisfy users’ listening preferences and intent at that point in time. We base current recommendations on previous interactions with our application
TensorFlow
2023年10月19日
Serving With TF and GKE: Stable Diffusion
Generative AI models like Stable Diffusion 1 that lets anyone generate high-quality images from natural language text prompts enable different use cases across different industries. These types of models allow people to generate these images not only
TensorFlow
2023年4月28日
How Vodafone Uses TensorFlow Data Validation in their Data Contracts to Elevate Data Governance at Scale
As one of the largest telecommunications companies worldwide, Vodafone is working with Google Cloud to advance their entire data landscape, including their data lake, data warehouse (DWH), and in particular AI/ML strategies. While Vodafone has used
TensorFlow
2023年3月10日
Extend your TFX pipeline with TFX-Addons
To produce production-level machine learning models, TensorFlow provides a portfolio of libraries under the umbrella of TensorFlow Extended (TFX). With just a pip install, TFX already includes a number of versatile pipeline components - referred to
TensorFlow
2023年2月7日