Komponen Rekayasa Fitur TensorFlow Extended (TFX)
Notebook contoh colab ini memberikan contoh yang agak lebih maju dari bagaimana TensorFlow Transform ( tf.Transform
) dapat digunakan untuk data yang preprocess menggunakan kode yang sama persis untuk kedua pelatihan model dan melayani kesimpulan dalam produksi.
TensorFlow Transform adalah library untuk prapemrosesan data input untuk TensorFlow, termasuk membuat fitur yang memerlukan lulus penuh atas set data pelatihan. Misalnya, menggunakan TensorFlow Transform Anda dapat:
- Normalisasi nilai input dengan menggunakan mean dan standar deviasi
- Ubah string menjadi bilangan bulat dengan menghasilkan kosakata di semua nilai input
- Ubah pelampung menjadi bilangan bulat dengan menetapkannya ke ember, berdasarkan distribusi data yang diamati
TensorFlow memiliki dukungan bawaan untuk manipulasi pada satu contoh atau kumpulan contoh. tf.Transform
memperluas kemampuan ini untuk mendukung melewati penuh atas seluruh dataset pelatihan.
Output dari tf.Transform
diekspor sebagai grafik TensorFlow yang dapat Anda gunakan untuk kedua pelatihan dan melayani. Menggunakan grafik yang sama untuk pelatihan dan penyajian dapat mencegah kemiringan, karena transformasi yang sama diterapkan di kedua tahap.
Apa yang kita lakukan dalam contoh ini
Dalam contoh ini kita akan memproses secara luas digunakan dataset yang berisi data sensus , dan pelatihan model untuk melakukan klasifikasi. Sepanjang jalan kita akan mengubah data menggunakan tf.Transform
.
Tingkatkan Pip
Untuk menghindari mengupgrade Pip di sistem saat berjalan secara lokal, periksa untuk memastikan bahwa kami berjalan di Colab. Sistem lokal tentu saja dapat ditingkatkan secara terpisah.
try:
import colab
!pip install --upgrade pip
except:
pass
Instal Transformasi TensorFlow
pip install tensorflow-transform
Pemeriksaan python, impor, dan global
Pertama kita akan memastikan bahwa kita menggunakan Python 3, dan kemudian melanjutkan dan menginstal dan mengimpor hal-hal yang kita butuhkan.
import sys
# Confirm that we're using Python 3
assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
import math
import os
import pprint
import tensorflow as tf
print('TF: {}'.format(tf.__version__))
import apache_beam as beam
print('Beam: {}'.format(beam.__version__))
import tensorflow_transform as tft
import tensorflow_transform.beam as tft_beam
print('Transform: {}'.format(tft.__version__))
from tfx_bsl.public import tfxio
from tfx_bsl.coders.example_coder import RecordBatchToExamples
!wget https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.data
!wget https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.test
train = './adult.data'
test = './adult.test'
TF: 2.4.4 Beam: 2.34.0 Transform: 0.29.0 --2021-12-04 10:43:05-- https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.data Resolving storage.googleapis.com (storage.googleapis.com)... 142.251.8.128, 74.125.204.128, 64.233.189.128, ... Connecting to storage.googleapis.com (storage.googleapis.com)|142.251.8.128|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 3974305 (3.8M) [application/octet-stream] Saving to: ‘adult.data’ adult.data 100%[===================>] 3.79M --.-KB/s in 0.03s 2021-12-04 10:43:05 (135 MB/s) - ‘adult.data’ saved [3974305/3974305] --2021-12-04 10:43:05-- https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.test Resolving storage.googleapis.com (storage.googleapis.com)... 142.250.157.128, 108.177.125.128, 64.233.189.128, ... Connecting to storage.googleapis.com (storage.googleapis.com)|142.250.157.128|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 2003153 (1.9M) [application/octet-stream] Saving to: ‘adult.test’ adult.test 100%[===================>] 1.91M --.-KB/s in 0.01s 2021-12-04 10:43:05 (177 MB/s) - ‘adult.test’ saved [2003153/2003153]
Beri nama kolom kami
Kami akan membuat beberapa daftar praktis untuk mereferensikan kolom dalam kumpulan data kami.
CATEGORICAL_FEATURE_KEYS = [
'workclass',
'education',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'native-country',
]
NUMERIC_FEATURE_KEYS = [
'age',
'capital-gain',
'capital-loss',
'hours-per-week',
]
OPTIONAL_NUMERIC_FEATURE_KEYS = [
'education-num',
]
ORDERED_CSV_COLUMNS = [
'age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', 'race', 'sex',
'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'label'
]
LABEL_KEY = 'label'
Tentukan fitur dan skema kami
Mari kita definisikan skema berdasarkan jenis kolom apa yang ada di input kita. Antara lain ini akan membantu mengimpornya dengan benar.
RAW_DATA_FEATURE_SPEC = dict(
[(name, tf.io.FixedLenFeature([], tf.string))
for name in CATEGORICAL_FEATURE_KEYS] +
[(name, tf.io.FixedLenFeature([], tf.float32))
for name in NUMERIC_FEATURE_KEYS] +
[(name, tf.io.VarLenFeature(tf.float32))
for name in OPTIONAL_NUMERIC_FEATURE_KEYS] +
[(LABEL_KEY, tf.io.FixedLenFeature([], tf.string))]
)
SCHEMA = tft.tf_metadata.dataset_metadata.DatasetMetadata(
tft.tf_metadata.schema_utils.schema_from_feature_spec(RAW_DATA_FEATURE_SPEC)).schema
Mengatur hyperparameters dan housekeeping dasar
Konstanta dan hyperparameter yang digunakan untuk pelatihan. Ukuran bucket mencakup semua kategori yang tercantum dalam deskripsi kumpulan data serta satu tambahan untuk "?" yang mewakili tidak diketahui.
testing = os.getenv("WEB_TEST_BROWSER", False)
NUM_OOV_BUCKETS = 1
if testing:
TRAIN_NUM_EPOCHS = 1
NUM_TRAIN_INSTANCES = 1
TRAIN_BATCH_SIZE = 1
NUM_TEST_INSTANCES = 1
else:
TRAIN_NUM_EPOCHS = 16
NUM_TRAIN_INSTANCES = 32561
TRAIN_BATCH_SIZE = 128
NUM_TEST_INSTANCES = 16281
# Names of temp files
TRANSFORMED_TRAIN_DATA_FILEBASE = 'train_transformed'
TRANSFORMED_TEST_DATA_FILEBASE = 'test_transformed'
EXPORTED_MODEL_DIR = 'exported_model_dir'
Preprocessing dengan tf.Transform
Buat tf.Transform
preprocessing_fn
Fungsi preprocessing adalah konsep yang paling penting dari tf.Transform. Fungsi preprocessing adalah tempat transformasi dataset benar-benar terjadi. Ia menerima dan mengembalikan kamus tensor, di mana tensor berarti sebuah Tensor
atau SparseTensor
. Ada dua grup utama panggilan API yang biasanya membentuk inti dari fungsi prapemrosesan:
- TensorFlow Ops: Setiap fungsi yang menerima dan kembali tensor, yang biasanya berarti TensorFlow ops. Ini menambahkan operasi TensorFlow ke grafik yang mengubah data mentah menjadi data yang diubah, satu vektor fitur pada satu waktu. Ini akan berjalan untuk setiap contoh, selama pelatihan dan penyajian.
- TensorFlow Transform Analyzers: Salah satu analisa yang disediakan oleh tf.Transform. Penganalisis juga menerima dan mengembalikan tensor, tetapi tidak seperti operasi TensorFlow, mereka hanya berjalan satu kali, selama pelatihan, dan biasanya membuat lintasan penuh ke seluruh kumpulan data pelatihan. Mereka membuat tensor konstanta , yang ditambahkan ke grafik Anda. Misalnya,
tft.min
menghitung minimum dari tensor atas dataset pelatihan. tf.Transform menyediakan satu set penganalisis tetap, tetapi ini akan diperluas di versi mendatang.
def preprocessing_fn(inputs):
"""Preprocess input columns into transformed columns."""
# Since we are modifying some features and leaving others unchanged, we
# start by setting `outputs` to a copy of `inputs.
outputs = inputs.copy()
# Scale numeric columns to have range [0, 1].
for key in NUMERIC_FEATURE_KEYS:
outputs[key] = tft.scale_to_0_1(inputs[key])
for key in OPTIONAL_NUMERIC_FEATURE_KEYS:
# This is a SparseTensor because it is optional. Here we fill in a default
# value when it is missing.
sparse = tf.sparse.SparseTensor(inputs[key].indices, inputs[key].values,
[inputs[key].dense_shape[0], 1])
dense = tf.sparse.to_dense(sp_input=sparse, default_value=0.)
# Reshaping from a batch of vectors of size 1 to a batch to scalars.
dense = tf.squeeze(dense, axis=1)
outputs[key] = tft.scale_to_0_1(dense)
# For all categorical columns except the label column, we generate a
# vocabulary but do not modify the feature. This vocabulary is instead
# used in the trainer, by means of a feature column, to convert the feature
# from a string to an integer id.
for key in CATEGORICAL_FEATURE_KEYS:
outputs[key] = tft.compute_and_apply_vocabulary(
tf.strings.strip(inputs[key]),
num_oov_buckets=NUM_OOV_BUCKETS,
vocab_filename=key)
# For the label column we provide the mapping from string to index.
table_keys = ['>50K', '<=50K']
with tf.init_scope():
initializer = tf.lookup.KeyValueTensorInitializer(
keys=table_keys,
values=tf.cast(tf.range(len(table_keys)), tf.int64),
key_dtype=tf.string,
value_dtype=tf.int64)
table = tf.lookup.StaticHashTable(initializer, default_value=-1)
# Remove trailing periods for test data when the data is read with tf.data.
label_str = tf.strings.regex_replace(inputs[LABEL_KEY], r'\.', '')
label_str = tf.strings.strip(label_str)
data_labels = table.lookup(label_str)
transformed_label = tf.one_hot(
indices=data_labels, depth=len(table_keys), on_value=1.0, off_value=0.0)
outputs[LABEL_KEY] = tf.reshape(transformed_label, [-1, len(table_keys)])
return outputs
Ubah datanya
Sekarang kami siap untuk mulai mengubah data kami dalam pipa Apache Beam.
- Baca data menggunakan pembaca CSV
- Transformasikan menggunakan pipeline prapemrosesan yang menskalakan data numerik dan mengonversi data kategorikal dari string ke indeks nilai int64, dengan membuat kosakata untuk setiap kategori
- Tuliskan hasilnya sebagai
TFRecord
dariExample
protos, yang akan kita gunakan untuk pelatihan model kemudian
def transform_data(train_data_file, test_data_file, working_dir):
"""Transform the data and write out as a TFRecord of Example protos.
Read in the data using the CSV reader, and transform it using a
preprocessing pipeline that scales numeric data and converts categorical data
from strings to int64 values indices, by creating a vocabulary for each
category.
Args:
train_data_file: File containing training data
test_data_file: File containing test data
working_dir: Directory to write transformed data and metadata to
"""
# The "with" block will create a pipeline, and run that pipeline at the exit
# of the block.
with beam.Pipeline() as pipeline:
with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
# Create a TFXIO to read the census data with the schema. To do this we
# need to list all columns in order since the schema doesn't specify the
# order of columns in the csv.
# We first read CSV files and use BeamRecordCsvTFXIO whose .BeamSource()
# accepts a PCollection[bytes] because we need to patch the records first
# (see "FixCommasTrainData" below). Otherwise, tfxio.CsvTFXIO can be used
# to both read the CSV files and parse them to TFT inputs:
# csv_tfxio = tfxio.CsvTFXIO(...)
# raw_data = (pipeline | 'ToRecordBatches' >> csv_tfxio.BeamSource())
csv_tfxio = tfxio.BeamRecordCsvTFXIO(
physical_format='text',
column_names=ORDERED_CSV_COLUMNS,
schema=SCHEMA)
# Read in raw data and convert using CSV TFXIO. Note that we apply
# some Beam transformations here, which will not be encoded in the TF
# graph since we don't do the from within tf.Transform's methods
# (AnalyzeDataset, TransformDataset etc.). These transformations are just
# to get data into a format that the CSV TFXIO can read, in particular
# removing spaces after commas.
raw_data = (
pipeline
| 'ReadTrainData' >> beam.io.ReadFromText(
train_data_file, coder=beam.coders.BytesCoder())
| 'FixCommasTrainData' >> beam.Map(
lambda line: line.replace(b', ', b','))
| 'DecodeTrainData' >> csv_tfxio.BeamSource())
# Combine data and schema into a dataset tuple. Note that we already used
# the schema to read the CSV data, but we also need it to interpret
# raw_data.
raw_dataset = (raw_data, csv_tfxio.TensorAdapterConfig())
# The TFXIO output format is chosen for improved performance.
transformed_dataset, transform_fn = (
raw_dataset | tft_beam.AnalyzeAndTransformDataset(
preprocessing_fn, output_record_batches=True))
# Transformed metadata is not necessary for encoding.
transformed_data, _ = transformed_dataset
# Extract transformed RecordBatches, encode and write them to the given
# directory.
_ = (
transformed_data
| 'EncodeTrainData' >>
beam.FlatMapTuple(lambda batch, _: RecordBatchToExamples(batch))
| 'WriteTrainData' >> beam.io.WriteToTFRecord(
os.path.join(working_dir, TRANSFORMED_TRAIN_DATA_FILEBASE)))
# Now apply transform function to test data. In this case we remove the
# trailing period at the end of each line, and also ignore the header line
# that is present in the test data file.
raw_test_data = (
pipeline
| 'ReadTestData' >> beam.io.ReadFromText(
test_data_file, skip_header_lines=1,
coder=beam.coders.BytesCoder())
| 'FixCommasTestData' >> beam.Map(
lambda line: line.replace(b', ', b','))
| 'RemoveTrailingPeriodsTestData' >> beam.Map(lambda line: line[:-1])
| 'DecodeTestData' >> csv_tfxio.BeamSource())
raw_test_dataset = (raw_test_data, csv_tfxio.TensorAdapterConfig())
# The TFXIO output format is chosen for improved performance.
transformed_test_dataset = (
(raw_test_dataset, transform_fn)
| tft_beam.TransformDataset(output_record_batches=True))
# Transformed metadata is not necessary for encoding.
transformed_test_data, _ = transformed_test_dataset
# Extract transformed RecordBatches, encode and write them to the given
# directory.
_ = (
transformed_test_data
| 'EncodeTestData' >>
beam.FlatMapTuple(lambda batch, _: RecordBatchToExamples(batch))
| 'WriteTestData' >> beam.io.WriteToTFRecord(
os.path.join(working_dir, TRANSFORMED_TEST_DATA_FILEBASE)))
# Will write a SavedModel and metadata to working_dir, which can then
# be read by the tft.TFTransformOutput class.
_ = (
transform_fn
| 'WriteTransformFn' >> tft_beam.WriteTransformFn(working_dir))
Menggunakan data praproses kami untuk melatih model menggunakan tf.keras
Untuk menunjukkan bagaimana tf.Transform
memungkinkan kita untuk menggunakan kode yang sama untuk kedua pelatihan dan melayani, dan dengan demikian mencegah miring, kita akan melatih model. Untuk melatih model kami dan menyiapkan model terlatih kami untuk produksi, kami perlu membuat fungsi input. Perbedaan utama antara fungsi input pelatihan kami dan fungsi input penyajian kami adalah bahwa data pelatihan berisi label, dan data produksi tidak. Argumen dan pengembaliannya juga agak berbeda.
Buat fungsi input untuk pelatihan
def _make_training_input_fn(tf_transform_output, transformed_examples,
batch_size):
"""An input function reading from transformed data, converting to model input.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
transformed_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input data for training or eval, in the form of k.
"""
def input_fn():
return tf.data.experimental.make_batched_features_dataset(
file_pattern=transformed_examples,
batch_size=batch_size,
features=tf_transform_output.transformed_feature_spec(),
reader=tf.data.TFRecordDataset,
label_key=LABEL_KEY,
shuffle=True).prefetch(tf.data.experimental.AUTOTUNE)
return input_fn
Buat fungsi input untuk penyajian
Mari buat fungsi input yang dapat kita gunakan dalam produksi, dan siapkan model terlatih kita untuk disajikan.
def _make_serving_input_fn(tf_transform_output, raw_examples, batch_size):
"""An input function reading from raw data, converting to model input.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
raw_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input data for training or eval, in the form of k.
"""
def get_ordered_raw_data_dtypes():
result = []
for col in ORDERED_CSV_COLUMNS:
if col not in RAW_DATA_FEATURE_SPEC:
result.append(0.0)
continue
spec = RAW_DATA_FEATURE_SPEC[col]
if isinstance(spec, tf.io.FixedLenFeature):
result.append(spec.dtype)
else:
result.append(0.0)
return result
def input_fn():
dataset = tf.data.experimental.make_csv_dataset(
file_pattern=raw_examples,
batch_size=batch_size,
column_names=ORDERED_CSV_COLUMNS,
column_defaults=get_ordered_raw_data_dtypes(),
prefetch_buffer_size=0,
ignore_errors=True)
tft_layer = tf_transform_output.transform_features_layer()
def transform_dataset(data):
raw_features = {}
for key, val in data.items():
if key not in RAW_DATA_FEATURE_SPEC:
continue
if isinstance(RAW_DATA_FEATURE_SPEC[key], tf.io.VarLenFeature):
raw_features[key] = tf.RaggedTensor.from_tensor(
tf.expand_dims(val, -1)).to_sparse()
continue
raw_features[key] = val
transformed_features = tft_layer(raw_features)
data_labels = transformed_features.pop(LABEL_KEY)
return (transformed_features, data_labels)
return dataset.map(
transform_dataset,
num_parallel_calls=tf.data.experimental.AUTOTUNE).prefetch(
tf.data.experimental.AUTOTUNE)
return input_fn
Latih, Evaluasi, dan Ekspor model kami
def export_serving_model(tf_transform_output, model, output_dir):
"""Exports a keras model for serving.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
model: A keras model to export for serving.
output_dir: A directory where the model will be exported to.
"""
# The layer has to be saved to the model for keras tracking purpases.
model.tft_layer = tf_transform_output.transform_features_layer()
@tf.function
def serve_tf_examples_fn(serialized_tf_examples):
"""Serving tf.function model wrapper."""
feature_spec = RAW_DATA_FEATURE_SPEC.copy()
feature_spec.pop(LABEL_KEY)
parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
transformed_features = model.tft_layer(parsed_features)
outputs = model(transformed_features)
classes_names = tf.constant([['0', '1']])
classes = tf.tile(classes_names, [tf.shape(outputs)[0], 1])
return {'classes': classes, 'scores': outputs}
concrete_serving_fn = serve_tf_examples_fn.get_concrete_function(
tf.TensorSpec(shape=[None], dtype=tf.string, name='inputs'))
signatures = {'serving_default': concrete_serving_fn}
# This is required in order to make this model servable with model_server.
versioned_output_dir = os.path.join(output_dir, '1')
model.save(versioned_output_dir, save_format='tf', signatures=signatures)
def train_and_evaluate(working_dir,
num_train_instances=NUM_TRAIN_INSTANCES,
num_test_instances=NUM_TEST_INSTANCES):
"""Train the model on training data and evaluate on test data.
Args:
working_dir: The location of the Transform output.
num_train_instances: Number of instances in train set
num_test_instances: Number of instances in test set
Returns:
The results from the estimator's 'evaluate' method
"""
train_data_path_pattern = os.path.join(working_dir,
TRANSFORMED_TRAIN_DATA_FILEBASE + '*')
eval_data_path_pattern = os.path.join(working_dir,
TRANSFORMED_TEST_DATA_FILEBASE + '*')
tf_transform_output = tft.TFTransformOutput(working_dir)
train_input_fn = _make_training_input_fn(
tf_transform_output, train_data_path_pattern, batch_size=TRAIN_BATCH_SIZE)
train_dataset = train_input_fn()
# Evaluate model on test dataset.
eval_input_fn = _make_training_input_fn(
tf_transform_output, eval_data_path_pattern, batch_size=TRAIN_BATCH_SIZE)
validation_dataset = eval_input_fn()
feature_spec = tf_transform_output.transformed_feature_spec().copy()
feature_spec.pop(LABEL_KEY)
inputs = {}
for key, spec in feature_spec.items():
if isinstance(spec, tf.io.VarLenFeature):
inputs[key] = tf.keras.layers.Input(
shape=[None], name=key, dtype=spec.dtype, sparse=True)
elif isinstance(spec, tf.io.FixedLenFeature):
inputs[key] = tf.keras.layers.Input(
shape=spec.shape, name=key, dtype=spec.dtype)
else:
raise ValueError('Spec type is not supported: ', key, spec)
encoded_inputs = {}
for key in inputs:
feature = tf.expand_dims(inputs[key], -1)
if key in CATEGORICAL_FEATURE_KEYS:
num_buckets = tf_transform_output.num_buckets_for_transformed_feature(key)
encoding_layer = (
tf.keras.layers.experimental.preprocessing.CategoryEncoding(
max_tokens=num_buckets, output_mode='binary', sparse=False))
encoded_inputs[key] = encoding_layer(feature)
else:
encoded_inputs[key] = feature
stacked_inputs = tf.concat(tf.nest.flatten(encoded_inputs), axis=1)
output = tf.keras.layers.Dense(100, activation='relu')(stacked_inputs)
output = tf.keras.layers.Dense(70, activation='relu')(output)
output = tf.keras.layers.Dense(50, activation='relu')(output)
output = tf.keras.layers.Dense(20, activation='relu')(output)
output = tf.keras.layers.Dense(2, activation='sigmoid')(output)
model = tf.keras.Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
pprint.pprint(model.summary())
model.fit(train_dataset, validation_data=validation_dataset,
epochs=TRAIN_NUM_EPOCHS,
steps_per_epoch=math.ceil(num_train_instances / TRAIN_BATCH_SIZE),
validation_steps=math.ceil(num_test_instances / TRAIN_BATCH_SIZE))
# Export the model.
exported_model_dir = os.path.join(working_dir, EXPORTED_MODEL_DIR)
export_serving_model(tf_transform_output, model, exported_model_dir)
metrics_values = model.evaluate(validation_dataset, steps=num_test_instances)
metrics_labels = model.metrics_names
return {l: v for l, v in zip(metrics_labels, metrics_values)}
Satukan semuanya
Kami telah membuat semua hal yang kami butuhkan untuk memproses data sensus sebelumnya, melatih model, dan menyiapkannya untuk disajikan. Sejauh ini kami baru saja menyiapkan semuanya. Saatnya untuk mulai berlari!
import tempfile
temp = os.path.join(tempfile.gettempdir(), 'keras')
transform_data(train, test, temp)
results = train_and_evaluate(temp)
pprint.pprint(results)
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. 2021-12-04 10:43:07.088016: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:07.089022: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/3dfb612abc894c0ab0ae6895d85b5084/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/3dfb612abc894c0ab0ae6895d85b5084/saved_model.pb INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/c76371e6c4104068b035f1ba7ac0c160/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/c76371e6c4104068b035f1ba7ac0c160/saved_model.pb WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:12.129285: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:12.129350: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/assets INFO:tensorflow:Assets written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/assets INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/saved_model.pb WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:17.368791: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:17.368851: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:43:18.716754: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:18.716809: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== education (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ marital-status (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ native-country (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ occupation (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ race (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ relationship (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ sex (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ workclass (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ age (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ capital-gain (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ capital-loss (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ tf.expand_dims_3 (TFOpLambda) (None, 1) 0 education[0][0] __________________________________________________________________________________________________ education-num (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ hours-per-week (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ tf.expand_dims_6 (TFOpLambda) (None, 1) 0 marital-status[0][0] __________________________________________________________________________________________________ tf.expand_dims_7 (TFOpLambda) (None, 1) 0 native-country[0][0] __________________________________________________________________________________________________ tf.expand_dims_8 (TFOpLambda) (None, 1) 0 occupation[0][0] __________________________________________________________________________________________________ tf.expand_dims_9 (TFOpLambda) (None, 1) 0 race[0][0] __________________________________________________________________________________________________ tf.expand_dims_10 (TFOpLambda) (None, 1) 0 relationship[0][0] __________________________________________________________________________________________________ tf.expand_dims_11 (TFOpLambda) (None, 1) 0 sex[0][0] __________________________________________________________________________________________________ tf.expand_dims_12 (TFOpLambda) (None, 1) 0 workclass[0][0] __________________________________________________________________________________________________ tf.expand_dims (TFOpLambda) (None, 1) 0 age[0][0] __________________________________________________________________________________________________ tf.expand_dims_1 (TFOpLambda) (None, 1) 0 capital-gain[0][0] __________________________________________________________________________________________________ tf.expand_dims_2 (TFOpLambda) (None, 1) 0 capital-loss[0][0] __________________________________________________________________________________________________ category_encoding (CategoryEnco (None, 17) 0 tf.expand_dims_3[0][0] __________________________________________________________________________________________________ tf.expand_dims_4 (TFOpLambda) (None, 1) 0 education-num[0][0] __________________________________________________________________________________________________ tf.expand_dims_5 (TFOpLambda) (None, 1) 0 hours-per-week[0][0] __________________________________________________________________________________________________ category_encoding_1 (CategoryEn (None, 8) 0 tf.expand_dims_6[0][0] __________________________________________________________________________________________________ category_encoding_2 (CategoryEn (None, 43) 0 tf.expand_dims_7[0][0] __________________________________________________________________________________________________ category_encoding_3 (CategoryEn (None, 16) 0 tf.expand_dims_8[0][0] __________________________________________________________________________________________________ category_encoding_4 (CategoryEn (None, 6) 0 tf.expand_dims_9[0][0] __________________________________________________________________________________________________ category_encoding_5 (CategoryEn (None, 7) 0 tf.expand_dims_10[0][0] __________________________________________________________________________________________________ category_encoding_6 (CategoryEn (None, 3) 0 tf.expand_dims_11[0][0] __________________________________________________________________________________________________ category_encoding_7 (CategoryEn (None, 10) 0 tf.expand_dims_12[0][0] __________________________________________________________________________________________________ tf.concat (TFOpLambda) (None, 115) 0 tf.expand_dims[0][0] tf.expand_dims_1[0][0] tf.expand_dims_2[0][0] category_encoding[0][0] tf.expand_dims_4[0][0] tf.expand_dims_5[0][0] category_encoding_1[0][0] category_encoding_2[0][0] category_encoding_3[0][0] category_encoding_4[0][0] category_encoding_5[0][0] category_encoding_6[0][0] category_encoding_7[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 100) 11600 tf.concat[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 70) 7070 dense[0][0] __________________________________________________________________________________________________ dense_2 (Dense) (None, 50) 3550 dense_1[0][0] __________________________________________________________________________________________________ dense_3 (Dense) (None, 20) 1020 dense_2[0][0] __________________________________________________________________________________________________ dense_4 (Dense) (None, 2) 42 dense_3[0][0] ================================================================================================== Total params: 23,282 Trainable params: 23,282 Non-trainable params: 0 __________________________________________________________________________________________________ None Epoch 1/16 255/255 [==============================] - 2s 5ms/step - loss: 0.4575 - accuracy: 0.7892 - val_loss: 0.3393 - val_accuracy: 0.8425 Epoch 2/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3390 - accuracy: 0.8420 - val_loss: 0.3367 - val_accuracy: 0.8442 Epoch 3/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3278 - accuracy: 0.8478 - val_loss: 0.3256 - val_accuracy: 0.8490 Epoch 4/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3182 - accuracy: 0.8494 - val_loss: 0.3246 - val_accuracy: 0.8481 Epoch 5/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3133 - accuracy: 0.8527 - val_loss: 0.3204 - val_accuracy: 0.8484 Epoch 6/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3054 - accuracy: 0.8566 - val_loss: 0.3232 - val_accuracy: 0.8480 Epoch 7/16 255/255 [==============================] - 1s 4ms/step - loss: 0.3024 - accuracy: 0.8568 - val_loss: 0.3248 - val_accuracy: 0.8488 Epoch 8/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2970 - accuracy: 0.8595 - val_loss: 0.3310 - val_accuracy: 0.8470 Epoch 9/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2932 - accuracy: 0.8619 - val_loss: 0.3277 - val_accuracy: 0.8465 Epoch 10/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2946 - accuracy: 0.8617 - val_loss: 0.3292 - val_accuracy: 0.8495 Epoch 11/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2914 - accuracy: 0.8606 - val_loss: 0.3334 - val_accuracy: 0.8511 Epoch 12/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2864 - accuracy: 0.8631 - val_loss: 0.3328 - val_accuracy: 0.8490 Epoch 13/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2811 - accuracy: 0.8671 - val_loss: 0.3386 - val_accuracy: 0.8503 Epoch 14/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2738 - accuracy: 0.8720 - val_loss: 0.3397 - val_accuracy: 0.8483 Epoch 15/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2709 - accuracy: 0.8745 - val_loss: 0.3429 - val_accuracy: 0.8491 Epoch 16/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2705 - accuracy: 0.8724 - val_loss: 0.3467 - val_accuracy: 0.8491 INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:37.584301: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/keras/exported_model_dir/1/assets INFO:tensorflow:Assets written to: /tmp/keras/exported_model_dir/1/assets 16281/16281 [==============================] - 21s 1ms/step - loss: 0.3470 - accuracy: 0.8491 {'accuracy': 0.8490878939628601, 'loss': 0.34699547290802}
(Opsional) Menggunakan data praproses kami untuk melatih model menggunakan tf.estimator
Jika Anda lebih suka menggunakan model Estimator daripada model Keras, kode di bagian ini menunjukkan cara melakukannya.
Buat fungsi input untuk pelatihan
def _make_training_input_fn(tf_transform_output, transformed_examples,
batch_size):
"""Creates an input function reading from transformed data.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
transformed_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input function for training or eval.
"""
def input_fn():
"""Input function for training and eval."""
dataset = tf.data.experimental.make_batched_features_dataset(
file_pattern=transformed_examples,
batch_size=batch_size,
features=tf_transform_output.transformed_feature_spec(),
reader=tf.data.TFRecordDataset,
shuffle=True)
transformed_features = tf.compat.v1.data.make_one_shot_iterator(
dataset).get_next()
# Extract features and label from the transformed tensors.
transformed_labels = tf.where(
tf.equal(transformed_features.pop(LABEL_KEY), 1))
return transformed_features, transformed_labels[:,1]
return input_fn
Buat fungsi input untuk penyajian
Mari buat fungsi input yang dapat kita gunakan dalam produksi, dan siapkan model terlatih kita untuk disajikan.
def _make_serving_input_fn(tf_transform_output):
"""Creates an input function reading from raw data.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
Returns:
The serving input function.
"""
raw_feature_spec = RAW_DATA_FEATURE_SPEC.copy()
# Remove label since it is not available during serving.
raw_feature_spec.pop(LABEL_KEY)
def serving_input_fn():
"""Input function for serving."""
# Get raw features by generating the basic serving input_fn and calling it.
# Here we generate an input_fn that expects a parsed Example proto to be fed
# to the model at serving time. See also
# tf.estimator.export.build_raw_serving_input_receiver_fn.
raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
raw_feature_spec, default_batch_size=None)
serving_input_receiver = raw_input_fn()
# Apply the transform function that was used to generate the materialized
# data.
raw_features = serving_input_receiver.features
transformed_features = tf_transform_output.transform_raw_features(
raw_features)
return tf.estimator.export.ServingInputReceiver(
transformed_features, serving_input_receiver.receiver_tensors)
return serving_input_fn
Bungkus data input kami di FeatureColumns
Model kami akan mengharapkan data kami di TensorFlow FeatureColumns.
def get_feature_columns(tf_transform_output):
"""Returns the FeatureColumns for the model.
Args:
tf_transform_output: A `TFTransformOutput` object.
Returns:
A list of FeatureColumns.
"""
# Wrap scalars as real valued columns.
real_valued_columns = [tf.feature_column.numeric_column(key, shape=())
for key in NUMERIC_FEATURE_KEYS]
# Wrap categorical columns.
one_hot_columns = [
tf.feature_column.indicator_column(
tf.feature_column.categorical_column_with_identity(
key=key,
num_buckets=(NUM_OOV_BUCKETS +
tf_transform_output.vocabulary_size_by_name(
vocab_filename=key))))
for key in CATEGORICAL_FEATURE_KEYS]
return real_valued_columns + one_hot_columns
Latih, Evaluasi, dan Ekspor model kami
def train_and_evaluate(working_dir, num_train_instances=NUM_TRAIN_INSTANCES,
num_test_instances=NUM_TEST_INSTANCES):
"""Train the model on training data and evaluate on test data.
Args:
working_dir: Directory to read transformed data and metadata from and to
write exported model to.
num_train_instances: Number of instances in train set
num_test_instances: Number of instances in test set
Returns:
The results from the estimator's 'evaluate' method
"""
tf_transform_output = tft.TFTransformOutput(working_dir)
run_config = tf.estimator.RunConfig()
estimator = tf.estimator.LinearClassifier(
feature_columns=get_feature_columns(tf_transform_output),
config=run_config,
loss_reduction=tf.losses.Reduction.SUM)
# Fit the model using the default optimizer.
train_input_fn = _make_training_input_fn(
tf_transform_output,
os.path.join(working_dir, TRANSFORMED_TRAIN_DATA_FILEBASE + '*'),
batch_size=TRAIN_BATCH_SIZE)
estimator.train(
input_fn=train_input_fn,
max_steps=TRAIN_NUM_EPOCHS * num_train_instances / TRAIN_BATCH_SIZE)
# Evaluate model on test dataset.
eval_input_fn = _make_training_input_fn(
tf_transform_output,
os.path.join(working_dir, TRANSFORMED_TEST_DATA_FILEBASE + '*'),
batch_size=1)
# Export the model.
serving_input_fn = _make_serving_input_fn(tf_transform_output)
exported_model_dir = os.path.join(working_dir, EXPORTED_MODEL_DIR)
estimator.export_saved_model(exported_model_dir, serving_input_fn)
return estimator.evaluate(input_fn=eval_input_fn, steps=num_test_instances)
Satukan semuanya
Kami telah membuat semua hal yang kami butuhkan untuk memproses data sensus sebelumnya, melatih model, dan menyiapkannya untuk disajikan. Sejauh ini kami baru saja menyiapkan semuanya. Saatnya untuk mulai berlari!
import tempfile
temp = os.path.join(tempfile.gettempdir(), 'estimator')
transform_data(train, test, temp)
results = train_and_evaluate(temp)
pprint.pprint(results)
WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/a7f3726df5bf498ca24bd528eebca9e9/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/a7f3726df5bf498ca24bd528eebca9e9/saved_model.pb INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/3466a3517ec243a39102fa6ad6e5fec2/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/3466a3517ec243a39102fa6ad6e5fec2/saved_model.pb WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:44:05.733070: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:05.733123: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/assets INFO:tensorflow:Assets written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/assets INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/saved_model.pb WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:44:10.983401: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:10.983461: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:44:12.469671: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:12.469756: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwufx88ji WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwufx88ji INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwufx88ji', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwufx88ji', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1727: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead. warnings.warn('`layer.add_variable` is deprecated and ' WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/optimizer_v2/ftrl.py:134: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/optimizer_v2/ftrl.py:134: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. 2021-12-04 10:44:15.191355: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:15.191419: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 88.72284, step = 0 INFO:tensorflow:loss = 88.72284, step = 0 INFO:tensorflow:global_step/sec: 432.87 INFO:tensorflow:global_step/sec: 432.87 INFO:tensorflow:loss = 33.484627, step = 100 (0.233 sec) INFO:tensorflow:loss = 33.484627, step = 100 (0.233 sec) INFO:tensorflow:global_step/sec: 764.774 INFO:tensorflow:global_step/sec: 764.774 INFO:tensorflow:loss = 42.72283, step = 200 (0.130 sec) INFO:tensorflow:loss = 42.72283, step = 200 (0.130 sec) INFO:tensorflow:global_step/sec: 763.549 INFO:tensorflow:global_step/sec: 763.549 INFO:tensorflow:loss = 55.91174, step = 300 (0.131 sec) INFO:tensorflow:loss = 55.91174, step = 300 (0.131 sec) INFO:tensorflow:global_step/sec: 755.175 INFO:tensorflow:global_step/sec: 755.175 INFO:tensorflow:loss = 39.204643, step = 400 (0.133 sec) INFO:tensorflow:loss = 39.204643, step = 400 (0.133 sec) INFO:tensorflow:global_step/sec: 792.262 INFO:tensorflow:global_step/sec: 792.262 INFO:tensorflow:loss = 41.268295, step = 500 (0.126 sec) INFO:tensorflow:loss = 41.268295, step = 500 (0.126 sec) INFO:tensorflow:global_step/sec: 743.725 INFO:tensorflow:global_step/sec: 743.725 INFO:tensorflow:loss = 51.267006, step = 600 (0.135 sec) INFO:tensorflow:loss = 51.267006, step = 600 (0.135 sec) INFO:tensorflow:global_step/sec: 806.716 INFO:tensorflow:global_step/sec: 806.716 INFO:tensorflow:loss = 42.03744, step = 700 (0.124 sec) INFO:tensorflow:loss = 42.03744, step = 700 (0.124 sec) INFO:tensorflow:global_step/sec: 763.135 INFO:tensorflow:global_step/sec: 763.135 INFO:tensorflow:loss = 42.66994, step = 800 (0.131 sec) INFO:tensorflow:loss = 42.66994, step = 800 (0.131 sec) INFO:tensorflow:global_step/sec: 779.496 INFO:tensorflow:global_step/sec: 779.496 INFO:tensorflow:loss = 48.643982, step = 900 (0.129 sec) INFO:tensorflow:loss = 48.643982, step = 900 (0.129 sec) INFO:tensorflow:global_step/sec: 787.431 INFO:tensorflow:global_step/sec: 787.431 INFO:tensorflow:loss = 41.668102, step = 1000 (0.127 sec) INFO:tensorflow:loss = 41.668102, step = 1000 (0.127 sec) INFO:tensorflow:global_step/sec: 737.697 INFO:tensorflow:global_step/sec: 737.697 INFO:tensorflow:loss = 40.340927, step = 1100 (0.135 sec) INFO:tensorflow:loss = 40.340927, step = 1100 (0.135 sec) INFO:tensorflow:global_step/sec: 755.647 INFO:tensorflow:global_step/sec: 755.647 INFO:tensorflow:loss = 31.146494, step = 1200 (0.133 sec) INFO:tensorflow:loss = 31.146494, step = 1200 (0.133 sec) INFO:tensorflow:global_step/sec: 785.653 INFO:tensorflow:global_step/sec: 785.653 INFO:tensorflow:loss = 30.96864, step = 1300 (0.127 sec) INFO:tensorflow:loss = 30.96864, step = 1300 (0.127 sec) INFO:tensorflow:global_step/sec: 759.461 INFO:tensorflow:global_step/sec: 759.461 INFO:tensorflow:loss = 38.621964, step = 1400 (0.132 sec) INFO:tensorflow:loss = 38.621964, step = 1400 (0.132 sec) INFO:tensorflow:global_step/sec: 777.328 INFO:tensorflow:global_step/sec: 777.328 INFO:tensorflow:loss = 44.518555, step = 1500 (0.129 sec) INFO:tensorflow:loss = 44.518555, step = 1500 (0.129 sec) INFO:tensorflow:global_step/sec: 741.005 INFO:tensorflow:global_step/sec: 741.005 INFO:tensorflow:loss = 45.997204, step = 1600 (0.135 sec) INFO:tensorflow:loss = 45.997204, step = 1600 (0.135 sec) INFO:tensorflow:global_step/sec: 734.846 INFO:tensorflow:global_step/sec: 734.846 INFO:tensorflow:loss = 50.39132, step = 1700 (0.136 sec) INFO:tensorflow:loss = 50.39132, step = 1700 (0.136 sec) INFO:tensorflow:global_step/sec: 752.826 INFO:tensorflow:global_step/sec: 752.826 INFO:tensorflow:loss = 45.41472, step = 1800 (0.133 sec) INFO:tensorflow:loss = 45.41472, step = 1800 (0.133 sec) INFO:tensorflow:global_step/sec: 757.018 INFO:tensorflow:global_step/sec: 757.018 INFO:tensorflow:loss = 46.133186, step = 1900 (0.132 sec) INFO:tensorflow:loss = 46.133186, step = 1900 (0.132 sec) INFO:tensorflow:global_step/sec: 700.757 INFO:tensorflow:global_step/sec: 700.757 INFO:tensorflow:loss = 34.684982, step = 2000 (0.143 sec) INFO:tensorflow:loss = 34.684982, step = 2000 (0.143 sec) INFO:tensorflow:global_step/sec: 741.709 INFO:tensorflow:global_step/sec: 741.709 INFO:tensorflow:loss = 39.637863, step = 2100 (0.135 sec) INFO:tensorflow:loss = 39.637863, step = 2100 (0.135 sec) INFO:tensorflow:global_step/sec: 772.066 INFO:tensorflow:global_step/sec: 772.066 INFO:tensorflow:loss = 45.70813, step = 2200 (0.129 sec) INFO:tensorflow:loss = 45.70813, step = 2200 (0.129 sec) INFO:tensorflow:global_step/sec: 776.263 INFO:tensorflow:global_step/sec: 776.263 INFO:tensorflow:loss = 39.104668, step = 2300 (0.129 sec) INFO:tensorflow:loss = 39.104668, step = 2300 (0.129 sec) INFO:tensorflow:global_step/sec: 768.016 INFO:tensorflow:global_step/sec: 768.016 INFO:tensorflow:loss = 36.262817, step = 2400 (0.130 sec) INFO:tensorflow:loss = 36.262817, step = 2400 (0.130 sec) INFO:tensorflow:global_step/sec: 754.04 INFO:tensorflow:global_step/sec: 754.04 INFO:tensorflow:loss = 43.80282, step = 2500 (0.132 sec) INFO:tensorflow:loss = 43.80282, step = 2500 (0.132 sec) INFO:tensorflow:global_step/sec: 742.917 INFO:tensorflow:global_step/sec: 742.917 INFO:tensorflow:loss = 48.113125, step = 2600 (0.135 sec) INFO:tensorflow:loss = 48.113125, step = 2600 (0.135 sec) INFO:tensorflow:global_step/sec: 753.394 INFO:tensorflow:global_step/sec: 753.394 INFO:tensorflow:loss = 43.442005, step = 2700 (0.133 sec) INFO:tensorflow:loss = 43.442005, step = 2700 (0.133 sec) INFO:tensorflow:global_step/sec: 768.985 INFO:tensorflow:global_step/sec: 768.985 INFO:tensorflow:loss = 34.593086, step = 2800 (0.130 sec) INFO:tensorflow:loss = 34.593086, step = 2800 (0.130 sec) INFO:tensorflow:global_step/sec: 756.393 INFO:tensorflow:global_step/sec: 756.393 INFO:tensorflow:loss = 38.085594, step = 2900 (0.132 sec) INFO:tensorflow:loss = 38.085594, step = 2900 (0.132 sec) INFO:tensorflow:global_step/sec: 792.717 INFO:tensorflow:global_step/sec: 792.717 INFO:tensorflow:loss = 42.41484, step = 3000 (0.126 sec) INFO:tensorflow:loss = 42.41484, step = 3000 (0.126 sec) INFO:tensorflow:global_step/sec: 763.25 INFO:tensorflow:global_step/sec: 763.25 INFO:tensorflow:loss = 42.457626, step = 3100 (0.131 sec) INFO:tensorflow:loss = 42.457626, step = 3100 (0.131 sec) INFO:tensorflow:global_step/sec: 747.998 INFO:tensorflow:global_step/sec: 747.998 INFO:tensorflow:loss = 52.64791, step = 3200 (0.134 sec) INFO:tensorflow:loss = 52.64791, step = 3200 (0.134 sec) INFO:tensorflow:global_step/sec: 733.804 INFO:tensorflow:global_step/sec: 733.804 INFO:tensorflow:loss = 36.78949, step = 3300 (0.136 sec) INFO:tensorflow:loss = 36.78949, step = 3300 (0.136 sec) INFO:tensorflow:global_step/sec: 747.473 INFO:tensorflow:global_step/sec: 747.473 INFO:tensorflow:loss = 43.02353, step = 3400 (0.134 sec) INFO:tensorflow:loss = 43.02353, step = 3400 (0.134 sec) INFO:tensorflow:global_step/sec: 766.967 INFO:tensorflow:global_step/sec: 766.967 INFO:tensorflow:loss = 42.971584, step = 3500 (0.131 sec) INFO:tensorflow:loss = 42.971584, step = 3500 (0.131 sec) INFO:tensorflow:global_step/sec: 759.238 INFO:tensorflow:global_step/sec: 759.238 INFO:tensorflow:loss = 31.898714, step = 3600 (0.133 sec) INFO:tensorflow:loss = 31.898714, step = 3600 (0.133 sec) INFO:tensorflow:global_step/sec: 770.209 INFO:tensorflow:global_step/sec: 770.209 INFO:tensorflow:loss = 43.47151, step = 3700 (0.128 sec) INFO:tensorflow:loss = 43.47151, step = 3700 (0.128 sec) INFO:tensorflow:global_step/sec: 750.127 INFO:tensorflow:global_step/sec: 750.127 INFO:tensorflow:loss = 40.073875, step = 3800 (0.133 sec) INFO:tensorflow:loss = 40.073875, step = 3800 (0.133 sec) INFO:tensorflow:global_step/sec: 731.607 INFO:tensorflow:global_step/sec: 731.607 INFO:tensorflow:loss = 33.494003, step = 3900 (0.137 sec) INFO:tensorflow:loss = 33.494003, step = 3900 (0.137 sec) INFO:tensorflow:global_step/sec: 753.01 INFO:tensorflow:global_step/sec: 753.01 INFO:tensorflow:loss = 40.401936, step = 4000 (0.133 sec) INFO:tensorflow:loss = 40.401936, step = 4000 (0.133 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4071... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4071... INFO:tensorflow:Saving checkpoints for 4071 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Saving checkpoints for 4071 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4071... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4071... INFO:tensorflow:Loss for final step: 51.911263. INFO:tensorflow:Loss for final step: 51.911263. WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification'] INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification'] INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression'] INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression'] INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict'] INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict'] INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 2021-12-04 10:44:22.080737: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:22.080796: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/estimator/exported_model_dir/temp-1638614661/assets INFO:tensorflow:Assets written to: /tmp/estimator/exported_model_dir/temp-1638614661/assets INFO:tensorflow:SavedModel written to: /tmp/estimator/exported_model_dir/temp-1638614661/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/estimator/exported_model_dir/temp-1638614661/saved_model.pb INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2021-12-04T10:44:23Z INFO:tensorflow:Starting evaluation at 2021-12-04T10:44:23Z INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 2021-12-04 10:44:23.300547: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:23.300668: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1628/16281] INFO:tensorflow:Evaluation [1628/16281] INFO:tensorflow:Evaluation [3256/16281] INFO:tensorflow:Evaluation [3256/16281] INFO:tensorflow:Evaluation [4884/16281] INFO:tensorflow:Evaluation [4884/16281] INFO:tensorflow:Evaluation [6512/16281] INFO:tensorflow:Evaluation [6512/16281] INFO:tensorflow:Evaluation [8140/16281] INFO:tensorflow:Evaluation [8140/16281] INFO:tensorflow:Evaluation [9768/16281] INFO:tensorflow:Evaluation [9768/16281] INFO:tensorflow:Evaluation [11396/16281] INFO:tensorflow:Evaluation [11396/16281] INFO:tensorflow:Evaluation [13024/16281] INFO:tensorflow:Evaluation [13024/16281] INFO:tensorflow:Evaluation [14652/16281] INFO:tensorflow:Evaluation [14652/16281] INFO:tensorflow:Evaluation [16280/16281] INFO:tensorflow:Evaluation [16280/16281] INFO:tensorflow:Evaluation [16281/16281] INFO:tensorflow:Evaluation [16281/16281] INFO:tensorflow:Inference Time : 12.76048s INFO:tensorflow:Inference Time : 12.76048s INFO:tensorflow:Finished evaluation at 2021-12-04-10:44:35 INFO:tensorflow:Finished evaluation at 2021-12-04-10:44:35 INFO:tensorflow:Saving dict for global step 4071: accuracy = 0.85123765, accuracy_baseline = 0.76377374, auc = 0.9019859, auc_precision_recall = 0.9672531, average_loss = 0.32398567, global_step = 4071, label/mean = 0.76377374, loss = 0.32398567, precision = 0.8828477, prediction/mean = 0.75662553, recall = 0.9284278 INFO:tensorflow:Saving dict for global step 4071: accuracy = 0.85123765, accuracy_baseline = 0.76377374, auc = 0.9019859, auc_precision_recall = 0.9672531, average_loss = 0.32398567, global_step = 4071, label/mean = 0.76377374, loss = 0.32398567, precision = 0.8828477, prediction/mean = 0.75662553, recall = 0.9284278 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4071: /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4071: /tmp/tmpwufx88ji/model.ckpt-4071 {'accuracy': 0.85123765, 'accuracy_baseline': 0.76377374, 'auc': 0.9019859, 'auc_precision_recall': 0.9672531, 'average_loss': 0.32398567, 'global_step': 4071, 'label/mean': 0.76377374, 'loss': 0.32398567, 'precision': 0.8828477, 'prediction/mean': 0.75662553, 'recall': 0.9284278}
Apa yang kita lakukan
Dalam contoh ini kami menggunakan tf.Transform
untuk preprocess dataset dari data sensus, dan melatih model dengan data dibersihkan dan berubah. Kami juga membuat fungsi input yang dapat kami gunakan saat kami menerapkan model terlatih kami di lingkungan produksi untuk melakukan inferensi. Dengan menggunakan kode yang sama untuk pelatihan dan inferensi, kami menghindari masalah apa pun dengan kemiringan data. Sepanjang jalan kami belajar tentang membuat transformasi Apache Beam untuk melakukan transformasi yang kami butuhkan untuk membersihkan data. Kita juga melihat bagaimana menggunakan data ditransformasikan ini untuk melatih model baik menggunakan tf.keras
atau tf.estimator
. Ini hanyalah sebagian kecil dari apa yang dapat dilakukan oleh TensorFlow Transform! Kami mendorong Anda untuk menyelam ke dalam tf.Transform
dan menemukan apa yang bisa lakukan untuk Anda.