TensorFlow Extended(TFX)의 기능 엔지니어링 구성요소
이 예제 colab 노트북 방법에 대한 좀 더 진보 된 예를 제공 TensorFlow가 변환 ( tf.Transform
모두 모델을 훈련 및 생산 추론를 제공 정확히 동일한 코드를 사용하여 전처리 데이터를 사용할 수 있습니다).
TensorFlow Transform은 훈련 데이터 세트에 대한 전체 전달이 필요한 기능 생성을 포함하여 TensorFlow용 입력 데이터를 사전 처리하기 위한 라이브러리입니다. 예를 들어 TensorFlow Transform을 사용하여 다음을 수행할 수 있습니다.
- 평균과 표준편차를 이용하여 입력값 정규화
- 모든 입력 값에 대해 어휘를 생성하여 문자열을 정수로 변환
- 관찰된 데이터 분포를 기반으로 부동 소수점을 버킷에 할당하여 정수로 변환
TensorFlow에는 단일 예제 또는 예제 배치에 대한 조작 지원이 내장되어 있습니다. tf.Transform
전체 훈련 데이터 세트를 완벽하게 패스를 지원하기 위해 이러한 기능을 확장합니다.
의 출력 tf.Transform
당신이 훈련과 봉사에 모두 사용할 수있는 TensorFlow 그래프로 내보내집니다. 훈련과 제공 모두에 동일한 그래프를 사용하면 두 단계에 동일한 변환이 적용되므로 왜곡을 방지할 수 있습니다.
이 예에서 우리가 하는 일
이 예에서 우리는 처리됩니다 널리 사용되는 데이터 집합에 포함 된 인구 조사 데이터 및 분류를 할 수있는 모델을 훈련. 길을 따라 우리는 사용하여 데이터를 변환 할 수 있습니다 tf.Transform
.
핍 업그레이드
로컬에서 실행할 때 시스템에서 Pip를 업그레이드하지 않으려면 Colab에서 실행 중인지 확인하세요. 물론 로컬 시스템은 별도로 업그레이드할 수 있습니다.
try:
import colab
!pip install --upgrade pip
except:
pass
TensorFlow 변환 설치
pip install tensorflow-transform
Python 검사, 가져오기 및 전역
먼저 Python 3을 사용하고 있는지 확인한 다음 필요한 항목을 설치하고 가져옵니다.
import sys
# Confirm that we're using Python 3
assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
import math
import os
import pprint
import tensorflow as tf
print('TF: {}'.format(tf.__version__))
import apache_beam as beam
print('Beam: {}'.format(beam.__version__))
import tensorflow_transform as tft
import tensorflow_transform.beam as tft_beam
print('Transform: {}'.format(tft.__version__))
from tfx_bsl.public import tfxio
from tfx_bsl.coders.example_coder import RecordBatchToExamples
!wget https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.data
!wget https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.test
train = './adult.data'
test = './adult.test'
TF: 2.4.4 Beam: 2.34.0 Transform: 0.29.0 --2021-12-04 10:43:05-- https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.data Resolving storage.googleapis.com (storage.googleapis.com)... 142.251.8.128, 74.125.204.128, 64.233.189.128, ... Connecting to storage.googleapis.com (storage.googleapis.com)|142.251.8.128|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 3974305 (3.8M) [application/octet-stream] Saving to: ‘adult.data’ adult.data 100%[===================>] 3.79M --.-KB/s in 0.03s 2021-12-04 10:43:05 (135 MB/s) - ‘adult.data’ saved [3974305/3974305] --2021-12-04 10:43:05-- https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.test Resolving storage.googleapis.com (storage.googleapis.com)... 142.250.157.128, 108.177.125.128, 64.233.189.128, ... Connecting to storage.googleapis.com (storage.googleapis.com)|142.250.157.128|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 2003153 (1.9M) [application/octet-stream] Saving to: ‘adult.test’ adult.test 100%[===================>] 1.91M --.-KB/s in 0.01s 2021-12-04 10:43:05 (177 MB/s) - ‘adult.test’ saved [2003153/2003153]
열 이름 지정
데이터세트의 열을 참조하기 위한 몇 가지 편리한 목록을 만들 것입니다.
CATEGORICAL_FEATURE_KEYS = [
'workclass',
'education',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'native-country',
]
NUMERIC_FEATURE_KEYS = [
'age',
'capital-gain',
'capital-loss',
'hours-per-week',
]
OPTIONAL_NUMERIC_FEATURE_KEYS = [
'education-num',
]
ORDERED_CSV_COLUMNS = [
'age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', 'race', 'sex',
'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'label'
]
LABEL_KEY = 'label'
기능 및 스키마 정의
입력에 있는 열의 유형을 기반으로 스키마를 정의해 보겠습니다. 무엇보다도 이것은 올바르게 가져오는 데 도움이 됩니다.
RAW_DATA_FEATURE_SPEC = dict(
[(name, tf.io.FixedLenFeature([], tf.string))
for name in CATEGORICAL_FEATURE_KEYS] +
[(name, tf.io.FixedLenFeature([], tf.float32))
for name in NUMERIC_FEATURE_KEYS] +
[(name, tf.io.VarLenFeature(tf.float32))
for name in OPTIONAL_NUMERIC_FEATURE_KEYS] +
[(LABEL_KEY, tf.io.FixedLenFeature([], tf.string))]
)
SCHEMA = tft.tf_metadata.dataset_metadata.DatasetMetadata(
tft.tf_metadata.schema_utils.schema_from_feature_spec(RAW_DATA_FEATURE_SPEC)).schema
하이퍼파라미터 설정 및 기본 하우스키핑
훈련에 사용되는 상수 및 하이퍼파라미터. 버킷 크기에는 데이터 세트 설명에 나열된 모든 범주와 "?"에 대한 추가 범주가 포함됩니다. 알 수 없음을 나타냅니다.
testing = os.getenv("WEB_TEST_BROWSER", False)
NUM_OOV_BUCKETS = 1
if testing:
TRAIN_NUM_EPOCHS = 1
NUM_TRAIN_INSTANCES = 1
TRAIN_BATCH_SIZE = 1
NUM_TEST_INSTANCES = 1
else:
TRAIN_NUM_EPOCHS = 16
NUM_TRAIN_INSTANCES = 32561
TRAIN_BATCH_SIZE = 128
NUM_TEST_INSTANCES = 16281
# Names of temp files
TRANSFORMED_TRAIN_DATA_FILEBASE = 'train_transformed'
TRANSFORMED_TEST_DATA_FILEBASE = 'test_transformed'
EXPORTED_MODEL_DIR = 'exported_model_dir'
함께 전처리 tf.Transform
크리에이트 tf.Transform
preprocessing_fn을
전처리 기능은 tf.Transform의 가장 중요한 개념이다. 전처리 기능은 데이터 세트의 변환이 실제로 일어나는 곳입니다. 그것은 받아 텐서는 의미 텐서의 사전, 반환 Tensor
또는 SparseTensor
. 일반적으로 전처리 기능의 핵심을 형성하는 두 가지 주요 API 호출 그룹이 있습니다.
- TensorFlow 옵스 : 보통 TensorFlow 작전을 의미하는 텐서를 받아 반환하는 모든 기능. 이것은 원시 데이터를 변환된 데이터로 한 번에 하나의 특성 벡터로 변환하는 TensorFlow 작업을 그래프에 추가합니다. 이는 교육 및 봉사 중 모든 예에 대해 실행됩니다.
- 분석기를 변환 TensorFlow : tf.Transform에서 제공하는 분석기 중 하나를. 분석기는 또한 텐서를 수락하고 반환하지만 TensorFlow 작업과 달리 훈련 중에 한 번만 실행되고 일반적으로 전체 훈련 데이터 세트를 완전히 통과합니다. 그들은 만들 텐서 상수 그래프에 추가됩니다. 예를 들어,
tft.min
훈련 데이터 세트를 통해 텐서의 최소를 계산합니다. tf.Transform은 고정된 분석기 세트를 제공하지만 향후 버전에서 확장될 예정입니다.
def preprocessing_fn(inputs):
"""Preprocess input columns into transformed columns."""
# Since we are modifying some features and leaving others unchanged, we
# start by setting `outputs` to a copy of `inputs.
outputs = inputs.copy()
# Scale numeric columns to have range [0, 1].
for key in NUMERIC_FEATURE_KEYS:
outputs[key] = tft.scale_to_0_1(inputs[key])
for key in OPTIONAL_NUMERIC_FEATURE_KEYS:
# This is a SparseTensor because it is optional. Here we fill in a default
# value when it is missing.
sparse = tf.sparse.SparseTensor(inputs[key].indices, inputs[key].values,
[inputs[key].dense_shape[0], 1])
dense = tf.sparse.to_dense(sp_input=sparse, default_value=0.)
# Reshaping from a batch of vectors of size 1 to a batch to scalars.
dense = tf.squeeze(dense, axis=1)
outputs[key] = tft.scale_to_0_1(dense)
# For all categorical columns except the label column, we generate a
# vocabulary but do not modify the feature. This vocabulary is instead
# used in the trainer, by means of a feature column, to convert the feature
# from a string to an integer id.
for key in CATEGORICAL_FEATURE_KEYS:
outputs[key] = tft.compute_and_apply_vocabulary(
tf.strings.strip(inputs[key]),
num_oov_buckets=NUM_OOV_BUCKETS,
vocab_filename=key)
# For the label column we provide the mapping from string to index.
table_keys = ['>50K', '<=50K']
with tf.init_scope():
initializer = tf.lookup.KeyValueTensorInitializer(
keys=table_keys,
values=tf.cast(tf.range(len(table_keys)), tf.int64),
key_dtype=tf.string,
value_dtype=tf.int64)
table = tf.lookup.StaticHashTable(initializer, default_value=-1)
# Remove trailing periods for test data when the data is read with tf.data.
label_str = tf.strings.regex_replace(inputs[LABEL_KEY], r'\.', '')
label_str = tf.strings.strip(label_str)
data_labels = table.lookup(label_str)
transformed_label = tf.one_hot(
indices=data_labels, depth=len(table_keys), on_value=1.0, off_value=0.0)
outputs[LABEL_KEY] = tf.reshape(transformed_label, [-1, len(table_keys)])
return outputs
데이터 변환
이제 Apache Beam 파이프라인에서 데이터 변환을 시작할 준비가 되었습니다.
- CSV 리더를 사용하여 데이터 읽기
- 각 범주에 대한 어휘를 생성하여 숫자 데이터를 확장하고 범주형 데이터를 문자열에서 int64 값 인덱스로 변환하는 전처리 파이프라인을 사용하여 변환합니다.
- A와 결과를 기록
TFRecord
의Example
나중에 모델을 훈련에 사용할 PROTOS,
def transform_data(train_data_file, test_data_file, working_dir):
"""Transform the data and write out as a TFRecord of Example protos.
Read in the data using the CSV reader, and transform it using a
preprocessing pipeline that scales numeric data and converts categorical data
from strings to int64 values indices, by creating a vocabulary for each
category.
Args:
train_data_file: File containing training data
test_data_file: File containing test data
working_dir: Directory to write transformed data and metadata to
"""
# The "with" block will create a pipeline, and run that pipeline at the exit
# of the block.
with beam.Pipeline() as pipeline:
with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
# Create a TFXIO to read the census data with the schema. To do this we
# need to list all columns in order since the schema doesn't specify the
# order of columns in the csv.
# We first read CSV files and use BeamRecordCsvTFXIO whose .BeamSource()
# accepts a PCollection[bytes] because we need to patch the records first
# (see "FixCommasTrainData" below). Otherwise, tfxio.CsvTFXIO can be used
# to both read the CSV files and parse them to TFT inputs:
# csv_tfxio = tfxio.CsvTFXIO(...)
# raw_data = (pipeline | 'ToRecordBatches' >> csv_tfxio.BeamSource())
csv_tfxio = tfxio.BeamRecordCsvTFXIO(
physical_format='text',
column_names=ORDERED_CSV_COLUMNS,
schema=SCHEMA)
# Read in raw data and convert using CSV TFXIO. Note that we apply
# some Beam transformations here, which will not be encoded in the TF
# graph since we don't do the from within tf.Transform's methods
# (AnalyzeDataset, TransformDataset etc.). These transformations are just
# to get data into a format that the CSV TFXIO can read, in particular
# removing spaces after commas.
raw_data = (
pipeline
| 'ReadTrainData' >> beam.io.ReadFromText(
train_data_file, coder=beam.coders.BytesCoder())
| 'FixCommasTrainData' >> beam.Map(
lambda line: line.replace(b', ', b','))
| 'DecodeTrainData' >> csv_tfxio.BeamSource())
# Combine data and schema into a dataset tuple. Note that we already used
# the schema to read the CSV data, but we also need it to interpret
# raw_data.
raw_dataset = (raw_data, csv_tfxio.TensorAdapterConfig())
# The TFXIO output format is chosen for improved performance.
transformed_dataset, transform_fn = (
raw_dataset | tft_beam.AnalyzeAndTransformDataset(
preprocessing_fn, output_record_batches=True))
# Transformed metadata is not necessary for encoding.
transformed_data, _ = transformed_dataset
# Extract transformed RecordBatches, encode and write them to the given
# directory.
_ = (
transformed_data
| 'EncodeTrainData' >>
beam.FlatMapTuple(lambda batch, _: RecordBatchToExamples(batch))
| 'WriteTrainData' >> beam.io.WriteToTFRecord(
os.path.join(working_dir, TRANSFORMED_TRAIN_DATA_FILEBASE)))
# Now apply transform function to test data. In this case we remove the
# trailing period at the end of each line, and also ignore the header line
# that is present in the test data file.
raw_test_data = (
pipeline
| 'ReadTestData' >> beam.io.ReadFromText(
test_data_file, skip_header_lines=1,
coder=beam.coders.BytesCoder())
| 'FixCommasTestData' >> beam.Map(
lambda line: line.replace(b', ', b','))
| 'RemoveTrailingPeriodsTestData' >> beam.Map(lambda line: line[:-1])
| 'DecodeTestData' >> csv_tfxio.BeamSource())
raw_test_dataset = (raw_test_data, csv_tfxio.TensorAdapterConfig())
# The TFXIO output format is chosen for improved performance.
transformed_test_dataset = (
(raw_test_dataset, transform_fn)
| tft_beam.TransformDataset(output_record_batches=True))
# Transformed metadata is not necessary for encoding.
transformed_test_data, _ = transformed_test_dataset
# Extract transformed RecordBatches, encode and write them to the given
# directory.
_ = (
transformed_test_data
| 'EncodeTestData' >>
beam.FlatMapTuple(lambda batch, _: RecordBatchToExamples(batch))
| 'WriteTestData' >> beam.io.WriteToTFRecord(
os.path.join(working_dir, TRANSFORMED_TEST_DATA_FILEBASE)))
# Will write a SavedModel and metadata to working_dir, which can then
# be read by the tft.TFTransformOutput class.
_ = (
transform_fn
| 'WriteTransformFn' >> tft_beam.WriteTransformFn(working_dir))
전처리된 데이터를 사용하여 tf.keras를 사용하여 모델 학습
방법을 보여 tf.Transform
교육과 봉사에 동일한 코드를 사용하여 우리를 가능하게하고, 따라서 왜곡 방지, 우리는 모델을 학습하는 것입니다. 모델을 훈련시키고 훈련된 모델을 프로덕션용으로 준비하려면 입력 함수를 생성해야 합니다. 훈련 입력 함수와 제공 입력 함수의 주요 차이점은 훈련 데이터에는 레이블이 포함되고 프로덕션 데이터에는 포함되지 않는다는 것입니다. 인수와 반환도 약간 다릅니다.
훈련을 위한 입력 함수 생성
def _make_training_input_fn(tf_transform_output, transformed_examples,
batch_size):
"""An input function reading from transformed data, converting to model input.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
transformed_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input data for training or eval, in the form of k.
"""
def input_fn():
return tf.data.experimental.make_batched_features_dataset(
file_pattern=transformed_examples,
batch_size=batch_size,
features=tf_transform_output.transformed_feature_spec(),
reader=tf.data.TFRecordDataset,
label_key=LABEL_KEY,
shuffle=True).prefetch(tf.data.experimental.AUTOTUNE)
return input_fn
서빙을 위한 입력 함수 생성
프로덕션에서 사용할 수 있는 입력 함수를 만들고 훈련된 모델을 제공할 준비를 합시다.
def _make_serving_input_fn(tf_transform_output, raw_examples, batch_size):
"""An input function reading from raw data, converting to model input.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
raw_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input data for training or eval, in the form of k.
"""
def get_ordered_raw_data_dtypes():
result = []
for col in ORDERED_CSV_COLUMNS:
if col not in RAW_DATA_FEATURE_SPEC:
result.append(0.0)
continue
spec = RAW_DATA_FEATURE_SPEC[col]
if isinstance(spec, tf.io.FixedLenFeature):
result.append(spec.dtype)
else:
result.append(0.0)
return result
def input_fn():
dataset = tf.data.experimental.make_csv_dataset(
file_pattern=raw_examples,
batch_size=batch_size,
column_names=ORDERED_CSV_COLUMNS,
column_defaults=get_ordered_raw_data_dtypes(),
prefetch_buffer_size=0,
ignore_errors=True)
tft_layer = tf_transform_output.transform_features_layer()
def transform_dataset(data):
raw_features = {}
for key, val in data.items():
if key not in RAW_DATA_FEATURE_SPEC:
continue
if isinstance(RAW_DATA_FEATURE_SPEC[key], tf.io.VarLenFeature):
raw_features[key] = tf.RaggedTensor.from_tensor(
tf.expand_dims(val, -1)).to_sparse()
continue
raw_features[key] = val
transformed_features = tft_layer(raw_features)
data_labels = transformed_features.pop(LABEL_KEY)
return (transformed_features, data_labels)
return dataset.map(
transform_dataset,
num_parallel_calls=tf.data.experimental.AUTOTUNE).prefetch(
tf.data.experimental.AUTOTUNE)
return input_fn
모델 학습, 평가 및 내보내기
def export_serving_model(tf_transform_output, model, output_dir):
"""Exports a keras model for serving.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
model: A keras model to export for serving.
output_dir: A directory where the model will be exported to.
"""
# The layer has to be saved to the model for keras tracking purpases.
model.tft_layer = tf_transform_output.transform_features_layer()
@tf.function
def serve_tf_examples_fn(serialized_tf_examples):
"""Serving tf.function model wrapper."""
feature_spec = RAW_DATA_FEATURE_SPEC.copy()
feature_spec.pop(LABEL_KEY)
parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
transformed_features = model.tft_layer(parsed_features)
outputs = model(transformed_features)
classes_names = tf.constant([['0', '1']])
classes = tf.tile(classes_names, [tf.shape(outputs)[0], 1])
return {'classes': classes, 'scores': outputs}
concrete_serving_fn = serve_tf_examples_fn.get_concrete_function(
tf.TensorSpec(shape=[None], dtype=tf.string, name='inputs'))
signatures = {'serving_default': concrete_serving_fn}
# This is required in order to make this model servable with model_server.
versioned_output_dir = os.path.join(output_dir, '1')
model.save(versioned_output_dir, save_format='tf', signatures=signatures)
def train_and_evaluate(working_dir,
num_train_instances=NUM_TRAIN_INSTANCES,
num_test_instances=NUM_TEST_INSTANCES):
"""Train the model on training data and evaluate on test data.
Args:
working_dir: The location of the Transform output.
num_train_instances: Number of instances in train set
num_test_instances: Number of instances in test set
Returns:
The results from the estimator's 'evaluate' method
"""
train_data_path_pattern = os.path.join(working_dir,
TRANSFORMED_TRAIN_DATA_FILEBASE + '*')
eval_data_path_pattern = os.path.join(working_dir,
TRANSFORMED_TEST_DATA_FILEBASE + '*')
tf_transform_output = tft.TFTransformOutput(working_dir)
train_input_fn = _make_training_input_fn(
tf_transform_output, train_data_path_pattern, batch_size=TRAIN_BATCH_SIZE)
train_dataset = train_input_fn()
# Evaluate model on test dataset.
eval_input_fn = _make_training_input_fn(
tf_transform_output, eval_data_path_pattern, batch_size=TRAIN_BATCH_SIZE)
validation_dataset = eval_input_fn()
feature_spec = tf_transform_output.transformed_feature_spec().copy()
feature_spec.pop(LABEL_KEY)
inputs = {}
for key, spec in feature_spec.items():
if isinstance(spec, tf.io.VarLenFeature):
inputs[key] = tf.keras.layers.Input(
shape=[None], name=key, dtype=spec.dtype, sparse=True)
elif isinstance(spec, tf.io.FixedLenFeature):
inputs[key] = tf.keras.layers.Input(
shape=spec.shape, name=key, dtype=spec.dtype)
else:
raise ValueError('Spec type is not supported: ', key, spec)
encoded_inputs = {}
for key in inputs:
feature = tf.expand_dims(inputs[key], -1)
if key in CATEGORICAL_FEATURE_KEYS:
num_buckets = tf_transform_output.num_buckets_for_transformed_feature(key)
encoding_layer = (
tf.keras.layers.experimental.preprocessing.CategoryEncoding(
max_tokens=num_buckets, output_mode='binary', sparse=False))
encoded_inputs[key] = encoding_layer(feature)
else:
encoded_inputs[key] = feature
stacked_inputs = tf.concat(tf.nest.flatten(encoded_inputs), axis=1)
output = tf.keras.layers.Dense(100, activation='relu')(stacked_inputs)
output = tf.keras.layers.Dense(70, activation='relu')(output)
output = tf.keras.layers.Dense(50, activation='relu')(output)
output = tf.keras.layers.Dense(20, activation='relu')(output)
output = tf.keras.layers.Dense(2, activation='sigmoid')(output)
model = tf.keras.Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
pprint.pprint(model.summary())
model.fit(train_dataset, validation_data=validation_dataset,
epochs=TRAIN_NUM_EPOCHS,
steps_per_epoch=math.ceil(num_train_instances / TRAIN_BATCH_SIZE),
validation_steps=math.ceil(num_test_instances / TRAIN_BATCH_SIZE))
# Export the model.
exported_model_dir = os.path.join(working_dir, EXPORTED_MODEL_DIR)
export_serving_model(tf_transform_output, model, exported_model_dir)
metrics_values = model.evaluate(validation_dataset, steps=num_test_instances)
metrics_labels = model.metrics_names
return {l: v for l, v in zip(metrics_labels, metrics_values)}
모두 함께 넣어
우리는 인구 조사 데이터를 사전 처리하고, 모델을 훈련하고, 제공을 위해 준비하는 데 필요한 모든 것을 만들었습니다. 지금까지 우리는 단지 준비하고 있었습니다. 달리기를 시작할 시간입니다!
import tempfile
temp = os.path.join(tempfile.gettempdir(), 'keras')
transform_data(train, test, temp)
results = train_and_evaluate(temp)
pprint.pprint(results)
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. 2021-12-04 10:43:07.088016: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:07.089022: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/3dfb612abc894c0ab0ae6895d85b5084/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/3dfb612abc894c0ab0ae6895d85b5084/saved_model.pb INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/c76371e6c4104068b035f1ba7ac0c160/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/c76371e6c4104068b035f1ba7ac0c160/saved_model.pb WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:12.129285: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:12.129350: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/assets INFO:tensorflow:Assets written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/assets INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/saved_model.pb WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:17.368791: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:17.368851: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:43:18.716754: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:18.716809: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== education (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ marital-status (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ native-country (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ occupation (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ race (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ relationship (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ sex (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ workclass (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ age (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ capital-gain (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ capital-loss (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ tf.expand_dims_3 (TFOpLambda) (None, 1) 0 education[0][0] __________________________________________________________________________________________________ education-num (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ hours-per-week (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ tf.expand_dims_6 (TFOpLambda) (None, 1) 0 marital-status[0][0] __________________________________________________________________________________________________ tf.expand_dims_7 (TFOpLambda) (None, 1) 0 native-country[0][0] __________________________________________________________________________________________________ tf.expand_dims_8 (TFOpLambda) (None, 1) 0 occupation[0][0] __________________________________________________________________________________________________ tf.expand_dims_9 (TFOpLambda) (None, 1) 0 race[0][0] __________________________________________________________________________________________________ tf.expand_dims_10 (TFOpLambda) (None, 1) 0 relationship[0][0] __________________________________________________________________________________________________ tf.expand_dims_11 (TFOpLambda) (None, 1) 0 sex[0][0] __________________________________________________________________________________________________ tf.expand_dims_12 (TFOpLambda) (None, 1) 0 workclass[0][0] __________________________________________________________________________________________________ tf.expand_dims (TFOpLambda) (None, 1) 0 age[0][0] __________________________________________________________________________________________________ tf.expand_dims_1 (TFOpLambda) (None, 1) 0 capital-gain[0][0] __________________________________________________________________________________________________ tf.expand_dims_2 (TFOpLambda) (None, 1) 0 capital-loss[0][0] __________________________________________________________________________________________________ category_encoding (CategoryEnco (None, 17) 0 tf.expand_dims_3[0][0] __________________________________________________________________________________________________ tf.expand_dims_4 (TFOpLambda) (None, 1) 0 education-num[0][0] __________________________________________________________________________________________________ tf.expand_dims_5 (TFOpLambda) (None, 1) 0 hours-per-week[0][0] __________________________________________________________________________________________________ category_encoding_1 (CategoryEn (None, 8) 0 tf.expand_dims_6[0][0] __________________________________________________________________________________________________ category_encoding_2 (CategoryEn (None, 43) 0 tf.expand_dims_7[0][0] __________________________________________________________________________________________________ category_encoding_3 (CategoryEn (None, 16) 0 tf.expand_dims_8[0][0] __________________________________________________________________________________________________ category_encoding_4 (CategoryEn (None, 6) 0 tf.expand_dims_9[0][0] __________________________________________________________________________________________________ category_encoding_5 (CategoryEn (None, 7) 0 tf.expand_dims_10[0][0] __________________________________________________________________________________________________ category_encoding_6 (CategoryEn (None, 3) 0 tf.expand_dims_11[0][0] __________________________________________________________________________________________________ category_encoding_7 (CategoryEn (None, 10) 0 tf.expand_dims_12[0][0] __________________________________________________________________________________________________ tf.concat (TFOpLambda) (None, 115) 0 tf.expand_dims[0][0] tf.expand_dims_1[0][0] tf.expand_dims_2[0][0] category_encoding[0][0] tf.expand_dims_4[0][0] tf.expand_dims_5[0][0] category_encoding_1[0][0] category_encoding_2[0][0] category_encoding_3[0][0] category_encoding_4[0][0] category_encoding_5[0][0] category_encoding_6[0][0] category_encoding_7[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 100) 11600 tf.concat[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 70) 7070 dense[0][0] __________________________________________________________________________________________________ dense_2 (Dense) (None, 50) 3550 dense_1[0][0] __________________________________________________________________________________________________ dense_3 (Dense) (None, 20) 1020 dense_2[0][0] __________________________________________________________________________________________________ dense_4 (Dense) (None, 2) 42 dense_3[0][0] ================================================================================================== Total params: 23,282 Trainable params: 23,282 Non-trainable params: 0 __________________________________________________________________________________________________ None Epoch 1/16 255/255 [==============================] - 2s 5ms/step - loss: 0.4575 - accuracy: 0.7892 - val_loss: 0.3393 - val_accuracy: 0.8425 Epoch 2/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3390 - accuracy: 0.8420 - val_loss: 0.3367 - val_accuracy: 0.8442 Epoch 3/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3278 - accuracy: 0.8478 - val_loss: 0.3256 - val_accuracy: 0.8490 Epoch 4/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3182 - accuracy: 0.8494 - val_loss: 0.3246 - val_accuracy: 0.8481 Epoch 5/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3133 - accuracy: 0.8527 - val_loss: 0.3204 - val_accuracy: 0.8484 Epoch 6/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3054 - accuracy: 0.8566 - val_loss: 0.3232 - val_accuracy: 0.8480 Epoch 7/16 255/255 [==============================] - 1s 4ms/step - loss: 0.3024 - accuracy: 0.8568 - val_loss: 0.3248 - val_accuracy: 0.8488 Epoch 8/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2970 - accuracy: 0.8595 - val_loss: 0.3310 - val_accuracy: 0.8470 Epoch 9/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2932 - accuracy: 0.8619 - val_loss: 0.3277 - val_accuracy: 0.8465 Epoch 10/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2946 - accuracy: 0.8617 - val_loss: 0.3292 - val_accuracy: 0.8495 Epoch 11/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2914 - accuracy: 0.8606 - val_loss: 0.3334 - val_accuracy: 0.8511 Epoch 12/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2864 - accuracy: 0.8631 - val_loss: 0.3328 - val_accuracy: 0.8490 Epoch 13/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2811 - accuracy: 0.8671 - val_loss: 0.3386 - val_accuracy: 0.8503 Epoch 14/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2738 - accuracy: 0.8720 - val_loss: 0.3397 - val_accuracy: 0.8483 Epoch 15/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2709 - accuracy: 0.8745 - val_loss: 0.3429 - val_accuracy: 0.8491 Epoch 16/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2705 - accuracy: 0.8724 - val_loss: 0.3467 - val_accuracy: 0.8491 INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:37.584301: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/keras/exported_model_dir/1/assets INFO:tensorflow:Assets written to: /tmp/keras/exported_model_dir/1/assets 16281/16281 [==============================] - 21s 1ms/step - loss: 0.3470 - accuracy: 0.8491 {'accuracy': 0.8490878939628601, 'loss': 0.34699547290802}
(선택 사항) 사전 처리된 데이터를 사용하여 tf.estimator를 사용하여 모델 학습
Keras 모델 대신 Estimator 모델을 사용하려는 경우 이 섹션의 코드에서 그 방법을 보여줍니다.
훈련을 위한 입력 함수 생성
def _make_training_input_fn(tf_transform_output, transformed_examples,
batch_size):
"""Creates an input function reading from transformed data.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
transformed_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input function for training or eval.
"""
def input_fn():
"""Input function for training and eval."""
dataset = tf.data.experimental.make_batched_features_dataset(
file_pattern=transformed_examples,
batch_size=batch_size,
features=tf_transform_output.transformed_feature_spec(),
reader=tf.data.TFRecordDataset,
shuffle=True)
transformed_features = tf.compat.v1.data.make_one_shot_iterator(
dataset).get_next()
# Extract features and label from the transformed tensors.
transformed_labels = tf.where(
tf.equal(transformed_features.pop(LABEL_KEY), 1))
return transformed_features, transformed_labels[:,1]
return input_fn
서빙을 위한 입력 함수 생성
프로덕션에서 사용할 수 있는 입력 함수를 만들고 훈련된 모델을 제공할 준비를 합시다.
def _make_serving_input_fn(tf_transform_output):
"""Creates an input function reading from raw data.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
Returns:
The serving input function.
"""
raw_feature_spec = RAW_DATA_FEATURE_SPEC.copy()
# Remove label since it is not available during serving.
raw_feature_spec.pop(LABEL_KEY)
def serving_input_fn():
"""Input function for serving."""
# Get raw features by generating the basic serving input_fn and calling it.
# Here we generate an input_fn that expects a parsed Example proto to be fed
# to the model at serving time. See also
# tf.estimator.export.build_raw_serving_input_receiver_fn.
raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
raw_feature_spec, default_batch_size=None)
serving_input_receiver = raw_input_fn()
# Apply the transform function that was used to generate the materialized
# data.
raw_features = serving_input_receiver.features
transformed_features = tf_transform_output.transform_raw_features(
raw_features)
return tf.estimator.export.ServingInputReceiver(
transformed_features, serving_input_receiver.receiver_tensors)
return serving_input_fn
FeatureColumns에서 입력 데이터 래핑
우리 모델은 TensorFlow FeatureColumns의 데이터를 예상합니다.
def get_feature_columns(tf_transform_output):
"""Returns the FeatureColumns for the model.
Args:
tf_transform_output: A `TFTransformOutput` object.
Returns:
A list of FeatureColumns.
"""
# Wrap scalars as real valued columns.
real_valued_columns = [tf.feature_column.numeric_column(key, shape=())
for key in NUMERIC_FEATURE_KEYS]
# Wrap categorical columns.
one_hot_columns = [
tf.feature_column.indicator_column(
tf.feature_column.categorical_column_with_identity(
key=key,
num_buckets=(NUM_OOV_BUCKETS +
tf_transform_output.vocabulary_size_by_name(
vocab_filename=key))))
for key in CATEGORICAL_FEATURE_KEYS]
return real_valued_columns + one_hot_columns
모델 학습, 평가 및 내보내기
def train_and_evaluate(working_dir, num_train_instances=NUM_TRAIN_INSTANCES,
num_test_instances=NUM_TEST_INSTANCES):
"""Train the model on training data and evaluate on test data.
Args:
working_dir: Directory to read transformed data and metadata from and to
write exported model to.
num_train_instances: Number of instances in train set
num_test_instances: Number of instances in test set
Returns:
The results from the estimator's 'evaluate' method
"""
tf_transform_output = tft.TFTransformOutput(working_dir)
run_config = tf.estimator.RunConfig()
estimator = tf.estimator.LinearClassifier(
feature_columns=get_feature_columns(tf_transform_output),
config=run_config,
loss_reduction=tf.losses.Reduction.SUM)
# Fit the model using the default optimizer.
train_input_fn = _make_training_input_fn(
tf_transform_output,
os.path.join(working_dir, TRANSFORMED_TRAIN_DATA_FILEBASE + '*'),
batch_size=TRAIN_BATCH_SIZE)
estimator.train(
input_fn=train_input_fn,
max_steps=TRAIN_NUM_EPOCHS * num_train_instances / TRAIN_BATCH_SIZE)
# Evaluate model on test dataset.
eval_input_fn = _make_training_input_fn(
tf_transform_output,
os.path.join(working_dir, TRANSFORMED_TEST_DATA_FILEBASE + '*'),
batch_size=1)
# Export the model.
serving_input_fn = _make_serving_input_fn(tf_transform_output)
exported_model_dir = os.path.join(working_dir, EXPORTED_MODEL_DIR)
estimator.export_saved_model(exported_model_dir, serving_input_fn)
return estimator.evaluate(input_fn=eval_input_fn, steps=num_test_instances)
모두 함께 넣어
우리는 인구 조사 데이터를 사전 처리하고, 모델을 훈련하고, 제공을 위해 준비하는 데 필요한 모든 것을 만들었습니다. 지금까지 우리는 단지 준비하고 있었습니다. 달리기를 시작할 시간입니다!
import tempfile
temp = os.path.join(tempfile.gettempdir(), 'estimator')
transform_data(train, test, temp)
results = train_and_evaluate(temp)
pprint.pprint(results)
WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/a7f3726df5bf498ca24bd528eebca9e9/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/a7f3726df5bf498ca24bd528eebca9e9/saved_model.pb INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/3466a3517ec243a39102fa6ad6e5fec2/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/3466a3517ec243a39102fa6ad6e5fec2/saved_model.pb WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:44:05.733070: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:05.733123: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/assets INFO:tensorflow:Assets written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/assets INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/saved_model.pb WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:44:10.983401: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:10.983461: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:44:12.469671: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:12.469756: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwufx88ji WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwufx88ji INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwufx88ji', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwufx88ji', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1727: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead. warnings.warn('`layer.add_variable` is deprecated and ' WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/optimizer_v2/ftrl.py:134: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/optimizer_v2/ftrl.py:134: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. 2021-12-04 10:44:15.191355: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:15.191419: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 88.72284, step = 0 INFO:tensorflow:loss = 88.72284, step = 0 INFO:tensorflow:global_step/sec: 432.87 INFO:tensorflow:global_step/sec: 432.87 INFO:tensorflow:loss = 33.484627, step = 100 (0.233 sec) INFO:tensorflow:loss = 33.484627, step = 100 (0.233 sec) INFO:tensorflow:global_step/sec: 764.774 INFO:tensorflow:global_step/sec: 764.774 INFO:tensorflow:loss = 42.72283, step = 200 (0.130 sec) INFO:tensorflow:loss = 42.72283, step = 200 (0.130 sec) INFO:tensorflow:global_step/sec: 763.549 INFO:tensorflow:global_step/sec: 763.549 INFO:tensorflow:loss = 55.91174, step = 300 (0.131 sec) INFO:tensorflow:loss = 55.91174, step = 300 (0.131 sec) INFO:tensorflow:global_step/sec: 755.175 INFO:tensorflow:global_step/sec: 755.175 INFO:tensorflow:loss = 39.204643, step = 400 (0.133 sec) INFO:tensorflow:loss = 39.204643, step = 400 (0.133 sec) INFO:tensorflow:global_step/sec: 792.262 INFO:tensorflow:global_step/sec: 792.262 INFO:tensorflow:loss = 41.268295, step = 500 (0.126 sec) INFO:tensorflow:loss = 41.268295, step = 500 (0.126 sec) INFO:tensorflow:global_step/sec: 743.725 INFO:tensorflow:global_step/sec: 743.725 INFO:tensorflow:loss = 51.267006, step = 600 (0.135 sec) INFO:tensorflow:loss = 51.267006, step = 600 (0.135 sec) INFO:tensorflow:global_step/sec: 806.716 INFO:tensorflow:global_step/sec: 806.716 INFO:tensorflow:loss = 42.03744, step = 700 (0.124 sec) INFO:tensorflow:loss = 42.03744, step = 700 (0.124 sec) INFO:tensorflow:global_step/sec: 763.135 INFO:tensorflow:global_step/sec: 763.135 INFO:tensorflow:loss = 42.66994, step = 800 (0.131 sec) INFO:tensorflow:loss = 42.66994, step = 800 (0.131 sec) INFO:tensorflow:global_step/sec: 779.496 INFO:tensorflow:global_step/sec: 779.496 INFO:tensorflow:loss = 48.643982, step = 900 (0.129 sec) INFO:tensorflow:loss = 48.643982, step = 900 (0.129 sec) INFO:tensorflow:global_step/sec: 787.431 INFO:tensorflow:global_step/sec: 787.431 INFO:tensorflow:loss = 41.668102, step = 1000 (0.127 sec) INFO:tensorflow:loss = 41.668102, step = 1000 (0.127 sec) INFO:tensorflow:global_step/sec: 737.697 INFO:tensorflow:global_step/sec: 737.697 INFO:tensorflow:loss = 40.340927, step = 1100 (0.135 sec) INFO:tensorflow:loss = 40.340927, step = 1100 (0.135 sec) INFO:tensorflow:global_step/sec: 755.647 INFO:tensorflow:global_step/sec: 755.647 INFO:tensorflow:loss = 31.146494, step = 1200 (0.133 sec) INFO:tensorflow:loss = 31.146494, step = 1200 (0.133 sec) INFO:tensorflow:global_step/sec: 785.653 INFO:tensorflow:global_step/sec: 785.653 INFO:tensorflow:loss = 30.96864, step = 1300 (0.127 sec) INFO:tensorflow:loss = 30.96864, step = 1300 (0.127 sec) INFO:tensorflow:global_step/sec: 759.461 INFO:tensorflow:global_step/sec: 759.461 INFO:tensorflow:loss = 38.621964, step = 1400 (0.132 sec) INFO:tensorflow:loss = 38.621964, step = 1400 (0.132 sec) INFO:tensorflow:global_step/sec: 777.328 INFO:tensorflow:global_step/sec: 777.328 INFO:tensorflow:loss = 44.518555, step = 1500 (0.129 sec) INFO:tensorflow:loss = 44.518555, step = 1500 (0.129 sec) INFO:tensorflow:global_step/sec: 741.005 INFO:tensorflow:global_step/sec: 741.005 INFO:tensorflow:loss = 45.997204, step = 1600 (0.135 sec) INFO:tensorflow:loss = 45.997204, step = 1600 (0.135 sec) INFO:tensorflow:global_step/sec: 734.846 INFO:tensorflow:global_step/sec: 734.846 INFO:tensorflow:loss = 50.39132, step = 1700 (0.136 sec) INFO:tensorflow:loss = 50.39132, step = 1700 (0.136 sec) INFO:tensorflow:global_step/sec: 752.826 INFO:tensorflow:global_step/sec: 752.826 INFO:tensorflow:loss = 45.41472, step = 1800 (0.133 sec) INFO:tensorflow:loss = 45.41472, step = 1800 (0.133 sec) INFO:tensorflow:global_step/sec: 757.018 INFO:tensorflow:global_step/sec: 757.018 INFO:tensorflow:loss = 46.133186, step = 1900 (0.132 sec) INFO:tensorflow:loss = 46.133186, step = 1900 (0.132 sec) INFO:tensorflow:global_step/sec: 700.757 INFO:tensorflow:global_step/sec: 700.757 INFO:tensorflow:loss = 34.684982, step = 2000 (0.143 sec) INFO:tensorflow:loss = 34.684982, step = 2000 (0.143 sec) INFO:tensorflow:global_step/sec: 741.709 INFO:tensorflow:global_step/sec: 741.709 INFO:tensorflow:loss = 39.637863, step = 2100 (0.135 sec) INFO:tensorflow:loss = 39.637863, step = 2100 (0.135 sec) INFO:tensorflow:global_step/sec: 772.066 INFO:tensorflow:global_step/sec: 772.066 INFO:tensorflow:loss = 45.70813, step = 2200 (0.129 sec) INFO:tensorflow:loss = 45.70813, step = 2200 (0.129 sec) INFO:tensorflow:global_step/sec: 776.263 INFO:tensorflow:global_step/sec: 776.263 INFO:tensorflow:loss = 39.104668, step = 2300 (0.129 sec) INFO:tensorflow:loss = 39.104668, step = 2300 (0.129 sec) INFO:tensorflow:global_step/sec: 768.016 INFO:tensorflow:global_step/sec: 768.016 INFO:tensorflow:loss = 36.262817, step = 2400 (0.130 sec) INFO:tensorflow:loss = 36.262817, step = 2400 (0.130 sec) INFO:tensorflow:global_step/sec: 754.04 INFO:tensorflow:global_step/sec: 754.04 INFO:tensorflow:loss = 43.80282, step = 2500 (0.132 sec) INFO:tensorflow:loss = 43.80282, step = 2500 (0.132 sec) INFO:tensorflow:global_step/sec: 742.917 INFO:tensorflow:global_step/sec: 742.917 INFO:tensorflow:loss = 48.113125, step = 2600 (0.135 sec) INFO:tensorflow:loss = 48.113125, step = 2600 (0.135 sec) INFO:tensorflow:global_step/sec: 753.394 INFO:tensorflow:global_step/sec: 753.394 INFO:tensorflow:loss = 43.442005, step = 2700 (0.133 sec) INFO:tensorflow:loss = 43.442005, step = 2700 (0.133 sec) INFO:tensorflow:global_step/sec: 768.985 INFO:tensorflow:global_step/sec: 768.985 INFO:tensorflow:loss = 34.593086, step = 2800 (0.130 sec) INFO:tensorflow:loss = 34.593086, step = 2800 (0.130 sec) INFO:tensorflow:global_step/sec: 756.393 INFO:tensorflow:global_step/sec: 756.393 INFO:tensorflow:loss = 38.085594, step = 2900 (0.132 sec) INFO:tensorflow:loss = 38.085594, step = 2900 (0.132 sec) INFO:tensorflow:global_step/sec: 792.717 INFO:tensorflow:global_step/sec: 792.717 INFO:tensorflow:loss = 42.41484, step = 3000 (0.126 sec) INFO:tensorflow:loss = 42.41484, step = 3000 (0.126 sec) INFO:tensorflow:global_step/sec: 763.25 INFO:tensorflow:global_step/sec: 763.25 INFO:tensorflow:loss = 42.457626, step = 3100 (0.131 sec) INFO:tensorflow:loss = 42.457626, step = 3100 (0.131 sec) INFO:tensorflow:global_step/sec: 747.998 INFO:tensorflow:global_step/sec: 747.998 INFO:tensorflow:loss = 52.64791, step = 3200 (0.134 sec) INFO:tensorflow:loss = 52.64791, step = 3200 (0.134 sec) INFO:tensorflow:global_step/sec: 733.804 INFO:tensorflow:global_step/sec: 733.804 INFO:tensorflow:loss = 36.78949, step = 3300 (0.136 sec) INFO:tensorflow:loss = 36.78949, step = 3300 (0.136 sec) INFO:tensorflow:global_step/sec: 747.473 INFO:tensorflow:global_step/sec: 747.473 INFO:tensorflow:loss = 43.02353, step = 3400 (0.134 sec) INFO:tensorflow:loss = 43.02353, step = 3400 (0.134 sec) INFO:tensorflow:global_step/sec: 766.967 INFO:tensorflow:global_step/sec: 766.967 INFO:tensorflow:loss = 42.971584, step = 3500 (0.131 sec) INFO:tensorflow:loss = 42.971584, step = 3500 (0.131 sec) INFO:tensorflow:global_step/sec: 759.238 INFO:tensorflow:global_step/sec: 759.238 INFO:tensorflow:loss = 31.898714, step = 3600 (0.133 sec) INFO:tensorflow:loss = 31.898714, step = 3600 (0.133 sec) INFO:tensorflow:global_step/sec: 770.209 INFO:tensorflow:global_step/sec: 770.209 INFO:tensorflow:loss = 43.47151, step = 3700 (0.128 sec) INFO:tensorflow:loss = 43.47151, step = 3700 (0.128 sec) INFO:tensorflow:global_step/sec: 750.127 INFO:tensorflow:global_step/sec: 750.127 INFO:tensorflow:loss = 40.073875, step = 3800 (0.133 sec) INFO:tensorflow:loss = 40.073875, step = 3800 (0.133 sec) INFO:tensorflow:global_step/sec: 731.607 INFO:tensorflow:global_step/sec: 731.607 INFO:tensorflow:loss = 33.494003, step = 3900 (0.137 sec) INFO:tensorflow:loss = 33.494003, step = 3900 (0.137 sec) INFO:tensorflow:global_step/sec: 753.01 INFO:tensorflow:global_step/sec: 753.01 INFO:tensorflow:loss = 40.401936, step = 4000 (0.133 sec) INFO:tensorflow:loss = 40.401936, step = 4000 (0.133 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4071... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4071... INFO:tensorflow:Saving checkpoints for 4071 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Saving checkpoints for 4071 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4071... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4071... INFO:tensorflow:Loss for final step: 51.911263. INFO:tensorflow:Loss for final step: 51.911263. WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification'] INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification'] INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression'] INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression'] INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict'] INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict'] INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 2021-12-04 10:44:22.080737: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:22.080796: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/estimator/exported_model_dir/temp-1638614661/assets INFO:tensorflow:Assets written to: /tmp/estimator/exported_model_dir/temp-1638614661/assets INFO:tensorflow:SavedModel written to: /tmp/estimator/exported_model_dir/temp-1638614661/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/estimator/exported_model_dir/temp-1638614661/saved_model.pb INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2021-12-04T10:44:23Z INFO:tensorflow:Starting evaluation at 2021-12-04T10:44:23Z INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 2021-12-04 10:44:23.300547: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:23.300668: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1628/16281] INFO:tensorflow:Evaluation [1628/16281] INFO:tensorflow:Evaluation [3256/16281] INFO:tensorflow:Evaluation [3256/16281] INFO:tensorflow:Evaluation [4884/16281] INFO:tensorflow:Evaluation [4884/16281] INFO:tensorflow:Evaluation [6512/16281] INFO:tensorflow:Evaluation [6512/16281] INFO:tensorflow:Evaluation [8140/16281] INFO:tensorflow:Evaluation [8140/16281] INFO:tensorflow:Evaluation [9768/16281] INFO:tensorflow:Evaluation [9768/16281] INFO:tensorflow:Evaluation [11396/16281] INFO:tensorflow:Evaluation [11396/16281] INFO:tensorflow:Evaluation [13024/16281] INFO:tensorflow:Evaluation [13024/16281] INFO:tensorflow:Evaluation [14652/16281] INFO:tensorflow:Evaluation [14652/16281] INFO:tensorflow:Evaluation [16280/16281] INFO:tensorflow:Evaluation [16280/16281] INFO:tensorflow:Evaluation [16281/16281] INFO:tensorflow:Evaluation [16281/16281] INFO:tensorflow:Inference Time : 12.76048s INFO:tensorflow:Inference Time : 12.76048s INFO:tensorflow:Finished evaluation at 2021-12-04-10:44:35 INFO:tensorflow:Finished evaluation at 2021-12-04-10:44:35 INFO:tensorflow:Saving dict for global step 4071: accuracy = 0.85123765, accuracy_baseline = 0.76377374, auc = 0.9019859, auc_precision_recall = 0.9672531, average_loss = 0.32398567, global_step = 4071, label/mean = 0.76377374, loss = 0.32398567, precision = 0.8828477, prediction/mean = 0.75662553, recall = 0.9284278 INFO:tensorflow:Saving dict for global step 4071: accuracy = 0.85123765, accuracy_baseline = 0.76377374, auc = 0.9019859, auc_precision_recall = 0.9672531, average_loss = 0.32398567, global_step = 4071, label/mean = 0.76377374, loss = 0.32398567, precision = 0.8828477, prediction/mean = 0.75662553, recall = 0.9284278 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4071: /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4071: /tmp/tmpwufx88ji/model.ckpt-4071 {'accuracy': 0.85123765, 'accuracy_baseline': 0.76377374, 'auc': 0.9019859, 'auc_precision_recall': 0.9672531, 'average_loss': 0.32398567, 'global_step': 4071, 'label/mean': 0.76377374, 'loss': 0.32398567, 'precision': 0.8828477, 'prediction/mean': 0.75662553, 'recall': 0.9284278}
우리가 한 일
이 예에서 우리는 사용 tf.Transform
세정 및 변환 된 데이터와 모델을 인구 조사 데이터의 데이터 집합을 사전 처리 및 훈련. 또한 추론을 수행하기 위해 프로덕션 환경에 훈련된 모델을 배포할 때 사용할 수 있는 입력 함수를 만들었습니다. 훈련과 추론 모두에 동일한 코드를 사용함으로써 데이터 왜곡 문제를 피할 수 있습니다. 그 과정에서 데이터 정리에 필요한 변환을 수행하기 위해 Apache Beam 변환을 생성하는 방법을 배웠습니다. 우리는 또한 중 하나를 사용하여 모델 훈련이 변환 된 데이터를 사용하는 방법을 살펴 보았다 tf.keras
또는 tf.estimator
. 이것은 TensorFlow Transform이 할 수 있는 일의 작은 부분일 뿐입니다! 우리는에 다이빙에 좋습니다 tf.Transform
하고 당신을 위해 무엇을 할 수 있는지 알아보세요.