Phân tích mô hình bằng cách sử dụng Đường ống TFX và Phân tích Mô hình TensorFlow

Trong hướng dẫn dựa trên sổ tay này, chúng tôi sẽ tạo và chạy một đường dẫn TFX tạo ra một mô hình phân loại đơn giản và phân tích hiệu suất của nó qua nhiều lần chạy. Máy tính xách tay này được dựa trên các đường ống dẫn TFX chúng tôi xây dựng trong đơn giản TFX Pipeline Tutorial . Nếu bạn chưa đọc hướng dẫn đó, bạn nên đọc nó trước khi tiếp tục với sổ tay này.

Khi bạn điều chỉnh mô hình của mình hoặc đào tạo nó với một tập dữ liệu mới, bạn cần kiểm tra xem liệu mô hình của bạn đã được cải thiện hay trở nên tồi tệ hơn. Chỉ kiểm tra các chỉ số cấp cao nhất như độ chính xác có thể là không đủ. Mọi mô hình được đào tạo nên được đánh giá trước khi đưa vào sản xuất.

Chúng tôi sẽ thêm một Evaluator thành phần để các đường ống dẫn tạo ra trong hướng dẫn trước. Thành phần Trình đánh giá thực hiện phân tích sâu các mô hình của bạn và so sánh mô hình mới với đường cơ sở để xác định chúng "đủ tốt". Nó được thực hiện bằng cách sử dụng TensorFlow Phân tích mẫu thư viện.

Xin vui lòng xem Hiểu TFX Đường ống để tìm hiểu thêm về các khái niệm khác nhau trong TFX.

Cài đặt

Quá trình Thiết lập cũng giống như hướng dẫn trước.

Trước tiên, chúng tôi cần cài đặt gói TFX Python và tải xuống tập dữ liệu mà chúng tôi sẽ sử dụng cho mô hình của mình.

Nâng cấp Pip

Để tránh nâng cấp Pip trong hệ thống khi chạy cục bộ, hãy kiểm tra để đảm bảo rằng chúng tôi đang chạy trong Colab. Hệ thống cục bộ tất nhiên có thể được nâng cấp riêng.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Cài đặt TFX

pip install -U tfx

Bạn có khởi động lại thời gian chạy không?

Nếu bạn đang sử dụng Google Colab, lần đầu tiên bạn chạy ô ở trên, bạn phải khởi động lại thời gian chạy bằng cách nhấp vào phía trên nút "RESTART RUNTIME" hoặc sử dụng menu "Runtime> Restart runtime ...". Điều này là do cách Colab tải các gói.

Kiểm tra phiên bản TensorFlow và TFX.

import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.4.0

Thiết lập các biến

Có một số biến được sử dụng để xác định một đường ống. Bạn có thể tùy chỉnh các biến này theo ý muốn. Theo mặc định, tất cả đầu ra từ đường ống sẽ được tạo trong thư mục hiện tại.

import os

PIPELINE_NAME = "penguin-tfma"

# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)

from absl import logging
logging.set_verbosity(logging.INFO)  # Set default logging level.

Chuẩn bị dữ liệu mẫu

Chúng tôi sẽ sử dụng cùng một Palmer Penguins bộ dữ liệu .

Có bốn tính năng số trong tập dữ liệu này đã được chuẩn hóa để có phạm vi [0,1]. Chúng tôi sẽ xây dựng một mô hình phân loại dự đoán các species chim cánh cụt.

Vì TFX ExampleGen đọc đầu vào từ một thư mục nên chúng ta cần tạo một thư mục và sao chép tập dữ liệu vào đó.

import urllib.request
import tempfile

DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data')  # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datal5lxy_yw/data.csv', <http.client.HTTPMessage at 0x7fa18a9da150>)

Tạo một đường dẫn

Chúng tôi sẽ thêm một Evaluator thành phần để các đường ống dẫn chúng ta tạo ra trong Simple TFX Pipeline Tutorial .

Một Evaluator thành phần đòi hỏi dữ liệu đầu vào từ một ExampleGen thành phần và một mô hình từ một Trainer thành phần và một tfma.EvalConfig đối tượng. Chúng tôi có thể tùy chọn cung cấp mô hình cơ sở có thể được sử dụng để so sánh các chỉ số với mô hình mới được đào tạo.

Một đánh giá tạo ra hai loại vật đầu ra, ModelEvaluationModelBlessing . ModelEvaluation chứa kết quả đánh giá chi tiết có thể được điều tra và hình dung thêm với thư viện TFMA. ModelBlessing chứa kết quả boolean cho dù mô hình đã vượt qua các tiêu chí đã cho và có thể được sử dụng trong các thành phần sau này như Pusher như một tín hiệu hay không.

Viết mã đào tạo người mẫu

Chúng tôi sẽ sử dụng mã mô hình giống như trong đơn giản TFX Pipeline Tutorial .

_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}

# Copied from https://www.tensorflow.org/tfx/tutorials/tfx/penguin_simple

from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils

from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.fn_args_utils import DataAccessor
from tfx_bsl.tfxio import dataset_options
from tensorflow_metadata.proto.v0 import schema_pb2

_FEATURE_KEYS = [
    'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'

_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10

# Since we're not generating or creating a schema, we will instead create
# a feature spec.  Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
    **{
        feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
           for feature in _FEATURE_KEYS
       },
    _LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}


def _input_fn(file_pattern: List[str],
              data_accessor: DataAccessor,
              schema: schema_pb2.Schema,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    schema: schema of the input data.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      dataset_options.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      schema=schema).repeat()


def _build_keras_model() -> tf.keras.Model:
  """Creates a DNN Keras model for classifying penguin data.

  Returns:
    A Keras Model.
  """
  # The model below is built with Functional API, please refer to
  # https://www.tensorflow.org/guide/keras/overview for all API options.
  inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
  d = keras.layers.concatenate(inputs)
  for _ in range(2):
    d = keras.layers.Dense(8, activation='relu')(d)
  outputs = keras.layers.Dense(3)(d)

  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(
      optimizer=keras.optimizers.Adam(1e-2),
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=[keras.metrics.SparseCategoricalAccuracy()])

  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: TrainerFnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """

  # This schema is usually either an output of SchemaGen or a manually-curated
  # version provided by pipeline author. A schema can also derived from TFT
  # graph if a Transform component is used. In the case when either is missing,
  # `schema_from_feature_spec` could be used to generate schema from very simple
  # feature_spec, but the schema returned would be very primitive.
  schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)

  train_dataset = _input_fn(
      fn_args.train_files,
      fn_args.data_accessor,
      schema,
      batch_size=_TRAIN_BATCH_SIZE)
  eval_dataset = _input_fn(
      fn_args.eval_files,
      fn_args.data_accessor,
      schema,
      batch_size=_EVAL_BATCH_SIZE)

  model = _build_keras_model()
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps)

  # The result of the training should be saved in `fn_args.serving_model_dir`
  # directory.
  model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py

Viết định nghĩa đường ống

Chúng tôi sẽ xác định một chức năng để tạo một đường ống TFX. Ngoài các thành phần Evaluator chúng tôi đề cập ở trên, chúng tôi sẽ bổ sung thêm một nút hơn gọi là Resolver . Để kiểm tra mô hình mới có tốt hơn mô hình trước đó hay không, chúng ta cần so sánh mô hình đó với mô hình đã xuất bản trước đó, được gọi là đường cơ sở. ML Metadata (MLMD) theo dõi tất cả các đồ tạo tác trước đó của đường ống và Resolver có thể tìm thấy các mô hình may mắn gần đây nhất là gì - một mô hình thông qua Evaluator thành công - từ MLMD sử dụng một lớp chiến lược gọi là LatestBlessedModelStrategy .

import tensorflow_model_analysis as tfma

def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
                     module_file: str, serving_model_dir: str,
                     metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a three component penguin pipeline with TFX."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # Uses user-provided Python function that trains a model.
  trainer = tfx.components.Trainer(
      module_file=module_file,
      examples=example_gen.outputs['examples'],
      train_args=tfx.proto.TrainArgs(num_steps=100),
      eval_args=tfx.proto.EvalArgs(num_steps=5))

  # NEW: Get the latest blessed model for Evaluator.
  model_resolver = tfx.dsl.Resolver(
      strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
      model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
      model_blessing=tfx.dsl.Channel(
          type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
              'latest_blessed_model_resolver')

  # NEW: Uses TFMA to compute evaluation statistics over features of a model and
  #   perform quality validation of a candidate model (compared to a baseline).

  eval_config = tfma.EvalConfig(
      model_specs=[tfma.ModelSpec(label_key='species')],
      slicing_specs=[
          # An empty slice spec means the overall slice, i.e. the whole dataset.
          tfma.SlicingSpec(),
          # Calculate metrics for each penguin species.
          tfma.SlicingSpec(feature_keys=['species']),
          ],
      metrics_specs=[
          tfma.MetricsSpec(per_slice_thresholds={
              'sparse_categorical_accuracy':
                  tfma.PerSliceMetricThresholds(thresholds=[
                      tfma.PerSliceMetricThreshold(
                          slicing_specs=[tfma.SlicingSpec()],
                          threshold=tfma.MetricThreshold(
                              value_threshold=tfma.GenericValueThreshold(
                                   lower_bound={'value': 0.6}),
                              # Change threshold will be ignored if there is no
                              # baseline model resolved from MLMD (first run).
                              change_threshold=tfma.GenericChangeThreshold(
                                  direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                                  absolute={'value': -1e-10}))
                       )]),
          })],
      )
  evaluator = tfx.components.Evaluator(
      examples=example_gen.outputs['examples'],
      model=trainer.outputs['model'],
      baseline_model=model_resolver.outputs['model'],
      eval_config=eval_config)

  # Checks whether the model passed the validation steps and pushes the model
  # to a file destination if check passed.
  pusher = tfx.components.Pusher(
      model=trainer.outputs['model'],
      model_blessing=evaluator.outputs['blessing'], # Pass an evaluation result.
      push_destination=tfx.proto.PushDestination(
          filesystem=tfx.proto.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

  components = [
      example_gen,
      trainer,

      # Following two components were added to the pipeline.
      model_resolver,
      evaluator,

      pusher,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

Chúng ta cần phải cung cấp các thông tin sau vào Evaluator qua eval_config :

  • Các chỉ số bổ sung để định cấu hình (nếu muốn có nhiều chỉ số hơn số liệu đã xác định trong mô hình).
  • Slices để cấu hình
  • Các ngưỡng xác thực mô hình để xác minh xem có bao gồm xác thực hay không

Bởi vì SparseCategoricalAccuracy đã được bao gồm trong model.compile() cuộc gọi, nó sẽ được đưa vào phân tích tự động. Vì vậy, chúng tôi không thêm bất kỳ số liệu bổ sung nào ở đây. SparseCategoricalAccuracy sẽ được sử dụng để quyết định xem mô hình này là đủ tốt, quá.

Chúng tôi tính toán các số liệu cho toàn bộ tập dữ liệu và cho từng loài chim cánh cụt. SlicingSpec quy định cụ thể như thế nào chúng tôi tập hợp các số liệu công bố.

Có hai ngưỡng mà một mô hình mới nên vượt qua, một là ngưỡng tuyệt đối 0,6 và ngưỡng kia là ngưỡng tương đối mà nó phải cao hơn so với mô hình cơ sở. Khi bạn chạy các đường ống dẫn cho lần đầu tiên, change_threshold sẽ bị bỏ qua và chỉ có value_threshold sẽ được kiểm tra. Nếu bạn chạy các đường ống dẫn nhiều hơn một lần, các Resolver sẽ tìm thấy một mô hình từ chạy trước và nó sẽ được sử dụng như một mô hình cơ sở cho việc so sánh.

Xem Evaluator hướng dẫn thành phần để biết thêm thông tin.

Chạy đường ống

Chúng tôi sẽ sử dụng LocalDagRunner như trong hướng dẫn trước.

tfx.orchestration.LocalDagRunner().run(
  _create_pipeline(
      pipeline_name=PIPELINE_NAME,
      pipeline_root=PIPELINE_ROOT,
      data_root=DATA_ROOT,
      module_file=_trainer_module_file,
      serving_model_dir=SERVING_MODEL_DIR,
      metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']).
INFO:absl:User module package has hash fingerprint version 1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpr3anh67s/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6s2sw4dj', '--dist-dir', '/tmp/tmp6jr76e54']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'; target user module is 'penguin_trainer'.
INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Evaluator"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.evaluator.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Pusher"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.pusher.executor.Executor"
    }
  }
}
executor_specs {
  key: "Trainer"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.trainer.executor.GenericExecutor"
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-tfma/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-tfma/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datal5lxy_yw"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Evaluator"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_trainer.py -> build/lib
installing to /tmp/tmp6s2sw4dj
running install
running install_lib
copying build/lib/penguin_trainer.py -> /tmp/tmp6s2sw4dj
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3.7.egg-info
running install_scripts
creating /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL
creating '/tmp/tmp6jr76e54/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' and adding '/tmp/tmp6s2sw4dj' to it
adding 'penguin_trainer.py'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/RECORD'
removing /tmp/tmp6s2sw4dj
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1205 10:34:23.723806 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:23.730262 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:23.736788 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:23.744907 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:23.758380 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 1
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'output_file_format': 5, 'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'output_data_format': 6, 'input_base': '/tmp/tfx-datal5lxy_yw', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463'}, execution_output_uri='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datal5lxy_yw"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Evaluator"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-datal5lxy_yw/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component latest_blessed_model_resolver is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.dsl.components.common.resolver.Resolver"
  }
  id: "latest_blessed_model_resolver"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.latest_blessed_model_resolver"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
      }
    }
  }
  inputs {
    key: "model_blessing"
    value {
      channels {
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        artifact_query {
          type {
            name: "ModelBlessing"
          }
        }
      }
    }
  }
  resolver_config {
    resolver_steps {
      class_path: "tfx.dsl.input_resolution.strategies.latest_blessed_model_strategy.LatestBlessedModelStrategy"
      config_json: "{}"
      input_keys: "model"
      input_keys: "model_blessing"
    }
  }
}
downstream_nodes: "Evaluator"
execution_options {
  caching_options {
  }
}

INFO:absl:Running as an resolver node.
INFO:absl:MetadataStore with DB connection initialized
WARNING:absl:Artifact type Model is not found in MLMD.
WARNING:absl:Artifact type ModelBlessing is not found in MLMD.
I1205 10:34:24.899447 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component latest_blessed_model_resolver is finished.
INFO:absl:Component Trainer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Evaluator"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:24.924589 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700464882
last_update_time_since_epoch: 1638700464882
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
, artifact_type: name: "Model"
)]}), exec_properties={'train_args': '{\n  "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'}, execution_output_uri='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Trainer/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Evaluator"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
INFO:absl:udf_utils.get_fn {'train_args': '{\n  "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'} 'run_fn'
INFO:absl:Installing 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpc97ini82', 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl']
Processing ./pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:culmen_length_mm (InputLayer)   [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_depth_mm (InputLayer)    [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:flipper_length_mm (InputLayer)  [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:body_mass_g (InputLayer)        [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 4)            0           culmen_length_mm[0][0]           
INFO:absl:                                                                 culmen_depth_mm[0][0]            
INFO:absl:                                                                 flipper_length_mm[0][0]          
INFO:absl:                                                                 body_mass_g[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 8)            40          concatenate[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 8)            72          dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 3)            27          dense_1[0][0]                    
INFO:absl:==================================================================================================
INFO:absl:Total params: 139
INFO:absl:Trainable params: 139
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
100/100 [==============================] - 1s 3ms/step - loss: 0.5273 - sparse_categorical_accuracy: 0.8175 - val_loss: 0.2412 - val_sparse_categorical_accuracy: 0.9600
2021-12-05 10:34:29.879208: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets
INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets
INFO:absl:Training complete. Model written to pipelines/penguin-tfma/Trainer/model/3/Format-Serving. ModelRun written to pipelines/penguin-tfma/Trainer/model_run/3
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Model"
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:30.399760 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:30.404250 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Trainer is finished.
INFO:absl:Component Evaluator is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.evaluator.component.Evaluator"
  }
  id: "Evaluator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Evaluator"
      }
    }
  }
}
inputs {
  inputs {
    key: "baseline_model"
    value {
      channels {
        producer_node_query {
          id: "latest_blessed_model_resolver"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.latest_blessed_model_resolver"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "blessing"
    value {
      artifact_spec {
        type {
          name: "ModelBlessing"
        }
      }
    }
  }
  outputs {
    key: "evaluation"
    value {
      artifact_spec {
        type {
          name: "ModelEvaluation"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "eval_config"
    value {
      field_value {
        string_value: "{\n  \"metrics_specs\": [\n    {\n      \"per_slice_thresholds\": {\n        \"sparse_categorical_accuracy\": {\n          \"thresholds\": [\n            {\n              \"slicing_specs\": [\n                {}\n              ],\n              \"threshold\": {\n                \"change_threshold\": {\n                  \"absolute\": -1e-10,\n                  \"direction\": \"HIGHER_IS_BETTER\"\n                },\n                \"value_threshold\": {\n                  \"lower_bound\": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  \"model_specs\": [\n    {\n      \"label_key\": \"species\"\n    }\n  ],\n  \"slicing_specs\": [\n    {},\n    {\n      \"feature_keys\": [\n        \"species\"\n      ]\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "example_splits"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "fairness_indicator_thresholds"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "Trainer"
upstream_nodes: "latest_blessed_model_resolver"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:30.428037 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 4
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700464882
last_update_time_since_epoch: 1638700464882
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)], 'model': [Artifact(artifact: id: 3
type_id: 19
uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700470409
last_update_time_since_epoch: 1638700470409
, artifact_type: id: 19
name: "Model"
)], 'baseline_model': []}, output_dict=defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0"
  }
}
, artifact_type: name: "ModelBlessing"
)], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0"
  }
}
, artifact_type: name: "ModelEvaluation"
)]}), exec_properties={'example_splits': 'null', 'eval_config': '{\n  "metrics_specs": [\n    {\n      "per_slice_thresholds": {\n        "sparse_categorical_accuracy": {\n          "thresholds": [\n            {\n              "slicing_specs": [\n                {}\n              ],\n              "threshold": {\n                "change_threshold": {\n                  "absolute": -1e-10,\n                  "direction": "HIGHER_IS_BETTER"\n                },\n                "value_threshold": {\n                  "lower_bound": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "species"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "species"\n      ]\n    }\n  ]\n}', 'fairness_indicator_thresholds': 'null'}, execution_output_uri='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Evaluator/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.evaluator.component.Evaluator"
  }
  id: "Evaluator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Evaluator"
      }
    }
  }
}
inputs {
  inputs {
    key: "baseline_model"
    value {
      channels {
        producer_node_query {
          id: "latest_blessed_model_resolver"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.latest_blessed_model_resolver"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "blessing"
    value {
      artifact_spec {
        type {
          name: "ModelBlessing"
        }
      }
    }
  }
  outputs {
    key: "evaluation"
    value {
      artifact_spec {
        type {
          name: "ModelEvaluation"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "eval_config"
    value {
      field_value {
        string_value: "{\n  \"metrics_specs\": [\n    {\n      \"per_slice_thresholds\": {\n        \"sparse_categorical_accuracy\": {\n          \"thresholds\": [\n            {\n              \"slicing_specs\": [\n                {}\n              ],\n              \"threshold\": {\n                \"change_threshold\": {\n                  \"absolute\": -1e-10,\n                  \"direction\": \"HIGHER_IS_BETTER\"\n                },\n                \"value_threshold\": {\n                  \"lower_bound\": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  \"model_specs\": [\n    {\n      \"label_key\": \"species\"\n    }\n  ],\n  \"slicing_specs\": [\n    {},\n    {\n      \"feature_keys\": [\n        \"species\"\n      ]\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "example_splits"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "fairness_indicator_thresholds"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "Trainer"
upstream_nodes: "latest_blessed_model_resolver"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n  "metrics_specs": [\n    {\n      "per_slice_thresholds": {\n        "sparse_categorical_accuracy": {\n          "thresholds": [\n            {\n              "slicing_specs": [\n                {}\n              ],\n              "threshold": {\n                "change_threshold": {\n                  "absolute": -1e-10,\n                  "direction": "HIGHER_IS_BETTER"\n                },\n                "value_threshold": {\n                  "lower_bound": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "species"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "species"\n      ]\n    }\n  ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_eval_shared_model'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

INFO:absl:Using pipelines/penguin-tfma/Trainer/model/3/Format-Serving as  model.
INFO:absl:The 'example_splits' parameter is not set, using 'eval' split.
INFO:absl:Evaluating model.
INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n  "metrics_specs": [\n    {\n      "per_slice_thresholds": {\n        "sparse_categorical_accuracy": {\n          "thresholds": [\n            {\n              "slicing_specs": [\n                {}\n              ],\n              "threshold": {\n                "change_threshold": {\n                  "absolute": -1e-10,\n                  "direction": "HIGHER_IS_BETTER"\n                },\n                "value_threshold": {\n                  "lower_bound": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "species"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "species"\n      ]\n    }\n  ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_extractors'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  model_names: ""
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  model_names: ""
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  model_names: ""
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Evaluation complete. Results written to pipelines/penguin-tfma/Evaluator/evaluation/4.
INFO:absl:Checking validation results.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 4 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelBlessing"
)], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelEvaluation"
)]}) for execution 4
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:35.040588 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:35.045548 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Evaluator is finished.
INFO:absl:Component Pusher is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "model_blessing"
    value {
      channels {
        producer_node_query {
          id: "Evaluator"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Evaluator"
            }
          }
        }
        artifact_query {
          type {
            name: "ModelBlessing"
          }
        }
        output_key: "blessing"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfma\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Evaluator"
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:35.068168 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 5
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'model': [Artifact(artifact: id: 3
type_id: 19
uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700470409
last_update_time_since_epoch: 1638700470409
, artifact_type: id: 19
name: "Model"
)], 'model_blessing': [Artifact(artifact: id: 4
type_id: 21
uri: "pipelines/penguin-tfma/Evaluator/blessing/4"
custom_properties {
  key: "blessed"
  value {
    int_value: 1
  }
}
custom_properties {
  key: "current_model"
  value {
    string_value: "pipelines/penguin-tfma/Trainer/model/3"
  }
}
custom_properties {
  key: "current_model_id"
  value {
    int_value: 3
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700475049
last_update_time_since_epoch: 1638700475049
, artifact_type: id: 21
name: "ModelBlessing"
)]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0"
  }
}
, artifact_type: name: "PushedModel"
)]}), exec_properties={'custom_config': 'null', 'push_destination': '{\n  "filesystem": {\n    "base_directory": "serving_model/penguin-tfma"\n  }\n}'}, execution_output_uri='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Pusher/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "model_blessing"
    value {
      channels {
        producer_node_query {
          id: "Evaluator"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Evaluator"
            }
          }
        }
        artifact_query {
          type {
            name: "ModelBlessing"
          }
        }
        output_key: "blessing"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfma\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Evaluator"
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:Model version: 1638700475
INFO:absl:Model written to serving path serving_model/penguin-tfma/1638700475.
INFO:absl:Model pushed to pipelines/penguin-tfma/Pusher/pushed_model/5.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 5 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "PushedModel"
)]}) for execution 5
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:35.098553 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is finished.

Khi đường dẫn hoàn thành, bạn sẽ có thể thấy một cái gì đó như sau:

INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4.

Hoặc bạn cũng có thể kiểm tra thủ công thư mục đầu ra nơi lưu trữ các tạo tác được tạo. Nếu bạn truy cập pipelines/penguin-tfma/Evaluator/blessing/ với một tập tin broswer, bạn có thể nhìn thấy một tập tin với một tên BLESSED hoặc NOT_BLESSED theo kết quả đánh giá.

Nếu kết quả phước lành là False , Pusher sẽ từ chối để đẩy mô hình để các serving_model_dir , bởi vì mô hình này là không đủ tốt để được sử dụng trong sản xuất.

Bạn có thể chạy lại đường ống với các cấu hình đánh giá khác nhau. Thậm chí nếu bạn chạy các đường ống với cùng cấu hình chính xác và dữ liệu, mô hình đào tạo có thể là hơi khác nhau do tính ngẫu nhiên vốn có của công tác đào tạo mô hình có thể dẫn đến một NOT_BLESSED mô hình.

Kiểm tra đầu ra của đường ống

Bạn có thể sử dụng TFMA để điều tra và trực quan hóa kết quả đánh giá trong tạo tác ModelEvaluation.

Nhận kết quả phân tích từ các tạo phẩm đầu ra

Bạn có thể sử dụng các API MLMD để định vị các đầu ra này theo chương trình. Đầu tiên, chúng tôi sẽ xác định một số chức năng tiện ích để tìm kiếm các tạo tác đầu ra vừa được sản xuất.

from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib

# TODO(b/171447278): Move these functions into the TFX library.

def get_latest_artifacts(metadata, pipeline_name, component_id):
  """Output artifacts of the latest run of the component."""
  context = metadata.store.get_context_by_type_and_name(
      'node', f'{pipeline_name}.{component_id}')
  executions = metadata.store.get_executions_by_context(context.id)
  latest_execution = max(executions,
                         key=lambda e:e.last_update_time_since_epoch)
  return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
                                          [metadata_store_pb2.Event.OUTPUT])

Chúng tôi có thể tìm thấy việc thực hiện mới nhất của Evaluator thành phần và nhận được vật đầu ra của nó.

# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs

metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
    METADATA_PATH)

with Metadata(metadata_connection_config) as metadata_handler:
  # Find output artifacts from MLMD.
  evaluator_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
                                          'Evaluator')
  eval_artifact = evaluator_output[standard_component_specs.EVALUATION_KEY][0]
INFO:absl:MetadataStore with DB connection initialized

Evaluator luôn luôn trả về một tạo tác thẩm định, và chúng ta có thể hình dung nó sử dụng thư viện TensorFlow Phân tích mẫu. Ví dụ: mã sau sẽ hiển thị các chỉ số chính xác cho từng loài chim cánh cụt.

import tensorflow_model_analysis as tfma

eval_result = tfma.load_eval_result(eval_artifact.uri)
tfma.view.render_slicing_metrics(eval_result, slicing_column='species')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'species:0', 'metrics…

Nếu bạn chọn 'sparse_categorical_accuracy' trong Show danh sách thả xuống, bạn sẽ nhìn thấy giá trị chính xác cho mỗi loài. Bạn có thể muốn thêm nhiều phần và kiểm tra xem liệu mô hình của bạn có tốt cho tất cả các phân phối hay không và nếu có bất kỳ sự sai lệch nào có thể xảy ra.

Bước tiếp theo

Tìm hiểu thêm về phân tích mô hình tại TensorFlow Phân tích mẫu thư viện hướng dẫn .

Bạn có thể tìm thêm các nguồn lực trên https://www.tensorflow.org/tfx/tutorials

Xin vui lòng xem Hiểu TFX Đường ống để tìm hiểu thêm về các khái niệm khác nhau trong TFX.