TFX Pipeline ve TensorFlow Model Analizi kullanılarak model analizi

Bu not defteri tabanlı öğreticide, basit bir sınıflandırma modeli oluşturan ve performansını birden çok çalıştırmada analiz eden bir TFX ardışık düzeni oluşturup çalıştıracağız. Bu defter biz inşa TFX boru hattı dayanmaktadır Basit TFX Boru Hattı Öğreticisi . Bu öğreticiyi henüz okumadıysanız, bu not defterine geçmeden önce okumalısınız.

Modelinizi ince ayarlarken veya yeni bir veri seti ile eğitirken, modelinizin iyileşip gelişmediğini veya daha kötü hale gelip gelmediğini kontrol etmeniz gerekir. Sadece doğruluk gibi üst düzey metrikleri kontrol etmek yeterli olmayabilir. Her eğitimli model, üretime geçmeden önce değerlendirilmelidir.

Biz bir katacak Evaluator önceki öğretici oluşturulan boru hattına bileşeni. Değerlendirici bileşeni, modelleriniz için derinlemesine analiz yapar ve yeni modeli "yeterince iyi" olduklarını belirlemek için bir temel çizgiyle karşılaştırır. Bu kullanılarak uygulanır TensorFlow Modeli Analizi kütüphanesi.

Bakınız TFX Boru hatları anlama Tfx çeşitli kavramlar hakkında daha fazla bilgi edinmek.

Kurmak

Kurulum işlemi, önceki öğretici ile aynıdır.

Öncelikle TFX Python paketini kurmamız ve modelimiz için kullanacağımız veri setini indirmemiz gerekiyor.

Pip'i Yükselt

Yerel olarak çalışırken bir sistemde Pip'i yükseltmekten kaçınmak için Colab'da çalıştığımızdan emin olun. Yerel sistemler elbette ayrı ayrı yükseltilebilir.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

TFX'i yükleyin

pip install -U tfx

Çalışma zamanını yeniden başlattınız mı?

Google Colab kullanıyorsanız, yukarıdaki hücreyi ilk kez çalıştırdığınızda, yukarıdaki "ÇALIŞTIRMA ZAMINI YENİDEN BAŞLAT" düğmesini tıklayarak veya "Çalışma Zamanı > Çalışma zamanını yeniden başlat ..." menüsünü kullanarak çalışma zamanını yeniden başlatmanız gerekir. Bunun nedeni Colab'ın paketleri yükleme şeklidir.

TensorFlow ve TFX sürümlerini kontrol edin.

import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.4.0

Değişkenleri ayarla

Bir boru hattını tanımlamak için kullanılan bazı değişkenler vardır. Bu değişkenleri istediğiniz gibi özelleştirebilirsiniz. Varsayılan olarak, işlem hattından gelen tüm çıktılar geçerli dizin altında oluşturulacaktır.

import os

PIPELINE_NAME = "penguin-tfma"

# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)

from absl import logging
logging.set_verbosity(logging.INFO)  # Set default logging level.

Örnek verileri hazırlayın

Biz aynı kullanacağız Palmer Penguenler veri kümesi .

Bu veri kümesinde, [0,1] aralığına sahip olacak şekilde normalleştirilmiş dört sayısal özellik vardır. Biz tahmin eden bir sınıflandırma modeli inşa edecek species penguenleri.

TFX ExampleGen bir dizinden girdileri okuduğundan, bir dizin oluşturmamız ve ona veri kümesi kopyalamamız gerekir.

import urllib.request
import tempfile

DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data')  # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datal5lxy_yw/data.csv', <http.client.HTTPMessage at 0x7fa18a9da150>)

Bir işlem hattı oluşturun

Biz bir katacak Evaluator biz oluşturulan boru hattına bileşeni Basit TFX Boru Hattı Öğreticisi .

Değerlendirici bileşeni bir giriş verilerini gerektirir ExampleGen bileşeni ve bir gelen bir model Trainer bileşeni ve bir tfma.EvalConfig nesne. İsteğe bağlı olarak, yeni eğitilen modelle metrikleri karşılaştırmak için kullanılabilecek bir temel model sağlayabiliriz.

Bir değerlendirici çıkış eserler, iki tür oluşturur ModelEvaluation ve ModelBlessing . ModelEvaluation, TFMA kütüphanesi ile daha fazla incelenebilen ve görselleştirilebilen ayrıntılı değerlendirme sonucunu içerir. ModelBlessing, modelin verilen kriterleri geçip geçmediğine dair bir boole sonucu içerir ve bir sinyal olarak bir İtici gibi sonraki bileşenlerde kullanılabilir.

Model eğitim kodunu yazın

Biz aynı model kodu kullanacaktır Simple TFX Boru Hattı Eğitimi .

_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}

# Copied from https://www.tensorflow.org/tfx/tutorials/tfx/penguin_simple

from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils

from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.fn_args_utils import DataAccessor
from tfx_bsl.tfxio import dataset_options
from tensorflow_metadata.proto.v0 import schema_pb2

_FEATURE_KEYS = [
    'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'

_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10

# Since we're not generating or creating a schema, we will instead create
# a feature spec.  Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
    **{
        feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
           for feature in _FEATURE_KEYS
       },
    _LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}


def _input_fn(file_pattern: List[str],
              data_accessor: DataAccessor,
              schema: schema_pb2.Schema,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    schema: schema of the input data.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      dataset_options.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      schema=schema).repeat()


def _build_keras_model() -> tf.keras.Model:
  """Creates a DNN Keras model for classifying penguin data.

  Returns:
    A Keras Model.
  """
  # The model below is built with Functional API, please refer to
  # https://www.tensorflow.org/guide/keras/overview for all API options.
  inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
  d = keras.layers.concatenate(inputs)
  for _ in range(2):
    d = keras.layers.Dense(8, activation='relu')(d)
  outputs = keras.layers.Dense(3)(d)

  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(
      optimizer=keras.optimizers.Adam(1e-2),
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=[keras.metrics.SparseCategoricalAccuracy()])

  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: TrainerFnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """

  # This schema is usually either an output of SchemaGen or a manually-curated
  # version provided by pipeline author. A schema can also derived from TFT
  # graph if a Transform component is used. In the case when either is missing,
  # `schema_from_feature_spec` could be used to generate schema from very simple
  # feature_spec, but the schema returned would be very primitive.
  schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)

  train_dataset = _input_fn(
      fn_args.train_files,
      fn_args.data_accessor,
      schema,
      batch_size=_TRAIN_BATCH_SIZE)
  eval_dataset = _input_fn(
      fn_args.eval_files,
      fn_args.data_accessor,
      schema,
      batch_size=_EVAL_BATCH_SIZE)

  model = _build_keras_model()
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps)

  # The result of the training should be saved in `fn_args.serving_model_dir`
  # directory.
  model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py

Bir işlem hattı tanımı yazın

Bir TFX boru hattı oluşturmak için bir fonksiyon tanımlayacağız. Yukarıda bahsedilen Değerlendirici bileşenine ek olarak, denilen bir daha düğümü katacak Resolver . Yeni bir modelin önceki modelden daha iyi hale gelip gelmediğini kontrol etmek için, onu temel olarak adlandırılan önceki yayınlanmış bir modelle karşılaştırmamız gerekir. ML Meta veri (MLMD) boru hattının önceki tüm eserler izler ve Resolver son mübarek modeli neydi bulabilirsiniz - bir modeli başarıyla Değerlendiricisi geçti - MLMD çağrılan bir strateji sınıfını kullanarak LatestBlessedModelStrategy .

import tensorflow_model_analysis as tfma

def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
                     module_file: str, serving_model_dir: str,
                     metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a three component penguin pipeline with TFX."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # Uses user-provided Python function that trains a model.
  trainer = tfx.components.Trainer(
      module_file=module_file,
      examples=example_gen.outputs['examples'],
      train_args=tfx.proto.TrainArgs(num_steps=100),
      eval_args=tfx.proto.EvalArgs(num_steps=5))

  # NEW: Get the latest blessed model for Evaluator.
  model_resolver = tfx.dsl.Resolver(
      strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
      model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
      model_blessing=tfx.dsl.Channel(
          type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
              'latest_blessed_model_resolver')

  # NEW: Uses TFMA to compute evaluation statistics over features of a model and
  #   perform quality validation of a candidate model (compared to a baseline).

  eval_config = tfma.EvalConfig(
      model_specs=[tfma.ModelSpec(label_key='species')],
      slicing_specs=[
          # An empty slice spec means the overall slice, i.e. the whole dataset.
          tfma.SlicingSpec(),
          # Calculate metrics for each penguin species.
          tfma.SlicingSpec(feature_keys=['species']),
          ],
      metrics_specs=[
          tfma.MetricsSpec(per_slice_thresholds={
              'sparse_categorical_accuracy':
                  tfma.PerSliceMetricThresholds(thresholds=[
                      tfma.PerSliceMetricThreshold(
                          slicing_specs=[tfma.SlicingSpec()],
                          threshold=tfma.MetricThreshold(
                              value_threshold=tfma.GenericValueThreshold(
                                   lower_bound={'value': 0.6}),
                              # Change threshold will be ignored if there is no
                              # baseline model resolved from MLMD (first run).
                              change_threshold=tfma.GenericChangeThreshold(
                                  direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                                  absolute={'value': -1e-10}))
                       )]),
          })],
      )
  evaluator = tfx.components.Evaluator(
      examples=example_gen.outputs['examples'],
      model=trainer.outputs['model'],
      baseline_model=model_resolver.outputs['model'],
      eval_config=eval_config)

  # Checks whether the model passed the validation steps and pushes the model
  # to a file destination if check passed.
  pusher = tfx.components.Pusher(
      model=trainer.outputs['model'],
      model_blessing=evaluator.outputs['blessing'], # Pass an evaluation result.
      push_destination=tfx.proto.PushDestination(
          filesystem=tfx.proto.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

  components = [
      example_gen,
      trainer,

      # Following two components were added to the pipeline.
      model_resolver,
      evaluator,

      pusher,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

Biz Değerlendirici aracılığıyla aşağıdaki bilgileri sağlamanız gerekir eval_config :

  • Yapılandırılacak ek metrikler (modelde tanımlanandan daha fazla metrik istiyorsanız).
  • Yapılandırmak için dilimler
  • Doğrulamanın dahil edilip edilmeyeceğini doğrulamak için model doğrulama eşikleri

Çünkü SparseCategoricalAccuracy zaten dahil model.compile() çağrısı, otomatik olarak analize dahil edilecektir. Bu yüzden buraya herhangi bir ek metrik eklemiyoruz. SparseCategoricalAccuracy modeli de yeterince iyi olup olmadığına karar vermek kullanılacaktır.

Tüm veri seti ve her penguen türü için metrikleri hesaplıyoruz. SlicingSpec ilan ettik metrikleri toplar nasıl belirtir.

Yeni bir modelin geçmesi gereken iki eşik vardır, biri mutlak eşik 0,6, diğeri ise temel modelden daha yüksek olması gereken göreceli bir eşiktir. İlk kez boru hattı çalıştırdığınızda, change_threshold yok sayılacak ve yalnızca value_threshold kontrol edilecektir. Eğer bir kereden fazla boru hattını çalıştırırsanız, Resolver Önceki çalıştırma bir model bulacaksınız ve karşılaştırma için bir temel model olarak kullanılacaktır.

Bkz Değerlendirici bileşeni rehber daha fazla bilgi için.

Boru hattını çalıştırın

Biz kullanacağız LocalDagRunner önceki öğretici olduğu gibi.

tfx.orchestration.LocalDagRunner().run(
  _create_pipeline(
      pipeline_name=PIPELINE_NAME,
      pipeline_root=PIPELINE_ROOT,
      data_root=DATA_ROOT,
      module_file=_trainer_module_file,
      serving_model_dir=SERVING_MODEL_DIR,
      metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']).
INFO:absl:User module package has hash fingerprint version 1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpr3anh67s/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6s2sw4dj', '--dist-dir', '/tmp/tmp6jr76e54']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'; target user module is 'penguin_trainer'.
INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Evaluator"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.evaluator.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Pusher"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.pusher.executor.Executor"
    }
  }
}
executor_specs {
  key: "Trainer"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.trainer.executor.GenericExecutor"
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-tfma/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-tfma/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datal5lxy_yw"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Evaluator"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_trainer.py -> build/lib
installing to /tmp/tmp6s2sw4dj
running install
running install_lib
copying build/lib/penguin_trainer.py -> /tmp/tmp6s2sw4dj
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3.7.egg-info
running install_scripts
creating /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL
creating '/tmp/tmp6jr76e54/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' and adding '/tmp/tmp6s2sw4dj' to it
adding 'penguin_trainer.py'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/RECORD'
removing /tmp/tmp6s2sw4dj
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1205 10:34:23.723806 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:23.730262 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:23.736788 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:23.744907 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:23.758380 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 1
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'output_file_format': 5, 'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'output_data_format': 6, 'input_base': '/tmp/tfx-datal5lxy_yw', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463'}, execution_output_uri='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datal5lxy_yw"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "Evaluator"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-datal5lxy_yw/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component latest_blessed_model_resolver is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.dsl.components.common.resolver.Resolver"
  }
  id: "latest_blessed_model_resolver"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.latest_blessed_model_resolver"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
      }
    }
  }
  inputs {
    key: "model_blessing"
    value {
      channels {
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        artifact_query {
          type {
            name: "ModelBlessing"
          }
        }
      }
    }
  }
  resolver_config {
    resolver_steps {
      class_path: "tfx.dsl.input_resolution.strategies.latest_blessed_model_strategy.LatestBlessedModelStrategy"
      config_json: "{}"
      input_keys: "model"
      input_keys: "model_blessing"
    }
  }
}
downstream_nodes: "Evaluator"
execution_options {
  caching_options {
  }
}

INFO:absl:Running as an resolver node.
INFO:absl:MetadataStore with DB connection initialized
WARNING:absl:Artifact type Model is not found in MLMD.
WARNING:absl:Artifact type ModelBlessing is not found in MLMD.
I1205 10:34:24.899447 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component latest_blessed_model_resolver is finished.
INFO:absl:Component Trainer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Evaluator"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:24.924589 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700464882
last_update_time_since_epoch: 1638700464882
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
, artifact_type: name: "Model"
)]}), exec_properties={'train_args': '{\n  "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'}, execution_output_uri='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Trainer/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "Evaluator"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
INFO:absl:udf_utils.get_fn {'train_args': '{\n  "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'} 'run_fn'
INFO:absl:Installing 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpc97ini82', 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl']
Processing ./pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:culmen_length_mm (InputLayer)   [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_depth_mm (InputLayer)    [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:flipper_length_mm (InputLayer)  [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:body_mass_g (InputLayer)        [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 4)            0           culmen_length_mm[0][0]           
INFO:absl:                                                                 culmen_depth_mm[0][0]            
INFO:absl:                                                                 flipper_length_mm[0][0]          
INFO:absl:                                                                 body_mass_g[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 8)            40          concatenate[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 8)            72          dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 3)            27          dense_1[0][0]                    
INFO:absl:==================================================================================================
INFO:absl:Total params: 139
INFO:absl:Trainable params: 139
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
100/100 [==============================] - 1s 3ms/step - loss: 0.5273 - sparse_categorical_accuracy: 0.8175 - val_loss: 0.2412 - val_sparse_categorical_accuracy: 0.9600
2021-12-05 10:34:29.879208: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets
INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets
INFO:absl:Training complete. Model written to pipelines/penguin-tfma/Trainer/model/3/Format-Serving. ModelRun written to pipelines/penguin-tfma/Trainer/model_run/3
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Model"
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:30.399760 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:30.404250 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Trainer is finished.
INFO:absl:Component Evaluator is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.evaluator.component.Evaluator"
  }
  id: "Evaluator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Evaluator"
      }
    }
  }
}
inputs {
  inputs {
    key: "baseline_model"
    value {
      channels {
        producer_node_query {
          id: "latest_blessed_model_resolver"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.latest_blessed_model_resolver"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "blessing"
    value {
      artifact_spec {
        type {
          name: "ModelBlessing"
        }
      }
    }
  }
  outputs {
    key: "evaluation"
    value {
      artifact_spec {
        type {
          name: "ModelEvaluation"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "eval_config"
    value {
      field_value {
        string_value: "{\n  \"metrics_specs\": [\n    {\n      \"per_slice_thresholds\": {\n        \"sparse_categorical_accuracy\": {\n          \"thresholds\": [\n            {\n              \"slicing_specs\": [\n                {}\n              ],\n              \"threshold\": {\n                \"change_threshold\": {\n                  \"absolute\": -1e-10,\n                  \"direction\": \"HIGHER_IS_BETTER\"\n                },\n                \"value_threshold\": {\n                  \"lower_bound\": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  \"model_specs\": [\n    {\n      \"label_key\": \"species\"\n    }\n  ],\n  \"slicing_specs\": [\n    {},\n    {\n      \"feature_keys\": [\n        \"species\"\n      ]\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "example_splits"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "fairness_indicator_thresholds"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "Trainer"
upstream_nodes: "latest_blessed_model_resolver"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:30.428037 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 4
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700464882
last_update_time_since_epoch: 1638700464882
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)], 'model': [Artifact(artifact: id: 3
type_id: 19
uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700470409
last_update_time_since_epoch: 1638700470409
, artifact_type: id: 19
name: "Model"
)], 'baseline_model': []}, output_dict=defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0"
  }
}
, artifact_type: name: "ModelBlessing"
)], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0"
  }
}
, artifact_type: name: "ModelEvaluation"
)]}), exec_properties={'example_splits': 'null', 'eval_config': '{\n  "metrics_specs": [\n    {\n      "per_slice_thresholds": {\n        "sparse_categorical_accuracy": {\n          "thresholds": [\n            {\n              "slicing_specs": [\n                {}\n              ],\n              "threshold": {\n                "change_threshold": {\n                  "absolute": -1e-10,\n                  "direction": "HIGHER_IS_BETTER"\n                },\n                "value_threshold": {\n                  "lower_bound": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "species"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "species"\n      ]\n    }\n  ]\n}', 'fairness_indicator_thresholds': 'null'}, execution_output_uri='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Evaluator/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.evaluator.component.Evaluator"
  }
  id: "Evaluator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Evaluator"
      }
    }
  }
}
inputs {
  inputs {
    key: "baseline_model"
    value {
      channels {
        producer_node_query {
          id: "latest_blessed_model_resolver"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.latest_blessed_model_resolver"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "blessing"
    value {
      artifact_spec {
        type {
          name: "ModelBlessing"
        }
      }
    }
  }
  outputs {
    key: "evaluation"
    value {
      artifact_spec {
        type {
          name: "ModelEvaluation"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "eval_config"
    value {
      field_value {
        string_value: "{\n  \"metrics_specs\": [\n    {\n      \"per_slice_thresholds\": {\n        \"sparse_categorical_accuracy\": {\n          \"thresholds\": [\n            {\n              \"slicing_specs\": [\n                {}\n              ],\n              \"threshold\": {\n                \"change_threshold\": {\n                  \"absolute\": -1e-10,\n                  \"direction\": \"HIGHER_IS_BETTER\"\n                },\n                \"value_threshold\": {\n                  \"lower_bound\": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  \"model_specs\": [\n    {\n      \"label_key\": \"species\"\n    }\n  ],\n  \"slicing_specs\": [\n    {},\n    {\n      \"feature_keys\": [\n        \"species\"\n      ]\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "example_splits"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "fairness_indicator_thresholds"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "Trainer"
upstream_nodes: "latest_blessed_model_resolver"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n  "metrics_specs": [\n    {\n      "per_slice_thresholds": {\n        "sparse_categorical_accuracy": {\n          "thresholds": [\n            {\n              "slicing_specs": [\n                {}\n              ],\n              "threshold": {\n                "change_threshold": {\n                  "absolute": -1e-10,\n                  "direction": "HIGHER_IS_BETTER"\n                },\n                "value_threshold": {\n                  "lower_bound": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "species"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "species"\n      ]\n    }\n  ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_eval_shared_model'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

INFO:absl:Using pipelines/penguin-tfma/Trainer/model/3/Format-Serving as  model.
INFO:absl:The 'example_splits' parameter is not set, using 'eval' split.
INFO:absl:Evaluating model.
INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n  "metrics_specs": [\n    {\n      "per_slice_thresholds": {\n        "sparse_categorical_accuracy": {\n          "thresholds": [\n            {\n              "slicing_specs": [\n                {}\n              ],\n              "threshold": {\n                "change_threshold": {\n                  "absolute": -1e-10,\n                  "direction": "HIGHER_IS_BETTER"\n                },\n                "value_threshold": {\n                  "lower_bound": 0.6\n                }\n              }\n            }\n          ]\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "species"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "species"\n      ]\n    }\n  ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_extractors'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  model_names: ""
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  model_names: ""
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "species"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "species"
}
metrics_specs {
  model_names: ""
  per_slice_thresholds {
    key: "sparse_categorical_accuracy"
    value {
      thresholds {
        slicing_specs {
        }
        threshold {
          value_threshold {
            lower_bound {
              value: 0.6
            }
          }
        }
      }
    }
  }
}

WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Evaluation complete. Results written to pipelines/penguin-tfma/Evaluator/evaluation/4.
INFO:absl:Checking validation results.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 4 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelBlessing"
)], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelEvaluation"
)]}) for execution 4
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:35.040588 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 10:34:35.045548 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Evaluator is finished.
INFO:absl:Component Pusher is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "model_blessing"
    value {
      channels {
        producer_node_query {
          id: "Evaluator"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Evaluator"
            }
          }
        }
        artifact_query {
          type {
            name: "ModelBlessing"
          }
        }
        output_key: "blessing"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfma\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Evaluator"
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:35.068168 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 5
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'model': [Artifact(artifact: id: 3
type_id: 19
uri: "pipelines/penguin-tfma/Trainer/model/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700470409
last_update_time_since_epoch: 1638700470409
, artifact_type: id: 19
name: "Model"
)], 'model_blessing': [Artifact(artifact: id: 4
type_id: 21
uri: "pipelines/penguin-tfma/Evaluator/blessing/4"
custom_properties {
  key: "blessed"
  value {
    int_value: 1
  }
}
custom_properties {
  key: "current_model"
  value {
    string_value: "pipelines/penguin-tfma/Trainer/model/3"
  }
}
custom_properties {
  key: "current_model_id"
  value {
    int_value: 3
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638700475049
last_update_time_since_epoch: 1638700475049
, artifact_type: id: 21
name: "ModelBlessing"
)]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0"
  }
}
, artifact_type: name: "PushedModel"
)]}), exec_properties={'custom_config': 'null', 'push_destination': '{\n  "filesystem": {\n    "base_directory": "serving_model/penguin-tfma"\n  }\n}'}, execution_output_uri='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Pusher/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfma"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T10:34:23.517028"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfma.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
  inputs {
    key: "model_blessing"
    value {
      channels {
        producer_node_query {
          id: "Evaluator"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfma"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T10:34:23.517028"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfma.Evaluator"
            }
          }
        }
        artifact_query {
          type {
            name: "ModelBlessing"
          }
        }
        output_key: "blessing"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfma\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Evaluator"
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfma"
, pipeline_run_id='2021-12-05T10:34:23.517028')
INFO:absl:Model version: 1638700475
INFO:absl:Model written to serving path serving_model/penguin-tfma/1638700475.
INFO:absl:Model pushed to pipelines/penguin-tfma/Pusher/pushed_model/5.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 5 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "PushedModel"
)]}) for execution 5
INFO:absl:MetadataStore with DB connection initialized
I1205 10:34:35.098553 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is finished.

Boru hattı tamamlandığında, aşağıdakine benzer bir şey görebilmeniz gerekir:

INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4.

Veya oluşturulan yapay nesnelerin depolandığı çıktı dizinini manuel olarak da kontrol edebilirsiniz. Eğer ziyaret ederseniz pipelines/penguin-tfma/Evaluator/blessing/ bir dosya broswer ile, bir ada sahip bir dosya görebilirsiniz BLESSED veya NOT_BLESSED değerlendirme sonucuna göre.

Nimet sonucu ise False , İtici modeli itmek reddeder serving_model_dir modeli üretiminde kullanılmak üzere yeterince iyi olmadığı için.

İşlem hattını muhtemelen farklı değerlendirme yapılandırmalarıyla yeniden çalıştırabilirsiniz. Eğer aynı config ve veri kümesi ile boru hattını çalıştırmak bile, eğitilmiş model yol açabilir modeli eğitim doğasında rastgelelik nedeniyle biraz farklı olabilir NOT_BLESSED modeli.

Boru hattının çıktılarını inceleyin

ModelEvaluation yapıtında değerlendirme sonucunu araştırmak ve görselleştirmek için TFMA'yı kullanabilirsiniz.

Çıktı yapıtlarından analiz sonucu alın

Bu çıktıları programlı olarak bulmak için MLMD API'lerini kullanabilirsiniz. İlk olarak, henüz üretilmiş çıktı yapılarını aramak için bazı yardımcı fonksiyonlar tanımlayacağız.

from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib

# TODO(b/171447278): Move these functions into the TFX library.

def get_latest_artifacts(metadata, pipeline_name, component_id):
  """Output artifacts of the latest run of the component."""
  context = metadata.store.get_context_by_type_and_name(
      'node', f'{pipeline_name}.{component_id}')
  executions = metadata.store.get_executions_by_context(context.id)
  latest_execution = max(executions,
                         key=lambda e:e.last_update_time_since_epoch)
  return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
                                          [metadata_store_pb2.Event.OUTPUT])

Biz son yürütülmesine bulabilirsiniz Evaluator bir bileşeni ve çıkış eserler olsun.

# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs

metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
    METADATA_PATH)

with Metadata(metadata_connection_config) as metadata_handler:
  # Find output artifacts from MLMD.
  evaluator_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
                                          'Evaluator')
  eval_artifact = evaluator_output[standard_component_specs.EVALUATION_KEY][0]
INFO:absl:MetadataStore with DB connection initialized

Evaluator her zaman bir değerlendirme objeyi döndürür ve biz TensorFlow Modeli Analizi kütüphanesini kullanarak benzetebiliriz. Örneğin, aşağıdaki kod, her penguen türü için doğruluk ölçümlerini oluşturacaktır.

import tensorflow_model_analysis as tfma

eval_result = tfma.load_eval_result(eval_artifact.uri)
tfma.view.render_slicing_metrics(eval_result, slicing_column='species')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'species:0', 'metrics…

İçinde 'sparse_categorical_accuracy' seçerseniz Show açılır listesinde, türlerin başına doğruluk değerlerini görebilirsiniz. Daha fazla dilim eklemek ve modelinizin tüm dağıtımlar için iyi olup olmadığını ve olası bir sapma olup olmadığını kontrol etmek isteyebilirsiniz.

Sonraki adımlar

Model analizi üzerine daha fazla bilgi TensorFlow Modeli Analizi kütüphane öğretici .

Üzerinde daha fazla kaynak bulabilirsiniz https://www.tensorflow.org/tfx/tutorials

Bakınız TFX Boru hatları anlama Tfx çeşitli kavramlar hakkında daha fazla bilgi edinmek.