이 노트북 기반 자습서에서는 간단한 분류 모델을 만들고 여러 실행에서 성능을 분석하는 TFX 파이프라인을 만들고 실행합니다. 이 노트북은 우리가 내장 된 TFX 파이프 라인을 기반으로 간단한 TFX 파이프 라인 튜토리얼 . 해당 튜토리얼을 아직 읽지 않았다면 이 노트북을 계속 진행하기 전에 읽어야 합니다.
모델을 조정하거나 새 데이터 세트로 훈련할 때 모델이 개선되었는지 또는 악화되었는지 확인해야 합니다. 정확도와 같은 최상위 측정항목을 확인하는 것만으로는 충분하지 않을 수 있습니다. 훈련된 모든 모델은 프로덕션으로 푸시하기 전에 평가되어야 합니다.
우리는 추가합니다 Evaluator
이전 자습서에서 만든 파이프 라인 구성 요소를. Evaluator 구성 요소는 모델에 대한 심층 분석을 수행하고 새 모델을 기준선과 비교하여 "충분히 좋은" 상태인지 확인합니다. 그것은 사용하여 구현됩니다 TensorFlow 모델 분석 라이브러리를.
참조하시기 바랍니다 TFX 파이프 라인은 이해 TFX에서 다양한 개념에 대해 더 배울 수 있습니다.
설정
설정 과정은 이전 튜토리얼과 동일합니다.
먼저 TFX Python 패키지를 설치하고 모델에 사용할 데이터 세트를 다운로드해야 합니다.
핍 업그레이드
로컬에서 실행할 때 시스템에서 Pip를 업그레이드하지 않으려면 Colab에서 실행 중인지 확인하세요. 물론 로컬 시스템은 별도로 업그레이드할 수 있습니다.
try:
import colab
!pip install --upgrade pip
except:
pass
TFX 설치
pip install -U tfx
런타임을 다시 시작하셨습니까?
Google Colab을 사용하는 경우 위의 셀을 처음 실행할 때 위의 "RESTART RUNTIME" 버튼을 클릭하거나 "런타임 > 런타임 다시 시작..." 메뉴를 사용하여 런타임을 다시 시작해야 합니다. Colab이 패키지를 로드하는 방식 때문입니다.
TensorFlow 및 TFX 버전을 확인하세요.
import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2 TFX version: 1.4.0
변수 설정
파이프라인을 정의하는 데 사용되는 몇 가지 변수가 있습니다. 이러한 변수를 원하는 대로 사용자 지정할 수 있습니다. 기본적으로 파이프라인의 모든 출력은 현재 디렉터리 아래에 생성됩니다.
import os
PIPELINE_NAME = "penguin-tfma"
# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)
from absl import logging
logging.set_verbosity(logging.INFO) # Set default logging level.
예시 데이터 준비
우리는 같은 사용 팔머 펭귄 데이터 집합을 .
이 데이터 세트에는 이미 [0,1] 범위를 갖도록 정규화된 4개의 숫자 기능이 있습니다. 우리는 예측하는 분류 모델을 구축 할 것입니다 species
펭귄을.
TFX ExampleGen은 디렉토리에서 입력을 읽기 때문에 디렉토리를 만들고 여기에 데이터 세트를 복사해야 합니다.
import urllib.request
import tempfile
DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datal5lxy_yw/data.csv', <http.client.HTTPMessage at 0x7fa18a9da150>)
파이프라인 생성
우리는 추가합니다 Evaluator
우리가에서 만든 파이프 라인 구성 요소를 단순 TFX 파이프 라인 튜토리얼 .
평가자 구성 요소는의 입력 데이터가 필요 ExampleGen
구성 요소와에서 모델 Trainer
구성 요소와 tfma.EvalConfig
객체를. 새로 훈련된 모델과 메트릭을 비교하는 데 사용할 수 있는 기준 모델을 선택적으로 제공할 수 있습니다.
평가자는 출력 유물, 두 종류의 생성 ModelEvaluation
및 ModelBlessing
. ModelEvaluation에는 TFMA 라이브러리로 조사 및 시각화할 수 있는 자세한 평가 결과가 포함되어 있습니다. ModelBlessing은 모델이 주어진 기준을 통과했는지 여부에 대한 부울 결과를 포함하고 신호로 푸셔와 같은 이후 구성 요소에서 사용할 수 있습니다.
모델 학습 코드 작성
우리는에서와 동일한 모델 코드를 사용하는 간단한 TFX 파이프 라인 튜토리얼 .
_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}
# Copied from https://www.tensorflow.org/tfx/tutorials/tfx/penguin_simple
from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils
from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.fn_args_utils import DataAccessor
from tfx_bsl.tfxio import dataset_options
from tensorflow_metadata.proto.v0 import schema_pb2
_FEATURE_KEYS = [
'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'
_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10
# Since we're not generating or creating a schema, we will instead create
# a feature spec. Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
**{
feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
for feature in _FEATURE_KEYS
},
_LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}
def _input_fn(file_pattern: List[str],
data_accessor: DataAccessor,
schema: schema_pb2.Schema,
batch_size: int = 200) -> tf.data.Dataset:
"""Generates features and label for training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
schema: schema of the input data.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
return data_accessor.tf_dataset_factory(
file_pattern,
dataset_options.TensorFlowDatasetOptions(
batch_size=batch_size, label_key=_LABEL_KEY),
schema=schema).repeat()
def _build_keras_model() -> tf.keras.Model:
"""Creates a DNN Keras model for classifying penguin data.
Returns:
A Keras Model.
"""
# The model below is built with Functional API, please refer to
# https://www.tensorflow.org/guide/keras/overview for all API options.
inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
d = keras.layers.concatenate(inputs)
for _ in range(2):
d = keras.layers.Dense(8, activation='relu')(d)
outputs = keras.layers.Dense(3)(d)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=keras.optimizers.Adam(1e-2),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.summary(print_fn=logging.info)
return model
# TFX Trainer will call this function.
def run_fn(fn_args: TrainerFnArgs):
"""Train the model based on given args.
Args:
fn_args: Holds args used to train the model as name/value pairs.
"""
# This schema is usually either an output of SchemaGen or a manually-curated
# version provided by pipeline author. A schema can also derived from TFT
# graph if a Transform component is used. In the case when either is missing,
# `schema_from_feature_spec` could be used to generate schema from very simple
# feature_spec, but the schema returned would be very primitive.
schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)
train_dataset = _input_fn(
fn_args.train_files,
fn_args.data_accessor,
schema,
batch_size=_TRAIN_BATCH_SIZE)
eval_dataset = _input_fn(
fn_args.eval_files,
fn_args.data_accessor,
schema,
batch_size=_EVAL_BATCH_SIZE)
model = _build_keras_model()
model.fit(
train_dataset,
steps_per_epoch=fn_args.train_steps,
validation_data=eval_dataset,
validation_steps=fn_args.eval_steps)
# The result of the training should be saved in `fn_args.serving_model_dir`
# directory.
model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py
파이프라인 정의 작성
TFX 파이프라인을 생성하는 함수를 정의합니다. 우리는 위에서 언급 한 평가자 구성 요소에 더하여, 우리는라는 또 하나 개의 노드를 추가합니다 Resolver
. 새 모델이 이전 모델보다 좋아지고 있는지 확인하려면 기준선이라고 하는 이전에 게시된 모델과 비교해야 합니다. ML 메타 데이터 (MLMD)은 파이프 라인의 이전의 모든 유물을 추적하고 Resolver
최신 축복 모델이 무엇인지 찾을 수 있습니다 - 모델이 성공적으로 평가자를 통과 - MLMD에서 호출 전략 클래스 사용 LatestBlessedModelStrategy
.
import tensorflow_model_analysis as tfma
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
module_file: str, serving_model_dir: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Creates a three component penguin pipeline with TFX."""
# Brings data into the pipeline.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# Uses user-provided Python function that trains a model.
trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))
# NEW: Get the latest blessed model for Evaluator.
model_resolver = tfx.dsl.Resolver(
strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
model_blessing=tfx.dsl.Channel(
type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
'latest_blessed_model_resolver')
# NEW: Uses TFMA to compute evaluation statistics over features of a model and
# perform quality validation of a candidate model (compared to a baseline).
eval_config = tfma.EvalConfig(
model_specs=[tfma.ModelSpec(label_key='species')],
slicing_specs=[
# An empty slice spec means the overall slice, i.e. the whole dataset.
tfma.SlicingSpec(),
# Calculate metrics for each penguin species.
tfma.SlicingSpec(feature_keys=['species']),
],
metrics_specs=[
tfma.MetricsSpec(per_slice_thresholds={
'sparse_categorical_accuracy':
tfma.PerSliceMetricThresholds(thresholds=[
tfma.PerSliceMetricThreshold(
slicing_specs=[tfma.SlicingSpec()],
threshold=tfma.MetricThreshold(
value_threshold=tfma.GenericValueThreshold(
lower_bound={'value': 0.6}),
# Change threshold will be ignored if there is no
# baseline model resolved from MLMD (first run).
change_threshold=tfma.GenericChangeThreshold(
direction=tfma.MetricDirection.HIGHER_IS_BETTER,
absolute={'value': -1e-10}))
)]),
})],
)
evaluator = tfx.components.Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
baseline_model=model_resolver.outputs['model'],
eval_config=eval_config)
# Checks whether the model passed the validation steps and pushes the model
# to a file destination if check passed.
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
model_blessing=evaluator.outputs['blessing'], # Pass an evaluation result.
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
components = [
example_gen,
trainer,
# Following two components were added to the pipeline.
model_resolver,
evaluator,
pusher,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components)
우리는 평가자를 통해 다음 정보 제공해야 eval_config
:
- 구성할 추가 메트릭(모델에 정의된 것보다 더 많은 메트릭이 필요한 경우).
- 구성할 슬라이스
- 유효성 검사가 포함되는지 확인하기 위한 모델 유효성 검사 임계값
때문에 SparseCategoricalAccuracy
이미 포함 된 model.compile()
호출, 자동 분석에 포함됩니다. 따라서 여기에 추가 측정항목을 추가하지 않습니다. SparseCategoricalAccuracy
모델도 충분히 좋은 여부를 결정하는 데 사용됩니다.
전체 데이터 세트와 각 펭귄 종에 대한 메트릭을 계산합니다. SlicingSpec
우리가 선언 된 통계를 집계하는 방법을 지정합니다.
새 모델이 통과해야 하는 두 가지 임계값이 있습니다. 하나는 0.6의 절대 임계값이고 다른 하나는 기준 모델보다 높아야 하는 상대 임계값입니다. 처음으로 파이프 라인을 실행하면 change_threshold
무시됩니다 만 value_threshold 확인할 수 있습니다. 당신이 한 번 이상 파이프 라인을 실행하면 Resolver
이전 실행에서 모델을 발견하고 그것은 비교를위한 기준 모델로 사용됩니다.
참조 평가자 구성 요소 가이드 자세한 내용은.
파이프라인 실행
우리는 사용 LocalDagRunner
이전 튜토리얼한다.
tfx.orchestration.LocalDagRunner().run(
_create_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=PIPELINE_ROOT,
data_root=DATA_ROOT,
module_file=_trainer_module_file,
serving_model_dir=SERVING_MODEL_DIR,
metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']). INFO:absl:User module package has hash fingerprint version 1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpr3anh67s/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6s2sw4dj', '--dist-dir', '/tmp/tmp6jr76e54'] /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. setuptools.SetuptoolsDeprecationWarning, listing git files failed - pretending there aren't any INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'; target user module is 'penguin_trainer'. INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' INFO:absl:Using deployment config: executor_specs { key: "CsvExampleGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor" } } } } executor_specs { key: "Evaluator" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.evaluator.executor.Executor" } } } } executor_specs { key: "Pusher" value { python_class_executable_spec { class_path: "tfx.components.pusher.executor.Executor" } } } executor_specs { key: "Trainer" value { python_class_executable_spec { class_path: "tfx.components.trainer.executor.GenericExecutor" } } } custom_driver_specs { key: "CsvExampleGen" value { python_class_executable_spec { class_path: "tfx.components.example_gen.driver.FileBasedDriver" } } } metadata_connection_config { sqlite { filename_uri: "metadata/penguin-tfma/metadata.db" connection_mode: READWRITE_OPENCREATE } } INFO:absl:Using connection config: sqlite { filename_uri: "metadata/penguin-tfma/metadata.db" connection_mode: READWRITE_OPENCREATE } INFO:absl:Component CsvExampleGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datal5lxy_yw" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Evaluator" downstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized running bdist_wheel running build running build_py creating build creating build/lib copying penguin_trainer.py -> build/lib installing to /tmp/tmp6s2sw4dj running install running install_lib copying build/lib/penguin_trainer.py -> /tmp/tmp6s2sw4dj running install_egg_info running egg_info creating tfx_user_code_Trainer.egg-info writing tfx_user_code_Trainer.egg-info/PKG-INFO writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3.7.egg-info running install_scripts creating /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL creating '/tmp/tmp6jr76e54/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' and adding '/tmp/tmp6s2sw4dj' to it adding 'penguin_trainer.py' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/METADATA' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/top_level.txt' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/RECORD' removing /tmp/tmp6s2sw4dj WARNING: Logging before InitGoogleLogging() is written to STDERR I1205 10:34:23.723806 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.730262 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.736788 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.744907 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:MetadataStore with DB connection initialized I1205 10:34:23.758380 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 1 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}), exec_properties={'output_file_format': 5, 'output_config': '{\n "split_config": {\n "splits": [\n {\n "hash_buckets": 2,\n "name": "train"\n },\n {\n "hash_buckets": 1,\n "name": "eval"\n }\n ]\n }\n}', 'input_config': '{\n "splits": [\n {\n "name": "single_split",\n "pattern": "*"\n }\n ]\n}', 'output_data_format': 6, 'input_base': '/tmp/tfx-datal5lxy_yw', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463'}, execution_output_uri='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datal5lxy_yw" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Evaluator" downstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Generating examples. WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. INFO:absl:Processing input csv data /tmp/tfx-datal5lxy_yw/* to TFExample. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. INFO:absl:Examples generated. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 1 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}) for execution 1 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component CsvExampleGen is finished. INFO:absl:Component latest_blessed_model_resolver is running. INFO:absl:Running launcher for node_info { type { name: "tfx.dsl.components.common.resolver.Resolver" } id: "latest_blessed_model_resolver" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } } inputs { inputs { key: "model" value { channels { context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } artifact_query { type { name: "Model" } } } } } inputs { key: "model_blessing" value { channels { context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } artifact_query { type { name: "ModelBlessing" } } } } } resolver_config { resolver_steps { class_path: "tfx.dsl.input_resolution.strategies.latest_blessed_model_strategy.LatestBlessedModelStrategy" config_json: "{}" input_keys: "model" input_keys: "model_blessing" } } } downstream_nodes: "Evaluator" execution_options { caching_options { } } INFO:absl:Running as an resolver node. INFO:absl:MetadataStore with DB connection initialized WARNING:absl:Artifact type Model is not found in MLMD. WARNING:absl:Artifact type ModelBlessing is not found in MLMD. I1205 10:34:24.899447 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component latest_blessed_model_resolver is finished. INFO:absl:Component Trainer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Evaluator" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized INFO:absl:MetadataStore with DB connection initialized I1205 10:34:24.924589 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 3 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700464882 last_update_time_since_epoch: 1638700464882 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } , artifact_type: name: "Model" )]}), exec_properties={'train_args': '{\n "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'}, execution_output_uri='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Trainer/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/.temp/', pipeline_node=node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Evaluator" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Train on the 'train' split when train_args.splits is not set. INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set. INFO:absl:udf_utils.get_fn {'train_args': '{\n "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'} 'run_fn' INFO:absl:Installing 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpc97ini82', 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'] Processing ./pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'. INFO:absl:Training model. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. Installing collected packages: tfx-user-code-Trainer Successfully installed tfx-user-code-Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703 INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Model: "model" INFO:absl:__________________________________________________________________________________________________ INFO:absl:Layer (type) Output Shape Param # Connected to INFO:absl:================================================================================================== INFO:absl:culmen_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:culmen_depth_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:flipper_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:body_mass_g (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:concatenate (Concatenate) (None, 4) 0 culmen_length_mm[0][0] INFO:absl: culmen_depth_mm[0][0] INFO:absl: flipper_length_mm[0][0] INFO:absl: body_mass_g[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense (Dense) (None, 8) 40 concatenate[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_1 (Dense) (None, 8) 72 dense[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_2 (Dense) (None, 3) 27 dense_1[0][0] INFO:absl:================================================================================================== INFO:absl:Total params: 139 INFO:absl:Trainable params: 139 INFO:absl:Non-trainable params: 0 INFO:absl:__________________________________________________________________________________________________ 100/100 [==============================] - 1s 3ms/step - loss: 0.5273 - sparse_categorical_accuracy: 0.8175 - val_loss: 0.2412 - val_sparse_categorical_accuracy: 0.9600 2021-12-05 10:34:29.879208: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets INFO:absl:Training complete. Model written to pipelines/penguin-tfma/Trainer/model/3/Format-Serving. ModelRun written to pipelines/penguin-tfma/Trainer/model_run/3 INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 3 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Model" )]}) for execution 3 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:30.399760 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:30.404250 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Trainer is finished. INFO:absl:Component Evaluator is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.evaluator.component.Evaluator" } id: "Evaluator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } } inputs { inputs { key: "baseline_model" value { channels { producer_node_query { id: "latest_blessed_model_resolver" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "blessing" value { artifact_spec { type { name: "ModelBlessing" } } } } outputs { key: "evaluation" value { artifact_spec { type { name: "ModelEvaluation" } } } } } parameters { parameters { key: "eval_config" value { field_value { string_value: "{\n \"metrics_specs\": [\n {\n \"per_slice_thresholds\": {\n \"sparse_categorical_accuracy\": {\n \"thresholds\": [\n {\n \"slicing_specs\": [\n {}\n ],\n \"threshold\": {\n \"change_threshold\": {\n \"absolute\": -1e-10,\n \"direction\": \"HIGHER_IS_BETTER\"\n },\n \"value_threshold\": {\n \"lower_bound\": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n \"model_specs\": [\n {\n \"label_key\": \"species\"\n }\n ],\n \"slicing_specs\": [\n {},\n {\n \"feature_keys\": [\n \"species\"\n ]\n }\n ]\n}" } } } parameters { key: "example_splits" value { field_value { string_value: "null" } } } parameters { key: "fairness_indicator_thresholds" value { field_value { string_value: "null" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Trainer" upstream_nodes: "latest_blessed_model_resolver" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:34:30.428037 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 4 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700464882 last_update_time_since_epoch: 1638700464882 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )], 'model': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700470409 last_update_time_since_epoch: 1638700470409 , artifact_type: id: 19 name: "Model" )], 'baseline_model': []}, output_dict=defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } , artifact_type: name: "ModelBlessing" )], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0" } } , artifact_type: name: "ModelEvaluation" )]}), exec_properties={'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'}, execution_output_uri='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Evaluator/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/.temp/', pipeline_node=node_info { type { name: "tfx.components.evaluator.component.Evaluator" } id: "Evaluator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } } inputs { inputs { key: "baseline_model" value { channels { producer_node_query { id: "latest_blessed_model_resolver" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "blessing" value { artifact_spec { type { name: "ModelBlessing" } } } } outputs { key: "evaluation" value { artifact_spec { type { name: "ModelEvaluation" } } } } } parameters { parameters { key: "eval_config" value { field_value { string_value: "{\n \"metrics_specs\": [\n {\n \"per_slice_thresholds\": {\n \"sparse_categorical_accuracy\": {\n \"thresholds\": [\n {\n \"slicing_specs\": [\n {}\n ],\n \"threshold\": {\n \"change_threshold\": {\n \"absolute\": -1e-10,\n \"direction\": \"HIGHER_IS_BETTER\"\n },\n \"value_threshold\": {\n \"lower_bound\": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n \"model_specs\": [\n {\n \"label_key\": \"species\"\n }\n ],\n \"slicing_specs\": [\n {},\n {\n \"feature_keys\": [\n \"species\"\n ]\n }\n ]\n}" } } } parameters { key: "example_splits" value { field_value { string_value: "null" } } } parameters { key: "fairness_indicator_thresholds" value { field_value { string_value: "null" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Trainer" upstream_nodes: "latest_blessed_model_resolver" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_eval_shared_model' INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Using pipelines/penguin-tfma/Trainer/model/3/Format-Serving as model. INFO:absl:The 'example_splits' parameter is not set, using 'eval' split. INFO:absl:Evaluating model. INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_extractors' INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:absl:Evaluation complete. Results written to pipelines/penguin-tfma/Evaluator/evaluation/4. INFO:absl:Checking validation results. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 4 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelBlessing" )], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelEvaluation" )]}) for execution 4 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.040588 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:35.045548 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Evaluator is finished. INFO:absl:Component Pusher is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "model_blessing" value { channels { producer_node_query { id: "Evaluator" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } artifact_query { type { name: "ModelBlessing" } } output_key: "blessing" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfma\"\n }\n}" } } } } upstream_nodes: "Evaluator" upstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.068168 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 5 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'model': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700470409 last_update_time_since_epoch: 1638700470409 , artifact_type: id: 19 name: "Model" )], 'model_blessing': [Artifact(artifact: id: 4 type_id: 21 uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "blessed" value { int_value: 1 } } custom_properties { key: "current_model" value { string_value: "pipelines/penguin-tfma/Trainer/model/3" } } custom_properties { key: "current_model_id" value { int_value: 3 } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700475049 last_update_time_since_epoch: 1638700475049 , artifact_type: id: 21 name: "ModelBlessing" )]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0" } } , artifact_type: name: "PushedModel" )]}), exec_properties={'custom_config': 'null', 'push_destination': '{\n "filesystem": {\n "base_directory": "serving_model/penguin-tfma"\n }\n}'}, execution_output_uri='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Pusher/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/.temp/', pipeline_node=node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "model_blessing" value { channels { producer_node_query { id: "Evaluator" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } artifact_query { type { name: "ModelBlessing" } } output_key: "blessing" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfma\"\n }\n}" } } } } upstream_nodes: "Evaluator" upstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Model version: 1638700475 INFO:absl:Model written to serving path serving_model/penguin-tfma/1638700475. INFO:absl:Model pushed to pipelines/penguin-tfma/Pusher/pushed_model/5. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 5 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "PushedModel" )]}) for execution 5 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.098553 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Pusher is finished.
파이프라인이 완료되면 다음과 같은 내용을 볼 수 있습니다.
INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4.
또는 생성된 아티팩트가 저장된 출력 디렉토리를 수동으로 확인할 수도 있습니다. 당신이 방문하는 경우 pipelines/penguin-tfma/Evaluator/blessing/
파일이 broswer, 당신은 이름의 파일을 볼 수있는 BLESSED
하거나 NOT_BLESSED
평가 결과에 따라.
축복의 결과 인 경우 False
, 푸셔는에 모델을 밀어 거부합니다 serving_model_dir
모델이 생산에 사용되는 충분한 아니기 때문에.
다른 평가 구성으로 파이프라인을 다시 실행할 수 있습니다. 당신이 동일한 설정 및 데이터 세트와 파이프 라인을 실행하더라도, 훈련 모델이 될 수 있습니다 모델 교육의 고유의 임의성으로 인해 약간 다를 수 있습니다 NOT_BLESSED
모델.
파이프라인의 출력 검사
TFMA를 사용하여 ModelEvaluation 아티팩트에서 평가 결과를 조사하고 시각화할 수 있습니다.
출력 아티팩트에서 분석 결과 가져오기
MLMD API를 사용하여 프로그래밍 방식으로 이러한 출력을 찾을 수 있습니다. 먼저 방금 생성된 출력 아티팩트를 검색하기 위한 몇 가지 유틸리티 함수를 정의합니다.
from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib
# TODO(b/171447278): Move these functions into the TFX library.
def get_latest_artifacts(metadata, pipeline_name, component_id):
"""Output artifacts of the latest run of the component."""
context = metadata.store.get_context_by_type_and_name(
'node', f'{pipeline_name}.{component_id}')
executions = metadata.store.get_executions_by_context(context.id)
latest_execution = max(executions,
key=lambda e:e.last_update_time_since_epoch)
return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
[metadata_store_pb2.Event.OUTPUT])
우리는 최신 실행을 찾을 수 있습니다 Evaluator
구성 요소와 그것의 출력 결과물을 얻을.
# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs
metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
METADATA_PATH)
with Metadata(metadata_connection_config) as metadata_handler:
# Find output artifacts from MLMD.
evaluator_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
'Evaluator')
eval_artifact = evaluator_output[standard_component_specs.EVALUATION_KEY][0]
INFO:absl:MetadataStore with DB connection initialized
Evaluator
항상 하나 개의 평가 유물을 반환하고, 우리는 TensorFlow 모델 분석 라이브러리를 사용하여 시각화 할 수 있습니다. 예를 들어 다음 코드는 각 펭귄 종에 대한 정확도 메트릭을 렌더링합니다.
import tensorflow_model_analysis as tfma
eval_result = tfma.load_eval_result(eval_artifact.uri)
tfma.view.render_slicing_metrics(eval_result, slicing_column='species')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'species:0', 'metrics…
당신이 'sparse_categorical_accuracy'를 선택하면 Show
드롭 다운 목록을, 당신은 종에 따라 정확도 값을 볼 수 있습니다. 더 많은 조각을 추가하고 모델이 모든 분포에 적합한지 그리고 가능한 편향이 있는지 확인하고 싶을 수 있습니다.
다음 단계
에서 모델 분석을 자세히 알아 TensorFlow 모델 분석 라이브러리 튜토리얼 .
당신은 더 많은 자원을 찾을 수 있습니다 https://www.tensorflow.org/tfx/tutorials을
참조하시기 바랍니다 TFX 파이프 라인은 이해 TFX에서 다양한 개념에 대해 더 배울 수 있습니다.