Dans ce didacticiel basé sur un bloc-notes, nous allons créer et exécuter un pipeline TFX qui crée un modèle de classification simple et analyse ses performances sur plusieurs exécutions. Ce portable est basé sur le pipeline TFX nous avons construit en simple TFX Pipeline Tutorial . Si vous n'avez pas encore lu ce didacticiel, vous devriez le lire avant de continuer avec ce bloc-notes.
Lorsque vous modifiez votre modèle ou que vous l'entraînez avec un nouvel ensemble de données, vous devez vérifier si votre modèle s'est amélioré ou s'il s'est dégradé. La simple vérification des métriques de haut niveau comme la précision peut ne pas suffire. Chaque modèle entraîné doit être évalué avant d'être mis en production.
Nous ajouterons un Evaluator
composant au pipeline créé dans le tutoriel précédent. Le composant Evaluator effectue une analyse approfondie de vos modèles et compare le nouveau modèle à une référence pour déterminer qu'ils sont « assez bons ». Il est mis en œuvre à l' aide du modèle d' analyse tensorflow bibliothèque.
S'il vous plaît voir Comprendre TFX Pipelines pour en savoir plus sur les différents concepts TFX.
D'installation
Le processus de configuration est le même que le didacticiel précédent.
Nous devons d'abord installer le package Python TFX et télécharger le jeu de données que nous utiliserons pour notre modèle.
Pip de mise à niveau
Pour éviter de mettre à niveau Pip dans un système lors de l'exécution locale, assurez-vous que nous exécutons dans Colab. Les systèmes locaux peuvent bien sûr être mis à niveau séparément.
try:
import colab
!pip install --upgrade pip
except:
pass
Installer TFX
pip install -U tfx
As-tu redémarré le runtime ?
Si vous utilisez Google Colab, la première fois que vous exécutez la cellule ci-dessus, vous devez redémarrer le runtime en cliquant au-dessus du bouton "RESTART RUNTIME" ou en utilisant le menu "Runtime> Restart runtime ...". Cela est dû à la façon dont Colab charge les packages.
Vérifiez les versions TensorFlow et TFX.
import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2 TFX version: 1.4.0
Configurer des variables
Certaines variables sont utilisées pour définir un pipeline. Vous pouvez personnaliser ces variables comme vous le souhaitez. Par défaut, toutes les sorties du pipeline seront générées sous le répertoire actuel.
import os
PIPELINE_NAME = "penguin-tfma"
# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)
from absl import logging
logging.set_verbosity(logging.INFO) # Set default logging level.
Préparer des exemples de données
Nous allons utiliser le même ensemble de données Palmer Penguins .
Il y a quatre caractéristiques numériques dans cet ensemble de données qui ont déjà été normalisées pour avoir une plage [0,1]. Nous allons construire un modèle de classification qui prédit les species
de manchots.
Étant donné que TFX ExampleGen lit les entrées d'un répertoire, nous devons créer un répertoire et y copier l'ensemble de données.
import urllib.request
import tempfile
DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datal5lxy_yw/data.csv', <http.client.HTTPMessage at 0x7fa18a9da150>)
Créer un pipeline
Nous ajouterons un Evaluator
composant au pipeline que nous avons créé dans le simple TFX Pipeline Tutorial .
Une composante Evaluator nécessite des données à partir d' une entrée ExampleGen
composant et un modèle à partir d' un Trainer
composant et un tfma.EvalConfig
objet. Nous pouvons éventuellement fournir un modèle de base qui peut être utilisé pour comparer les métriques avec le modèle nouvellement formé.
Un évaluateur crée deux types d'artefacts de sortie, ModelEvaluation
et ModelBlessing
. ModelEvaluation contient le résultat détaillé de l'évaluation qui peut être étudié et visualisé plus avant avec la bibliothèque TFMA. ModelBlessing contient un résultat booléen indiquant si le modèle a passé des critères donnés et peut être utilisé dans des composants ultérieurs comme un Pusher en tant que signal.
Écrire le code d'entraînement du modèle
Nous utiliserons le même code de modèle que dans le simple TFX Pipeline Tutorial .
_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}
# Copied from https://www.tensorflow.org/tfx/tutorials/tfx/penguin_simple
from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils
from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.fn_args_utils import DataAccessor
from tfx_bsl.tfxio import dataset_options
from tensorflow_metadata.proto.v0 import schema_pb2
_FEATURE_KEYS = [
'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'
_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10
# Since we're not generating or creating a schema, we will instead create
# a feature spec. Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
**{
feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
for feature in _FEATURE_KEYS
},
_LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}
def _input_fn(file_pattern: List[str],
data_accessor: DataAccessor,
schema: schema_pb2.Schema,
batch_size: int = 200) -> tf.data.Dataset:
"""Generates features and label for training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
schema: schema of the input data.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
return data_accessor.tf_dataset_factory(
file_pattern,
dataset_options.TensorFlowDatasetOptions(
batch_size=batch_size, label_key=_LABEL_KEY),
schema=schema).repeat()
def _build_keras_model() -> tf.keras.Model:
"""Creates a DNN Keras model for classifying penguin data.
Returns:
A Keras Model.
"""
# The model below is built with Functional API, please refer to
# https://www.tensorflow.org/guide/keras/overview for all API options.
inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
d = keras.layers.concatenate(inputs)
for _ in range(2):
d = keras.layers.Dense(8, activation='relu')(d)
outputs = keras.layers.Dense(3)(d)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=keras.optimizers.Adam(1e-2),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.summary(print_fn=logging.info)
return model
# TFX Trainer will call this function.
def run_fn(fn_args: TrainerFnArgs):
"""Train the model based on given args.
Args:
fn_args: Holds args used to train the model as name/value pairs.
"""
# This schema is usually either an output of SchemaGen or a manually-curated
# version provided by pipeline author. A schema can also derived from TFT
# graph if a Transform component is used. In the case when either is missing,
# `schema_from_feature_spec` could be used to generate schema from very simple
# feature_spec, but the schema returned would be very primitive.
schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)
train_dataset = _input_fn(
fn_args.train_files,
fn_args.data_accessor,
schema,
batch_size=_TRAIN_BATCH_SIZE)
eval_dataset = _input_fn(
fn_args.eval_files,
fn_args.data_accessor,
schema,
batch_size=_EVAL_BATCH_SIZE)
model = _build_keras_model()
model.fit(
train_dataset,
steps_per_epoch=fn_args.train_steps,
validation_data=eval_dataset,
validation_steps=fn_args.eval_steps)
# The result of the training should be saved in `fn_args.serving_model_dir`
# directory.
model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py
Écrire une définition de pipeline
Nous allons définir une fonction pour créer un pipeline TFX. En plus de la composante Evaluator nous l' avons mentionné ci - dessus, nous allons ajouter un nœud appelé Resolver
. Pour vérifier qu'un nouveau modèle s'améliore par rapport au modèle précédent, nous devons le comparer à un modèle publié précédent, appelé référence. ML métadonnées (MLMD) suit tous les artefacts précédents du pipeline et Resolver
peut trouver ce qui était le dernier modèle béni - un modèle passé avec succès Evaluator - de MLMD en utilisant une classe de stratégie appelée LatestBlessedModelStrategy
.
import tensorflow_model_analysis as tfma
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
module_file: str, serving_model_dir: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Creates a three component penguin pipeline with TFX."""
# Brings data into the pipeline.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# Uses user-provided Python function that trains a model.
trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))
# NEW: Get the latest blessed model for Evaluator.
model_resolver = tfx.dsl.Resolver(
strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
model_blessing=tfx.dsl.Channel(
type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
'latest_blessed_model_resolver')
# NEW: Uses TFMA to compute evaluation statistics over features of a model and
# perform quality validation of a candidate model (compared to a baseline).
eval_config = tfma.EvalConfig(
model_specs=[tfma.ModelSpec(label_key='species')],
slicing_specs=[
# An empty slice spec means the overall slice, i.e. the whole dataset.
tfma.SlicingSpec(),
# Calculate metrics for each penguin species.
tfma.SlicingSpec(feature_keys=['species']),
],
metrics_specs=[
tfma.MetricsSpec(per_slice_thresholds={
'sparse_categorical_accuracy':
tfma.PerSliceMetricThresholds(thresholds=[
tfma.PerSliceMetricThreshold(
slicing_specs=[tfma.SlicingSpec()],
threshold=tfma.MetricThreshold(
value_threshold=tfma.GenericValueThreshold(
lower_bound={'value': 0.6}),
# Change threshold will be ignored if there is no
# baseline model resolved from MLMD (first run).
change_threshold=tfma.GenericChangeThreshold(
direction=tfma.MetricDirection.HIGHER_IS_BETTER,
absolute={'value': -1e-10}))
)]),
})],
)
evaluator = tfx.components.Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
baseline_model=model_resolver.outputs['model'],
eval_config=eval_config)
# Checks whether the model passed the validation steps and pushes the model
# to a file destination if check passed.
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
model_blessing=evaluator.outputs['blessing'], # Pass an evaluation result.
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
components = [
example_gen,
trainer,
# Following two components were added to the pipeline.
model_resolver,
evaluator,
pusher,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components)
Nous devons fournir les informations suivantes à l'Évaluateur via eval_config
:
- Métriques supplémentaires à configurer (si vous voulez plus de métriques que celles définies dans le modèle).
- Tranches à configurer
- Seuils de validation du modèle pour vérifier si la validation doit être incluse
Parce que SparseCategoricalAccuracy
était déjà inclus dans le model.compile()
appel, il sera inclus dans l'analyse automatiquement. Nous n'ajoutons donc aucune métrique supplémentaire ici. SparseCategoricalAccuracy
sera utilisé pour décider si le modèle est assez bon, aussi.
Nous calculons les métriques pour l'ensemble de données et pour chaque espèce de manchot. SlicingSpec
précise la façon dont nous regroupons les mesures déclarées.
Il y a deux seuils qu'un nouveau modèle doit franchir, l'un est un seuil absolu de 0,6 et l'autre est un seuil relatif qu'il devrait être supérieur au modèle de référence. Lorsque vous exécutez le pipeline pour la première fois, la change_threshold
sera ignorée et seule la value_threshold sera vérifiée. Si vous exécutez le pipeline plus d'une fois, le Resolver
trouverez un modèle de la course précédente et il sera utilisé comme modèle de référence pour la comparaison.
Voir Guide composante Evaluator pour plus d' informations.
Exécuter le pipeline
Nous utiliserons LocalDagRunner
comme dans le tutoriel précédent.
tfx.orchestration.LocalDagRunner().run(
_create_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=PIPELINE_ROOT,
data_root=DATA_ROOT,
module_file=_trainer_module_file,
serving_model_dir=SERVING_MODEL_DIR,
metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']). INFO:absl:User module package has hash fingerprint version 1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpr3anh67s/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6s2sw4dj', '--dist-dir', '/tmp/tmp6jr76e54'] /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. setuptools.SetuptoolsDeprecationWarning, listing git files failed - pretending there aren't any INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'; target user module is 'penguin_trainer'. INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' INFO:absl:Using deployment config: executor_specs { key: "CsvExampleGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor" } } } } executor_specs { key: "Evaluator" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.evaluator.executor.Executor" } } } } executor_specs { key: "Pusher" value { python_class_executable_spec { class_path: "tfx.components.pusher.executor.Executor" } } } executor_specs { key: "Trainer" value { python_class_executable_spec { class_path: "tfx.components.trainer.executor.GenericExecutor" } } } custom_driver_specs { key: "CsvExampleGen" value { python_class_executable_spec { class_path: "tfx.components.example_gen.driver.FileBasedDriver" } } } metadata_connection_config { sqlite { filename_uri: "metadata/penguin-tfma/metadata.db" connection_mode: READWRITE_OPENCREATE } } INFO:absl:Using connection config: sqlite { filename_uri: "metadata/penguin-tfma/metadata.db" connection_mode: READWRITE_OPENCREATE } INFO:absl:Component CsvExampleGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datal5lxy_yw" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Evaluator" downstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized running bdist_wheel running build running build_py creating build creating build/lib copying penguin_trainer.py -> build/lib installing to /tmp/tmp6s2sw4dj running install running install_lib copying build/lib/penguin_trainer.py -> /tmp/tmp6s2sw4dj running install_egg_info running egg_info creating tfx_user_code_Trainer.egg-info writing tfx_user_code_Trainer.egg-info/PKG-INFO writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3.7.egg-info running install_scripts creating /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL creating '/tmp/tmp6jr76e54/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' and adding '/tmp/tmp6s2sw4dj' to it adding 'penguin_trainer.py' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/METADATA' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/top_level.txt' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/RECORD' removing /tmp/tmp6s2sw4dj WARNING: Logging before InitGoogleLogging() is written to STDERR I1205 10:34:23.723806 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.730262 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.736788 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.744907 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:MetadataStore with DB connection initialized I1205 10:34:23.758380 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 1 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}), exec_properties={'output_file_format': 5, 'output_config': '{\n "split_config": {\n "splits": [\n {\n "hash_buckets": 2,\n "name": "train"\n },\n {\n "hash_buckets": 1,\n "name": "eval"\n }\n ]\n }\n}', 'input_config': '{\n "splits": [\n {\n "name": "single_split",\n "pattern": "*"\n }\n ]\n}', 'output_data_format': 6, 'input_base': '/tmp/tfx-datal5lxy_yw', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463'}, execution_output_uri='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datal5lxy_yw" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Evaluator" downstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Generating examples. WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. INFO:absl:Processing input csv data /tmp/tfx-datal5lxy_yw/* to TFExample. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. INFO:absl:Examples generated. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 1 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}) for execution 1 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component CsvExampleGen is finished. INFO:absl:Component latest_blessed_model_resolver is running. INFO:absl:Running launcher for node_info { type { name: "tfx.dsl.components.common.resolver.Resolver" } id: "latest_blessed_model_resolver" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } } inputs { inputs { key: "model" value { channels { context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } artifact_query { type { name: "Model" } } } } } inputs { key: "model_blessing" value { channels { context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } artifact_query { type { name: "ModelBlessing" } } } } } resolver_config { resolver_steps { class_path: "tfx.dsl.input_resolution.strategies.latest_blessed_model_strategy.LatestBlessedModelStrategy" config_json: "{}" input_keys: "model" input_keys: "model_blessing" } } } downstream_nodes: "Evaluator" execution_options { caching_options { } } INFO:absl:Running as an resolver node. INFO:absl:MetadataStore with DB connection initialized WARNING:absl:Artifact type Model is not found in MLMD. WARNING:absl:Artifact type ModelBlessing is not found in MLMD. I1205 10:34:24.899447 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component latest_blessed_model_resolver is finished. INFO:absl:Component Trainer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Evaluator" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized INFO:absl:MetadataStore with DB connection initialized I1205 10:34:24.924589 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 3 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700464882 last_update_time_since_epoch: 1638700464882 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } , artifact_type: name: "Model" )]}), exec_properties={'train_args': '{\n "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'}, execution_output_uri='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Trainer/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/.temp/', pipeline_node=node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Evaluator" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Train on the 'train' split when train_args.splits is not set. INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set. INFO:absl:udf_utils.get_fn {'train_args': '{\n "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'} 'run_fn' INFO:absl:Installing 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpc97ini82', 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'] Processing ./pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'. INFO:absl:Training model. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. Installing collected packages: tfx-user-code-Trainer Successfully installed tfx-user-code-Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703 INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Model: "model" INFO:absl:__________________________________________________________________________________________________ INFO:absl:Layer (type) Output Shape Param # Connected to INFO:absl:================================================================================================== INFO:absl:culmen_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:culmen_depth_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:flipper_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:body_mass_g (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:concatenate (Concatenate) (None, 4) 0 culmen_length_mm[0][0] INFO:absl: culmen_depth_mm[0][0] INFO:absl: flipper_length_mm[0][0] INFO:absl: body_mass_g[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense (Dense) (None, 8) 40 concatenate[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_1 (Dense) (None, 8) 72 dense[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_2 (Dense) (None, 3) 27 dense_1[0][0] INFO:absl:================================================================================================== INFO:absl:Total params: 139 INFO:absl:Trainable params: 139 INFO:absl:Non-trainable params: 0 INFO:absl:__________________________________________________________________________________________________ 100/100 [==============================] - 1s 3ms/step - loss: 0.5273 - sparse_categorical_accuracy: 0.8175 - val_loss: 0.2412 - val_sparse_categorical_accuracy: 0.9600 2021-12-05 10:34:29.879208: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets INFO:absl:Training complete. Model written to pipelines/penguin-tfma/Trainer/model/3/Format-Serving. ModelRun written to pipelines/penguin-tfma/Trainer/model_run/3 INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 3 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Model" )]}) for execution 3 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:30.399760 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:30.404250 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Trainer is finished. INFO:absl:Component Evaluator is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.evaluator.component.Evaluator" } id: "Evaluator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } } inputs { inputs { key: "baseline_model" value { channels { producer_node_query { id: "latest_blessed_model_resolver" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "blessing" value { artifact_spec { type { name: "ModelBlessing" } } } } outputs { key: "evaluation" value { artifact_spec { type { name: "ModelEvaluation" } } } } } parameters { parameters { key: "eval_config" value { field_value { string_value: "{\n \"metrics_specs\": [\n {\n \"per_slice_thresholds\": {\n \"sparse_categorical_accuracy\": {\n \"thresholds\": [\n {\n \"slicing_specs\": [\n {}\n ],\n \"threshold\": {\n \"change_threshold\": {\n \"absolute\": -1e-10,\n \"direction\": \"HIGHER_IS_BETTER\"\n },\n \"value_threshold\": {\n \"lower_bound\": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n \"model_specs\": [\n {\n \"label_key\": \"species\"\n }\n ],\n \"slicing_specs\": [\n {},\n {\n \"feature_keys\": [\n \"species\"\n ]\n }\n ]\n}" } } } parameters { key: "example_splits" value { field_value { string_value: "null" } } } parameters { key: "fairness_indicator_thresholds" value { field_value { string_value: "null" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Trainer" upstream_nodes: "latest_blessed_model_resolver" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:34:30.428037 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 4 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700464882 last_update_time_since_epoch: 1638700464882 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )], 'model': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700470409 last_update_time_since_epoch: 1638700470409 , artifact_type: id: 19 name: "Model" )], 'baseline_model': []}, output_dict=defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } , artifact_type: name: "ModelBlessing" )], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0" } } , artifact_type: name: "ModelEvaluation" )]}), exec_properties={'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'}, execution_output_uri='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Evaluator/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/.temp/', pipeline_node=node_info { type { name: "tfx.components.evaluator.component.Evaluator" } id: "Evaluator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } } inputs { inputs { key: "baseline_model" value { channels { producer_node_query { id: "latest_blessed_model_resolver" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "blessing" value { artifact_spec { type { name: "ModelBlessing" } } } } outputs { key: "evaluation" value { artifact_spec { type { name: "ModelEvaluation" } } } } } parameters { parameters { key: "eval_config" value { field_value { string_value: "{\n \"metrics_specs\": [\n {\n \"per_slice_thresholds\": {\n \"sparse_categorical_accuracy\": {\n \"thresholds\": [\n {\n \"slicing_specs\": [\n {}\n ],\n \"threshold\": {\n \"change_threshold\": {\n \"absolute\": -1e-10,\n \"direction\": \"HIGHER_IS_BETTER\"\n },\n \"value_threshold\": {\n \"lower_bound\": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n \"model_specs\": [\n {\n \"label_key\": \"species\"\n }\n ],\n \"slicing_specs\": [\n {},\n {\n \"feature_keys\": [\n \"species\"\n ]\n }\n ]\n}" } } } parameters { key: "example_splits" value { field_value { string_value: "null" } } } parameters { key: "fairness_indicator_thresholds" value { field_value { string_value: "null" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Trainer" upstream_nodes: "latest_blessed_model_resolver" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_eval_shared_model' INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Using pipelines/penguin-tfma/Trainer/model/3/Format-Serving as model. INFO:absl:The 'example_splits' parameter is not set, using 'eval' split. INFO:absl:Evaluating model. INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_extractors' INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:absl:Evaluation complete. Results written to pipelines/penguin-tfma/Evaluator/evaluation/4. INFO:absl:Checking validation results. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 4 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelBlessing" )], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelEvaluation" )]}) for execution 4 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.040588 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:35.045548 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Evaluator is finished. INFO:absl:Component Pusher is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "model_blessing" value { channels { producer_node_query { id: "Evaluator" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } artifact_query { type { name: "ModelBlessing" } } output_key: "blessing" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfma\"\n }\n}" } } } } upstream_nodes: "Evaluator" upstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.068168 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 5 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'model': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700470409 last_update_time_since_epoch: 1638700470409 , artifact_type: id: 19 name: "Model" )], 'model_blessing': [Artifact(artifact: id: 4 type_id: 21 uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "blessed" value { int_value: 1 } } custom_properties { key: "current_model" value { string_value: "pipelines/penguin-tfma/Trainer/model/3" } } custom_properties { key: "current_model_id" value { int_value: 3 } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700475049 last_update_time_since_epoch: 1638700475049 , artifact_type: id: 21 name: "ModelBlessing" )]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0" } } , artifact_type: name: "PushedModel" )]}), exec_properties={'custom_config': 'null', 'push_destination': '{\n "filesystem": {\n "base_directory": "serving_model/penguin-tfma"\n }\n}'}, execution_output_uri='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Pusher/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/.temp/', pipeline_node=node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "model_blessing" value { channels { producer_node_query { id: "Evaluator" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } artifact_query { type { name: "ModelBlessing" } } output_key: "blessing" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfma\"\n }\n}" } } } } upstream_nodes: "Evaluator" upstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Model version: 1638700475 INFO:absl:Model written to serving path serving_model/penguin-tfma/1638700475. INFO:absl:Model pushed to pipelines/penguin-tfma/Pusher/pushed_model/5. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 5 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "PushedModel" )]}) for execution 5 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.098553 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Pusher is finished.
Une fois le pipeline terminé, vous devriez pouvoir voir quelque chose comme ce qui suit :
INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4.
Ou vous pouvez également vérifier manuellement le répertoire de sortie où sont stockés les artefacts générés. Si vous visitez pipelines/penguin-tfma/Evaluator/blessing/
avec un broswer de fichier, vous pouvez voir un fichier avec un nom BLESSED
ou NOT_BLESSED
en fonction du résultat de l' évaluation.
Si le résultat de la bénédiction est False
, Pusher refusera de pousser le modèle à l' serving_model_dir
, parce que le modèle est pas assez bon pour être utilisé dans la production.
Vous pouvez éventuellement réexécuter le pipeline avec différentes configurations d'évaluation. Même si vous exécutez le pipeline avec exactement la même configuration et ensemble de données, le modèle formé pourrait être légèrement différente en raison du caractère aléatoire inhérent à la formation du modèle qui peut conduire à un NOT_BLESSED
modèle.
Examiner les sorties du pipeline
Vous pouvez utiliser TFMA pour étudier et visualiser le résultat de l'évaluation dans l'artefact ModelEvaluation.
Obtenir le résultat de l'analyse à partir des artefacts de sortie
Vous pouvez utiliser les API MLMD pour localiser ces sorties par programmation. Tout d'abord, nous allons définir quelques fonctions utilitaires pour rechercher les artefacts de sortie qui viennent d'être produits.
from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib
# TODO(b/171447278): Move these functions into the TFX library.
def get_latest_artifacts(metadata, pipeline_name, component_id):
"""Output artifacts of the latest run of the component."""
context = metadata.store.get_context_by_type_and_name(
'node', f'{pipeline_name}.{component_id}')
executions = metadata.store.get_executions_by_context(context.id)
latest_execution = max(executions,
key=lambda e:e.last_update_time_since_epoch)
return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
[metadata_store_pb2.Event.OUTPUT])
Nous pouvons trouver la dernière exécution du Evaluator
composant et obtenir des artefacts de sortie de celui - ci.
# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs
metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
METADATA_PATH)
with Metadata(metadata_connection_config) as metadata_handler:
# Find output artifacts from MLMD.
evaluator_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
'Evaluator')
eval_artifact = evaluator_output[standard_component_specs.EVALUATION_KEY][0]
INFO:absl:MetadataStore with DB connection initialized
Evaluator
retourne toujours un artefact d'évaluation, et nous pouvons le visualiser en utilisant la bibliothèque tensorflow modèle d' analyse. Par exemple, le code suivant affichera les mesures de précision pour chaque espèce de manchot.
import tensorflow_model_analysis as tfma
eval_result = tfma.load_eval_result(eval_artifact.uri)
tfma.view.render_slicing_metrics(eval_result, slicing_column='species')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'species:0', 'metrics…
Si vous choisissez dans « sparse_categorical_accuracy » Show
la liste déroulante, vous pouvez voir les valeurs de précision par espèce. Vous voudrez peut-être ajouter plus de tranches et vérifier si votre modèle est bon pour toutes les distributions et s'il y a un biais possible.
Prochaines étapes
En savoir plus sur l' analyse du modèle à tensorflow modèle tutoriel bibliothèque analyse .
Vous pouvez trouver plus de ressources sur https://www.tensorflow.org/tfx/tutorials
S'il vous plaît voir Comprendre TFX Pipelines pour en savoir plus sur les différents concepts TFX.