इस नोटबुक-आधारित ट्यूटोरियल में, हम एक TFX पाइपलाइन बनाएंगे और चलाएंगे जो एक सरल वर्गीकरण मॉडल बनाती है और कई रनों में इसके प्रदर्शन का विश्लेषण करती है। इस नोटबुक TFX पाइपलाइन हम में बनाया पर आधारित है सरल TFX पाइपलाइन ट्यूटोरियल । यदि आपने अभी तक उस ट्यूटोरियल को नहीं पढ़ा है, तो इस नोटबुक के साथ आगे बढ़ने से पहले आपको इसे पढ़ना चाहिए।
जैसे ही आप अपने मॉडल में बदलाव करते हैं या इसे नए डेटासेट के साथ प्रशिक्षित करते हैं, आपको यह जांचना होगा कि आपका मॉडल बेहतर हुआ है या खराब हो गया है। सटीकता जैसे शीर्ष-स्तरीय मीट्रिक की जाँच करना ही पर्याप्त नहीं हो सकता है। प्रत्येक प्रशिक्षित मॉडल को उत्पादन में धकेलने से पहले उसका मूल्यांकन किया जाना चाहिए।
हम एक जोड़ देगा Evaluator
पिछले ट्यूटोरियल में बनाया पाइप लाइन के लिए घटक। मूल्यांकनकर्ता घटक आपके मॉडलों के लिए गहन विश्लेषण करता है और नए मॉडल की तुलना आधार रेखा से यह निर्धारित करने के लिए करता है कि वे "काफी अच्छे" हैं। यह का उपयोग कर कार्यान्वित किया जाता है TensorFlow मॉडल विश्लेषण पुस्तकालय।
कृपया देखें TFX पाइपलाइन को समझना TFX में विभिन्न अवधारणाओं के बारे में अधिक जानने के लिए।
सेट अप
सेटअप प्रक्रिया पिछले ट्यूटोरियल की तरह ही है।
हमें सबसे पहले टीएफएक्स पायथन पैकेज को स्थापित करना होगा और डेटासेट डाउनलोड करना होगा जिसका उपयोग हम अपने मॉडल के लिए करेंगे।
पिप अपग्रेड करें
स्थानीय रूप से चलते समय सिस्टम में पिप को अपग्रेड करने से बचने के लिए, यह सुनिश्चित करने के लिए जांचें कि हम कोलाब में चल रहे हैं। स्थानीय प्रणालियों को निश्चित रूप से अलग से अपग्रेड किया जा सकता है।
try:
import colab
!pip install --upgrade pip
except:
pass
टीएफएक्स स्थापित करें
pip install -U tfx
क्या आपने रनटाइम को पुनरारंभ किया?
यदि आप Google Colab का उपयोग कर रहे हैं, जब आप पहली बार ऊपर सेल चलाते हैं, तो आपको "रनटाइम को पुनरारंभ करें" बटन पर क्लिक करके या "रनटाइम> रनटाइम पुनरारंभ करें ..." मेनू का उपयोग करके रनटाइम को पुनरारंभ करना होगा। ऐसा इसलिए है क्योंकि Colab संकुल को लोड करता है।
TensorFlow और TFX संस्करणों की जाँच करें।
import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2 TFX version: 1.4.0
चर सेट करें
पाइपलाइन को परिभाषित करने के लिए कुछ चर का उपयोग किया जाता है। आप इन चरों को अपनी इच्छानुसार अनुकूलित कर सकते हैं। डिफ़ॉल्ट रूप से पाइपलाइन से सभी आउटपुट वर्तमान निर्देशिका के तहत उत्पन्न होंगे।
import os
PIPELINE_NAME = "penguin-tfma"
# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)
from absl import logging
logging.set_verbosity(logging.INFO) # Set default logging level.
उदाहरण डेटा तैयार करें
हम एक ही उपयोग करेगा पामर पेंगुइन डाटासेट ।
इस डेटासेट में चार संख्यात्मक विशेषताएं हैं जिन्हें पहले से ही [0,1] श्रेणी के लिए सामान्यीकृत किया गया था। हम एक वर्गीकरण मॉडल जो भविष्यवाणी का निर्माण करेगा species
पेंगुइन की।
क्योंकि TFXexampleGen एक निर्देशिका से इनपुट पढ़ता है, हमें एक निर्देशिका बनाने और उसमें डेटासेट कॉपी करने की आवश्यकता है।
import urllib.request
import tempfile
DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datal5lxy_yw/data.csv', <http.client.HTTPMessage at 0x7fa18a9da150>)
एक पाइपलाइन बनाएं
हम एक जोड़ देगा Evaluator
पाइपलाइन हम में बनाया करने के लिए घटक सरल TFX पाइपलाइन ट्यूटोरियल ।
एक मूल्यांकनकर्ता घटक एक से इनपुट डेटा की आवश्यकता है ExampleGen
घटक और एक से एक मॉडल Trainer
घटक और एक tfma.EvalConfig
वस्तु। हम वैकल्पिक रूप से एक बेसलाइन मॉडल की आपूर्ति कर सकते हैं जिसका उपयोग नए प्रशिक्षित मॉडल के साथ मेट्रिक्स की तुलना करने के लिए किया जा सकता है।
एक मूल्यांकनकर्ता उत्पादन कलाकृतियों, के दो प्रकार बनाता है ModelEvaluation
और ModelBlessing
। मॉडल मूल्यांकन में विस्तृत मूल्यांकन परिणाम होता है जिसे टीएफएमए पुस्तकालय के साथ आगे जांचा और देखा जा सकता है। ModelBlessing में एक बूलियन परिणाम होता है कि क्या मॉडल दिए गए मानदंडों को पारित करता है और बाद के घटकों जैसे पुशर में सिग्नल के रूप में उपयोग किया जा सकता है।
मॉडल प्रशिक्षण कोड लिखें
हम में के रूप में एक ही मॉडल कोड का उपयोग करेगा सरल TFX पाइपलाइन ट्यूटोरियल ।
_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}
# Copied from https://www.tensorflow.org/tfx/tutorials/tfx/penguin_simple
from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils
from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.fn_args_utils import DataAccessor
from tfx_bsl.tfxio import dataset_options
from tensorflow_metadata.proto.v0 import schema_pb2
_FEATURE_KEYS = [
'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'
_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10
# Since we're not generating or creating a schema, we will instead create
# a feature spec. Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
**{
feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
for feature in _FEATURE_KEYS
},
_LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}
def _input_fn(file_pattern: List[str],
data_accessor: DataAccessor,
schema: schema_pb2.Schema,
batch_size: int = 200) -> tf.data.Dataset:
"""Generates features and label for training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
schema: schema of the input data.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
return data_accessor.tf_dataset_factory(
file_pattern,
dataset_options.TensorFlowDatasetOptions(
batch_size=batch_size, label_key=_LABEL_KEY),
schema=schema).repeat()
def _build_keras_model() -> tf.keras.Model:
"""Creates a DNN Keras model for classifying penguin data.
Returns:
A Keras Model.
"""
# The model below is built with Functional API, please refer to
# https://www.tensorflow.org/guide/keras/overview for all API options.
inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
d = keras.layers.concatenate(inputs)
for _ in range(2):
d = keras.layers.Dense(8, activation='relu')(d)
outputs = keras.layers.Dense(3)(d)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=keras.optimizers.Adam(1e-2),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.summary(print_fn=logging.info)
return model
# TFX Trainer will call this function.
def run_fn(fn_args: TrainerFnArgs):
"""Train the model based on given args.
Args:
fn_args: Holds args used to train the model as name/value pairs.
"""
# This schema is usually either an output of SchemaGen or a manually-curated
# version provided by pipeline author. A schema can also derived from TFT
# graph if a Transform component is used. In the case when either is missing,
# `schema_from_feature_spec` could be used to generate schema from very simple
# feature_spec, but the schema returned would be very primitive.
schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)
train_dataset = _input_fn(
fn_args.train_files,
fn_args.data_accessor,
schema,
batch_size=_TRAIN_BATCH_SIZE)
eval_dataset = _input_fn(
fn_args.eval_files,
fn_args.data_accessor,
schema,
batch_size=_EVAL_BATCH_SIZE)
model = _build_keras_model()
model.fit(
train_dataset,
steps_per_epoch=fn_args.train_steps,
validation_data=eval_dataset,
validation_steps=fn_args.eval_steps)
# The result of the training should be saved in `fn_args.serving_model_dir`
# directory.
model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py
एक पाइपलाइन परिभाषा लिखें
हम TFX पाइपलाइन बनाने के लिए एक फ़ंक्शन को परिभाषित करेंगे। मूल्यांकनकर्ता घटक हम ऊपर उल्लेख किया है के अलावा, हम एक और नोड जोड़ देगी Resolver
। यह जांचने के लिए कि कोई नया मॉडल पिछले मॉडल से बेहतर हो रहा है, हमें इसकी तुलना पिछले प्रकाशित मॉडल से करनी होगी, जिसे बेसलाइन कहा जाता है। एमएल मेटाडाटा (MLMD) पाइप लाइन के पिछले सभी कलाकृतियों को ट्रैक करता है और Resolver
नवीनतम धन्य मॉडल था क्या पा सकते हैं - एक रणनीति वर्ग कहा जाता है का उपयोग कर MLMD से - एक मॉडल को सफलतापूर्वक मूल्यांकनकर्ता पारित कर दिया LatestBlessedModelStrategy
।
import tensorflow_model_analysis as tfma
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
module_file: str, serving_model_dir: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Creates a three component penguin pipeline with TFX."""
# Brings data into the pipeline.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# Uses user-provided Python function that trains a model.
trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))
# NEW: Get the latest blessed model for Evaluator.
model_resolver = tfx.dsl.Resolver(
strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
model_blessing=tfx.dsl.Channel(
type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
'latest_blessed_model_resolver')
# NEW: Uses TFMA to compute evaluation statistics over features of a model and
# perform quality validation of a candidate model (compared to a baseline).
eval_config = tfma.EvalConfig(
model_specs=[tfma.ModelSpec(label_key='species')],
slicing_specs=[
# An empty slice spec means the overall slice, i.e. the whole dataset.
tfma.SlicingSpec(),
# Calculate metrics for each penguin species.
tfma.SlicingSpec(feature_keys=['species']),
],
metrics_specs=[
tfma.MetricsSpec(per_slice_thresholds={
'sparse_categorical_accuracy':
tfma.PerSliceMetricThresholds(thresholds=[
tfma.PerSliceMetricThreshold(
slicing_specs=[tfma.SlicingSpec()],
threshold=tfma.MetricThreshold(
value_threshold=tfma.GenericValueThreshold(
lower_bound={'value': 0.6}),
# Change threshold will be ignored if there is no
# baseline model resolved from MLMD (first run).
change_threshold=tfma.GenericChangeThreshold(
direction=tfma.MetricDirection.HIGHER_IS_BETTER,
absolute={'value': -1e-10}))
)]),
})],
)
evaluator = tfx.components.Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
baseline_model=model_resolver.outputs['model'],
eval_config=eval_config)
# Checks whether the model passed the validation steps and pushes the model
# to a file destination if check passed.
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
model_blessing=evaluator.outputs['blessing'], # Pass an evaluation result.
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
components = [
example_gen,
trainer,
# Following two components were added to the pipeline.
model_resolver,
evaluator,
pusher,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components)
हम मूल्यांकनकर्ता के माध्यम से करने के लिए निम्न जानकारी देने की आवश्यकता eval_config
:
- कॉन्फ़िगर करने के लिए अतिरिक्त मीट्रिक (यदि मॉडल में परिभाषित से अधिक मीट्रिक चाहते हैं)।
- कॉन्फ़िगर करने के लिए स्लाइस
- सत्यापन को शामिल करने के लिए सत्यापित करने के लिए मॉडल सत्यापन थ्रेसहोल्ड
क्योंकि SparseCategoricalAccuracy
पहले से ही शामिल किया गया था model.compile()
कॉल, यह विश्लेषण में स्वचालित रूप से शामिल किया जाएगा। इसलिए हम यहां कोई अतिरिक्त मीट्रिक नहीं जोड़ते हैं। SparseCategoricalAccuracy
तय करने के लिए मॉडल काफी अच्छा है, भी है इस्तेमाल किया जाएगा।
हम संपूर्ण डेटासेट और प्रत्येक पेंगुइन प्रजाति के लिए मीट्रिक की गणना करते हैं। SlicingSpec
निर्दिष्ट करता है कि हम कैसे घोषित मैट्रिक्स दिखाते हैं।
दो थ्रेसहोल्ड हैं जिन्हें एक नया मॉडल पास करना चाहिए, एक 0.6 की पूर्ण सीमा है और दूसरा एक सापेक्ष सीमा है कि यह बेसलाइन मॉडल से अधिक होना चाहिए। जब आप पहली बार के लिए पाइप लाइन चलाने के लिए, change_threshold
नजरअंदाज कर दिया जाएगा और केवल value_threshold जाँच की जाएगी। आप पाइप लाइन एक बार से अधिक चलाते हैं, Resolver
पिछले रन से एक मॉडल मिल जाएगा और यह तुलना के लिए एक आधार रेखा मॉडल के रूप में इस्तेमाल किया जाएगा।
देखें मूल्यांकनकर्ता घटक गाइड अधिक जानकारी के लिए।
पाइपलाइन चलाएं
हम का उपयोग करेगा LocalDagRunner
पिछले ट्यूटोरियल में के रूप में।
tfx.orchestration.LocalDagRunner().run(
_create_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=PIPELINE_ROOT,
data_root=DATA_ROOT,
module_file=_trainer_module_file,
serving_model_dir=SERVING_MODEL_DIR,
metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']). INFO:absl:User module package has hash fingerprint version 1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpr3anh67s/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6s2sw4dj', '--dist-dir', '/tmp/tmp6jr76e54'] /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. setuptools.SetuptoolsDeprecationWarning, listing git files failed - pretending there aren't any INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'; target user module is 'penguin_trainer'. INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' INFO:absl:Using deployment config: executor_specs { key: "CsvExampleGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor" } } } } executor_specs { key: "Evaluator" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.evaluator.executor.Executor" } } } } executor_specs { key: "Pusher" value { python_class_executable_spec { class_path: "tfx.components.pusher.executor.Executor" } } } executor_specs { key: "Trainer" value { python_class_executable_spec { class_path: "tfx.components.trainer.executor.GenericExecutor" } } } custom_driver_specs { key: "CsvExampleGen" value { python_class_executable_spec { class_path: "tfx.components.example_gen.driver.FileBasedDriver" } } } metadata_connection_config { sqlite { filename_uri: "metadata/penguin-tfma/metadata.db" connection_mode: READWRITE_OPENCREATE } } INFO:absl:Using connection config: sqlite { filename_uri: "metadata/penguin-tfma/metadata.db" connection_mode: READWRITE_OPENCREATE } INFO:absl:Component CsvExampleGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datal5lxy_yw" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Evaluator" downstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized running bdist_wheel running build running build_py creating build creating build/lib copying penguin_trainer.py -> build/lib installing to /tmp/tmp6s2sw4dj running install running install_lib copying build/lib/penguin_trainer.py -> /tmp/tmp6s2sw4dj running install_egg_info running egg_info creating tfx_user_code_Trainer.egg-info writing tfx_user_code_Trainer.egg-info/PKG-INFO writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3.7.egg-info running install_scripts creating /tmp/tmp6s2sw4dj/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL creating '/tmp/tmp6jr76e54/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' and adding '/tmp/tmp6s2sw4dj' to it adding 'penguin_trainer.py' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/METADATA' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/WHEEL' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/top_level.txt' adding 'tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703.dist-info/RECORD' removing /tmp/tmp6s2sw4dj WARNING: Logging before InitGoogleLogging() is written to STDERR I1205 10:34:23.723806 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.730262 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.736788 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:23.744907 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:MetadataStore with DB connection initialized I1205 10:34:23.758380 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 1 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}), exec_properties={'output_file_format': 5, 'output_config': '{\n "split_config": {\n "splits": [\n {\n "hash_buckets": 2,\n "name": "train"\n },\n {\n "hash_buckets": 1,\n "name": "eval"\n }\n ]\n }\n}', 'input_config': '{\n "splits": [\n {\n "name": "single_split",\n "pattern": "*"\n }\n ]\n}', 'output_data_format': 6, 'input_base': '/tmp/tfx-datal5lxy_yw', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463'}, execution_output_uri='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-datal5lxy_yw" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Evaluator" downstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Generating examples. WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. INFO:absl:Processing input csv data /tmp/tfx-datal5lxy_yw/* to TFExample. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. INFO:absl:Examples generated. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 1 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}) for execution 1 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component CsvExampleGen is finished. INFO:absl:Component latest_blessed_model_resolver is running. INFO:absl:Running launcher for node_info { type { name: "tfx.dsl.components.common.resolver.Resolver" } id: "latest_blessed_model_resolver" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } } inputs { inputs { key: "model" value { channels { context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } artifact_query { type { name: "Model" } } } } } inputs { key: "model_blessing" value { channels { context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } artifact_query { type { name: "ModelBlessing" } } } } } resolver_config { resolver_steps { class_path: "tfx.dsl.input_resolution.strategies.latest_blessed_model_strategy.LatestBlessedModelStrategy" config_json: "{}" input_keys: "model" input_keys: "model_blessing" } } } downstream_nodes: "Evaluator" execution_options { caching_options { } } INFO:absl:Running as an resolver node. INFO:absl:MetadataStore with DB connection initialized WARNING:absl:Artifact type Model is not found in MLMD. WARNING:absl:Artifact type ModelBlessing is not found in MLMD. I1205 10:34:24.899447 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component latest_blessed_model_resolver is finished. INFO:absl:Component Trainer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Evaluator" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized INFO:absl:MetadataStore with DB connection initialized I1205 10:34:24.924589 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 3 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700464882 last_update_time_since_epoch: 1638700464882 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } , artifact_type: name: "Model" )]}), exec_properties={'train_args': '{\n "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'}, execution_output_uri='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Trainer/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Trainer/.system/executor_execution/3/.temp/', pipeline_node=node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Evaluator" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Train on the 'train' split when train_args.splits is not set. INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set. INFO:absl:udf_utils.get_fn {'train_args': '{\n "num_steps": 100\n}', 'custom_config': 'null', 'eval_args': '{\n "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'} 'run_fn' INFO:absl:Installing 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpc97ini82', 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'] Processing ./pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-tfma/_wheels/tfx_user_code_Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703-py3-none-any.whl'. INFO:absl:Training model. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. Installing collected packages: tfx-user-code-Trainer Successfully installed tfx-user-code-Trainer-0.0+1e19049dced0ccb21e0af60dae1c6e0ef09b63d1ff0e370d7f699920c2735703 INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Model: "model" INFO:absl:__________________________________________________________________________________________________ INFO:absl:Layer (type) Output Shape Param # Connected to INFO:absl:================================================================================================== INFO:absl:culmen_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:culmen_depth_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:flipper_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:body_mass_g (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:concatenate (Concatenate) (None, 4) 0 culmen_length_mm[0][0] INFO:absl: culmen_depth_mm[0][0] INFO:absl: flipper_length_mm[0][0] INFO:absl: body_mass_g[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense (Dense) (None, 8) 40 concatenate[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_1 (Dense) (None, 8) 72 dense[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_2 (Dense) (None, 3) 27 dense_1[0][0] INFO:absl:================================================================================================== INFO:absl:Total params: 139 INFO:absl:Trainable params: 139 INFO:absl:Non-trainable params: 0 INFO:absl:__________________________________________________________________________________________________ 100/100 [==============================] - 1s 3ms/step - loss: 0.5273 - sparse_categorical_accuracy: 0.8175 - val_loss: 0.2412 - val_sparse_categorical_accuracy: 0.9600 2021-12-05 10:34:29.879208: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets INFO:tensorflow:Assets written to: pipelines/penguin-tfma/Trainer/model/3/Format-Serving/assets INFO:absl:Training complete. Model written to pipelines/penguin-tfma/Trainer/model/3/Format-Serving. ModelRun written to pipelines/penguin-tfma/Trainer/model_run/3 INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 3 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model_run/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model_run:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelRun" )], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Model" )]}) for execution 3 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:30.399760 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:30.404250 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Trainer is finished. INFO:absl:Component Evaluator is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.evaluator.component.Evaluator" } id: "Evaluator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } } inputs { inputs { key: "baseline_model" value { channels { producer_node_query { id: "latest_blessed_model_resolver" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "blessing" value { artifact_spec { type { name: "ModelBlessing" } } } } outputs { key: "evaluation" value { artifact_spec { type { name: "ModelEvaluation" } } } } } parameters { parameters { key: "eval_config" value { field_value { string_value: "{\n \"metrics_specs\": [\n {\n \"per_slice_thresholds\": {\n \"sparse_categorical_accuracy\": {\n \"thresholds\": [\n {\n \"slicing_specs\": [\n {}\n ],\n \"threshold\": {\n \"change_threshold\": {\n \"absolute\": -1e-10,\n \"direction\": \"HIGHER_IS_BETTER\"\n },\n \"value_threshold\": {\n \"lower_bound\": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n \"model_specs\": [\n {\n \"label_key\": \"species\"\n }\n ],\n \"slicing_specs\": [\n {},\n {\n \"feature_keys\": [\n \"species\"\n ]\n }\n ]\n}" } } } parameters { key: "example_splits" value { field_value { string_value: "null" } } } parameters { key: "fairness_indicator_thresholds" value { field_value { string_value: "null" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Trainer" upstream_nodes: "latest_blessed_model_resolver" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:34:30.428037 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 4 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-tfma/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638700463,sum_checksum:1638700463" } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700464882 last_update_time_since_epoch: 1638700464882 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )], 'model': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700470409 last_update_time_since_epoch: 1638700470409 , artifact_type: id: 19 name: "Model" )], 'baseline_model': []}, output_dict=defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } , artifact_type: name: "ModelBlessing" )], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0" } } , artifact_type: name: "ModelEvaluation" )]}), exec_properties={'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'}, execution_output_uri='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Evaluator/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Evaluator/.system/executor_execution/4/.temp/', pipeline_node=node_info { type { name: "tfx.components.evaluator.component.Evaluator" } id: "Evaluator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } } inputs { inputs { key: "baseline_model" value { channels { producer_node_query { id: "latest_blessed_model_resolver" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.latest_blessed_model_resolver" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "blessing" value { artifact_spec { type { name: "ModelBlessing" } } } } outputs { key: "evaluation" value { artifact_spec { type { name: "ModelEvaluation" } } } } } parameters { parameters { key: "eval_config" value { field_value { string_value: "{\n \"metrics_specs\": [\n {\n \"per_slice_thresholds\": {\n \"sparse_categorical_accuracy\": {\n \"thresholds\": [\n {\n \"slicing_specs\": [\n {}\n ],\n \"threshold\": {\n \"change_threshold\": {\n \"absolute\": -1e-10,\n \"direction\": \"HIGHER_IS_BETTER\"\n },\n \"value_threshold\": {\n \"lower_bound\": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n \"model_specs\": [\n {\n \"label_key\": \"species\"\n }\n ],\n \"slicing_specs\": [\n {},\n {\n \"feature_keys\": [\n \"species\"\n ]\n }\n ]\n}" } } } parameters { key: "example_splits" value { field_value { string_value: "null" } } } parameters { key: "fairness_indicator_thresholds" value { field_value { string_value: "null" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Trainer" upstream_nodes: "latest_blessed_model_resolver" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_eval_shared_model' INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Using pipelines/penguin-tfma/Trainer/model/3/Format-Serving as model. INFO:absl:The 'example_splits' parameter is not set, using 'eval' split. INFO:absl:Evaluating model. INFO:absl:udf_utils.get_fn {'example_splits': 'null', 'eval_config': '{\n "metrics_specs": [\n {\n "per_slice_thresholds": {\n "sparse_categorical_accuracy": {\n "thresholds": [\n {\n "slicing_specs": [\n {}\n ],\n "threshold": {\n "change_threshold": {\n "absolute": -1e-10,\n "direction": "HIGHER_IS_BETTER"\n },\n "value_threshold": {\n "lower_bound": 0.6\n }\n }\n }\n ]\n }\n }\n }\n ],\n "model_specs": [\n {\n "label_key": "species"\n }\n ],\n "slicing_specs": [\n {},\n {\n "feature_keys": [\n "species"\n ]\n }\n ]\n}', 'fairness_indicator_thresholds': 'null'} 'custom_extractors' INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config= model_specs { label_key: "species" } slicing_specs { } slicing_specs { feature_keys: "species" } metrics_specs { model_names: "" per_slice_thresholds { key: "sparse_categorical_accuracy" value { thresholds { slicing_specs { } threshold { value_threshold { lower_bound { value: 0.6 } } } } } } } WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:absl:Evaluation complete. Results written to pipelines/penguin-tfma/Evaluator/evaluation/4. INFO:absl:Checking validation results. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 4 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'blessing': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelBlessing" )], 'evaluation': [Artifact(artifact: uri: "pipelines/penguin-tfma/Evaluator/evaluation/4" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:evaluation:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelEvaluation" )]}) for execution 4 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.040588 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:34:35.045548 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Evaluator is finished. INFO:absl:Component Pusher is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "model_blessing" value { channels { producer_node_query { id: "Evaluator" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } artifact_query { type { name: "ModelBlessing" } } output_key: "blessing" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfma\"\n }\n}" } } } } upstream_nodes: "Evaluator" upstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.068168 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 5 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'model': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-tfma/Trainer/model/3" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700470409 last_update_time_since_epoch: 1638700470409 , artifact_type: id: 19 name: "Model" )], 'model_blessing': [Artifact(artifact: id: 4 type_id: 21 uri: "pipelines/penguin-tfma/Evaluator/blessing/4" custom_properties { key: "blessed" value { int_value: 1 } } custom_properties { key: "current_model" value { string_value: "pipelines/penguin-tfma/Trainer/model/3" } } custom_properties { key: "current_model_id" value { int_value: 3 } } custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Evaluator:blessing:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638700475049 last_update_time_since_epoch: 1638700475049 , artifact_type: id: 21 name: "ModelBlessing" )]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0" } } , artifact_type: name: "PushedModel" )]}), exec_properties={'custom_config': 'null', 'push_destination': '{\n "filesystem": {\n "base_directory": "serving_model/penguin-tfma"\n }\n}'}, execution_output_uri='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfma/Pusher/.system/stateful_working_dir/2021-12-05T10:34:23.517028', tmp_dir='pipelines/penguin-tfma/Pusher/.system/executor_execution/5/.temp/', pipeline_node=node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-tfma.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } inputs { key: "model_blessing" value { channels { producer_node_query { id: "Evaluator" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-tfma" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:34:23.517028" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-tfma.Evaluator" } } } artifact_query { type { name: "ModelBlessing" } } output_key: "blessing" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-tfma\"\n }\n}" } } } } upstream_nodes: "Evaluator" upstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-tfma" , pipeline_run_id='2021-12-05T10:34:23.517028') INFO:absl:Model version: 1638700475 INFO:absl:Model written to serving path serving_model/penguin-tfma/1638700475. INFO:absl:Model pushed to pipelines/penguin-tfma/Pusher/pushed_model/5. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 5 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfma/Pusher/pushed_model/5" custom_properties { key: "name" value { string_value: "penguin-tfma:2021-12-05T10:34:23.517028:Pusher:pushed_model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "PushedModel" )]}) for execution 5 INFO:absl:MetadataStore with DB connection initialized I1205 10:34:35.098553 28099 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Pusher is finished.
जब पाइपलाइन पूरी हो जाती है, तो आपको निम्न जैसा कुछ देखने में सक्षम होना चाहिए:
INFO:absl:Blessing result True written to pipelines/penguin-tfma/Evaluator/blessing/4.
या आप मैन्युअल रूप से आउटपुट निर्देशिका की जांच भी कर सकते हैं जहां उत्पन्न कलाकृतियों को संग्रहीत किया जाता है। आप जाएँ pipelines/penguin-tfma/Evaluator/blessing/
एक फ़ाइल broswer के साथ, आप एक नाम के साथ एक फ़ाइल देख सकते हैं BLESSED
या NOT_BLESSED
मूल्यांकन परिणाम के अनुसार।
तो आशीर्वाद परिणाम है False
, पुशर को मॉडल पुश करने के लिए मना कर देगा serving_model_dir
, क्योंकि मॉडल काफी अच्छा उत्पादन में प्रयोग की जाने वाली नहीं है।
आप संभवतः विभिन्न मूल्यांकन विन्यासों के साथ पाइपलाइन को फिर से चला सकते हैं। यहां तक कि अगर आप ठीक उसी config और डेटासेट के साथ पाइप लाइन चलाने के लिए, प्रशिक्षित मॉडल थोड़ा मॉडल प्रशिक्षण जो एक को जन्म दे सकता के निहित अनियमितता की वजह से अलग हो सकता है NOT_BLESSED
मॉडल।
पाइपलाइन के आउटपुट की जांच करें
आप ModelEvaluation आर्टिफैक्ट में मूल्यांकन परिणाम की जांच और कल्पना करने के लिए TFMA का उपयोग कर सकते हैं।
आउटपुट कलाकृतियों से विश्लेषण परिणाम प्राप्त करें
इन आउटपुट को प्रोग्रामेटिक रूप से ढूंढने के लिए आप एमएलएमडी एपीआई का उपयोग कर सकते हैं। सबसे पहले, हम कुछ उपयोगिता कार्यों को परिभाषित करेंगे जो कि अभी उत्पादित आउटपुट कलाकृतियों की खोज के लिए हैं।
from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib
# TODO(b/171447278): Move these functions into the TFX library.
def get_latest_artifacts(metadata, pipeline_name, component_id):
"""Output artifacts of the latest run of the component."""
context = metadata.store.get_context_by_type_and_name(
'node', f'{pipeline_name}.{component_id}')
executions = metadata.store.get_executions_by_context(context.id)
latest_execution = max(executions,
key=lambda e:e.last_update_time_since_epoch)
return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
[metadata_store_pb2.Event.OUTPUT])
हम के नवीनतम निष्पादन पा सकते हैं Evaluator
घटक है और इसका उत्पादन कलाकृतियों मिलता है।
# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs
metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
METADATA_PATH)
with Metadata(metadata_connection_config) as metadata_handler:
# Find output artifacts from MLMD.
evaluator_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
'Evaluator')
eval_artifact = evaluator_output[standard_component_specs.EVALUATION_KEY][0]
INFO:absl:MetadataStore with DB connection initialized
Evaluator
हमेशा एक मूल्यांकन विरूपण साक्ष्य देता है, और हम TensorFlow मॉडल विश्लेषण लाइब्रेरी का उपयोग कर यह कल्पना कर सकते हैं। उदाहरण के लिए, निम्नलिखित कोड प्रत्येक पेंगुइन प्रजाति के लिए सटीकता मीट्रिक प्रस्तुत करेगा।
import tensorflow_model_analysis as tfma
eval_result = tfma.load_eval_result(eval_artifact.uri)
tfma.view.render_slicing_metrics(eval_result, slicing_column='species')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'species:0', 'metrics…
आप में 'sparse_categorical_accuracy' चुनते हैं, Show
ड्रॉप-डाउन सूची, तुम प्रजातियों प्रति सटीकता मान देख सकते हैं। हो सकता है कि आप और स्लाइस जोड़ना चाहें और जांच लें कि क्या आपका मॉडल सभी वितरण के लिए अच्छा है और यदि कोई संभावित पूर्वाग्रह है।
अगले कदम
पर मॉडल विश्लेषण पर और जानें TensorFlow मॉडल विश्लेषण पुस्तकालय ट्यूटोरियल ।
आप के बारे में अधिक संसाधन प्राप्त कर सकते https://www.tensorflow.org/tfx/tutorials
कृपया देखें TFX पाइपलाइन को समझना TFX में विभिन्न अवधारणाओं के बारे में अधिक जानने के लिए।