اعتبار سنجی داده ها با استفاده از TFX Pipeline و TensorFlow Validation Data

در این آموزش مبتنی بر نوت بوک، خطوط لوله TFX را برای اعتبارسنجی داده های ورودی و ایجاد یک مدل ML ایجاد و اجرا می کنیم. این نوت بوک است در خط لوله TFX ما در ساخته شده بر اساس ساده TFX خط لوله آموزش . اگر هنوز آن آموزش را نخوانده اید، باید قبل از ادامه با این دفترچه آن را بخوانید.

اولین وظیفه در هر پروژه علم داده یا ML درک و پاکسازی داده ها است که شامل موارد زیر است:

  • درک انواع داده‌ها، توزیع‌ها و سایر اطلاعات (مثلاً مقدار میانگین یا تعداد واحدهای منحصربه‌فرد) در مورد هر ویژگی
  • ایجاد یک طرح اولیه که داده ها را توصیف می کند
  • شناسایی ناهنجاری ها و مقادیر گمشده در داده ها با توجه به طرحواره داده شده

در این آموزش دو خط لوله TFX ایجاد می کنیم.

ابتدا، یک خط لوله برای تجزیه و تحلیل مجموعه داده و ایجاد یک طرح اولیه از مجموعه داده داده شده ایجاد می کنیم. این خط لوله دو مؤلفه جدید شامل StatisticsGen و SchemaGen .

هنگامی که یک طرح واره مناسب از داده ها داشته باشیم، یک خط لوله برای آموزش یک مدل طبقه بندی ML بر اساس خط لوله از آموزش قبلی ایجاد می کنیم. در این خط لوله، ما را به طرح از خط لوله اول و یک جزء جدید، استفاده از ExampleValidator ، به اعتبار داده های ورودی.

سه جزء جدید، StatisticsGen، SchemaGen و ExampleValidator، قطعات TFX برای تجزیه و تحلیل داده ها و اعتبار سنجی هستند، و آنها با استفاده از اجرا TensorFlow داده ها اعتبار کتابخانه.

لطفا نگاه کنید به درک TFX خط لوله برای کسب اطلاعات بیشتر در مورد مفاهیم مختلف در TFX.

برپایی

ابتدا باید بسته TFX Python را نصب کنیم و مجموعه داده ای را که برای مدل خود استفاده خواهیم کرد دانلود کنیم.

پیپ را ارتقا دهید

برای جلوگیری از ارتقاء Pip در سیستم هنگام اجرای محلی، بررسی کنید که در Colab در حال اجرا هستیم. البته سیستم های محلی را می توان به طور جداگانه ارتقا داد.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

TFX را نصب کنید

pip install -U tfx

آیا زمان اجرا را مجدداً راه اندازی کردید؟

اگر از Google Colab استفاده می‌کنید، اولین باری که سلول بالا را اجرا می‌کنید، باید با کلیک کردن روی دکمه «راه‌اندازی مجدد زمان اجرا» یا با استفاده از منوی «زمان اجرا > زمان اجرا مجدد ...» زمان اجرا را مجدداً راه‌اندازی کنید. این به دلیل روشی است که Colab بسته ها را بارگذاری می کند.

نسخه های TensorFlow و TFX را بررسی کنید.

import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.4.0

متغیرها را تنظیم کنید

برای تعریف خط لوله از متغیرهایی استفاده می شود. شما می توانید این متغیرها را به دلخواه شخصی سازی کنید. به طور پیش فرض تمام خروجی از خط لوله تحت دایرکتوری فعلی تولید می شود.

import os

# We will create two pipelines. One for schema generation and one for training.
SCHEMA_PIPELINE_NAME = "penguin-tfdv-schema"
PIPELINE_NAME = "penguin-tfdv"

# Output directory to store artifacts generated from the pipeline.
SCHEMA_PIPELINE_ROOT = os.path.join('pipelines', SCHEMA_PIPELINE_NAME)
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
SCHEMA_METADATA_PATH = os.path.join('metadata', SCHEMA_PIPELINE_NAME,
                                    'metadata.db')
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')

# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)

from absl import logging
logging.set_verbosity(logging.INFO)  # Set default logging level.

داده های نمونه را آماده کنید

ما مجموعه داده نمونه را برای استفاده در خط لوله TFX خود دانلود خواهیم کرد. مجموعه داده ما با استفاده از است مجموعه داده پالمر پنگوئن که آن هم در دیگر استفاده می شود نمونه TFX .

چهار ویژگی عددی در این مجموعه داده وجود دارد:

  • culmen_length_mm
  • culmen_depth_mm
  • باله_طول_میلی متر
  • جرم_بدن_گرم

همه ویژگی‌ها قبلاً عادی شده بودند تا محدوده [0،1] داشته باشند. ما یک مدل طبقه بندی که پیش بینی ساخت species از پنگوئن ها.

از آنجایی که مولفه TFX ExampleGen ورودی های یک دایرکتوری را می خواند، باید یک دایرکتوری ایجاد کنیم و مجموعه داده را در آن کپی کنیم.

import urllib.request
import tempfile

DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data')  # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-datan3p7t1d2/data.csv', <http.client.HTTPMessage at 0x7f8d2f9f9110>)

نگاهی گذرا به فایل CSV بیندازید.

head {_data_filepath}
species,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g
0,0.2545454545454545,0.6666666666666666,0.15254237288135594,0.2916666666666667
0,0.26909090909090905,0.5119047619047618,0.23728813559322035,0.3055555555555556
0,0.29818181818181805,0.5833333333333334,0.3898305084745763,0.1527777777777778
0,0.16727272727272732,0.7380952380952381,0.3559322033898305,0.20833333333333334
0,0.26181818181818167,0.892857142857143,0.3050847457627119,0.2638888888888889
0,0.24727272727272717,0.5595238095238096,0.15254237288135594,0.2569444444444444
0,0.25818181818181823,0.773809523809524,0.3898305084745763,0.5486111111111112
0,0.32727272727272727,0.5357142857142859,0.1694915254237288,0.1388888888888889
0,0.23636363636363636,0.9642857142857142,0.3220338983050847,0.3055555555555556

شما باید بتوانید پنج ستون ویژگی را ببینید. species یکی از 0، 1 یا 2 است، و همه از ویژگی های دیگر باید به ارزش های بین 0 و 1. ما یک خط لوله TFX به تجزیه و تحلیل این مجموعه داده ایجاد خواهد شد.

یک طرح اولیه ایجاد کنید

خطوط لوله TFX با استفاده از API های پایتون تعریف می شوند. ما یک خط لوله ایجاد می کنیم تا طرحواره ای را از نمونه های ورودی به طور خودکار تولید کنیم. این طرحواره را می توان توسط یک انسان بررسی و در صورت نیاز تنظیم کرد. هنگامی که طرح نهایی نهایی شد، می توان از آن برای آموزش و اعتبار سنجی نمونه در کارهای بعدی استفاده کرد.

علاوه بر CsvExampleGen است که در استفاده ساده TFX خط لوله آموزش ، ما استفاده از StatisticsGen و SchemaGen :

  • StatisticsGen محاسبه آمار برای مجموعه داده.
  • SchemaGen به بررسی آمار و طرح داده های اولیه ایجاد می کند.

راهنماهای برای هر جزء را ببینید و یا اجزای TFX آموزش برای کسب اطلاعات بیشتر در این قطعات.

یک تعریف خط لوله بنویسید

ما یک تابع برای ایجاد خط لوله TFX تعریف می کنیم. Pipeline شیء نشان دهنده یک خط لوله TFX است که می تواند با استفاده از یکی از سیستم های خط لوله ارکستراسیون است که پشتیبانی از TFX را اجرا کنید.

def _create_schema_pipeline(pipeline_name: str,
                            pipeline_root: str,
                            data_root: str,
                            metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a pipeline for schema generation."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # NEW: Computes statistics over data for visualization and schema generation.
  statistics_gen = tfx.components.StatisticsGen(
      examples=example_gen.outputs['examples'])

  # NEW: Generates schema based on the generated statistics.
  schema_gen = tfx.components.SchemaGen(
      statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True)

  components = [
      example_gen,
      statistics_gen,
      schema_gen,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

خط لوله را اجرا کنید

ما استفاده خواهد کرد LocalDagRunner در آموزش های قبلی.

tfx.orchestration.LocalDagRunner().run(
  _create_schema_pipeline(
      pipeline_name=SCHEMA_PIPELINE_NAME,
      pipeline_root=SCHEMA_PIPELINE_ROOT,
      data_root=DATA_ROOT,
      metadata_path=SCHEMA_METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "SchemaGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.schema_gen.executor.Executor"
    }
  }
}
executor_specs {
  key: "StatisticsGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.statistics_gen.executor.Executor"
      }
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-tfdv-schema/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-tfdv-schema/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1205 11:10:06.444468  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:06.453292  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:06.460209  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:06.467104  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 1
I1205 11:10:06.521926  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'input_base': '/tmp/tfx-datan3p7t1d2', 'output_file_format': 5, 'output_data_format': 6, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606'}, execution_output_uri='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv-schema"
, pipeline_run_id='2021-12-05T11:10:06.420329')
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-datan3p7t1d2/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component StatisticsGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "SchemaGen"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:08.104562  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 2
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=2, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfdv-schema/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702608076
last_update_time_since_epoch: 1638702608076
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv-schema/StatisticsGen/.system/executor_execution/2/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/StatisticsGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/StatisticsGen/.system/executor_execution/2/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "SchemaGen"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv-schema"
, pipeline_run_id='2021-12-05T11:10:06.420329')
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 2 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 2
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component StatisticsGen is finished.
INFO:absl:Component SchemaGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.schema_gen.component.SchemaGen"
  }
  id: "SchemaGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.SchemaGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
  parameters {
    key: "infer_feature_shape"
    value {
      field_value {
        int_value: 1
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:10.975282  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'statistics': [Artifact(artifact: id: 2
type_id: 17
uri: "pipelines/penguin-tfdv-schema/StatisticsGen/statistics/2"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702610957
last_update_time_since_epoch: 1638702610957
, artifact_type: id: 17
name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}, output_dict=defaultdict(<class 'list'>, {'schema': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/SchemaGen/schema/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:SchemaGen:schema:0"
  }
}
, artifact_type: name: "Schema"
)]}), exec_properties={'exclude_splits': '[]', 'infer_feature_shape': 1}, execution_output_uri='pipelines/penguin-tfdv-schema/SchemaGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv-schema/SchemaGen/.system/stateful_working_dir/2021-12-05T11:10:06.420329', tmp_dir='pipelines/penguin-tfdv-schema/SchemaGen/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.schema_gen.component.SchemaGen"
  }
  id: "SchemaGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:06.420329"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv-schema.SchemaGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:06.420329"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv-schema.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "schema"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
  parameters {
    key: "infer_feature_shape"
    value {
      field_value {
        int_value: 1
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv-schema"
, pipeline_run_id='2021-12-05T11:10:06.420329')
INFO:absl:Processing schema from statistics for split train.
INFO:absl:Processing schema from statistics for split eval.
INFO:absl:Schema written to pipelines/penguin-tfdv-schema/SchemaGen/schema/3/schema.pbtxt.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'schema': [Artifact(artifact: uri: "pipelines/penguin-tfdv-schema/SchemaGen/schema/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv-schema:2021-12-05T11:10:06.420329:SchemaGen:schema:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Schema"
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component SchemaGen is finished.
I1205 11:10:11.010145  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type

باید ببینید "INFO:absl:Component SchemaGen تمام شد." اگر خط لوله با موفقیت به پایان برسد.

ما خروجی خط لوله را برای درک مجموعه داده خود بررسی می کنیم.

بررسی خروجی های خط لوله

همانطور که در آموزش های قبلی توضیح داده شده، یک خط لوله TFX تولید دو نوع خروجی، مصنوعات و ابرداده DB (MLMD) که شامل ابرداده از مصنوعات و اعدام خط لوله. محل این خروجی ها را در سلول های بالا مشخص کردیم. به طور پیش فرض، مصنوعات تحت ذخیره شده pipelines دایرکتوری و ابرداده به عنوان یک پایگاه داده SQLite تحت ذخیره شده metadata دایرکتوری.

شما می توانید از API های MLMD برای مکان یابی این خروجی ها به صورت برنامه ای استفاده کنید. ابتدا، برخی از توابع کاربردی را برای جستجوی مصنوعات خروجی که به تازگی تولید شده اند، تعریف می کنیم.

from ml_metadata.proto import metadata_store_pb2
# Non-public APIs, just for showcase.
from tfx.orchestration.portable.mlmd import execution_lib

# TODO(b/171447278): Move these functions into the TFX library.

def get_latest_artifacts(metadata, pipeline_name, component_id):
  """Output artifacts of the latest run of the component."""
  context = metadata.store.get_context_by_type_and_name(
      'node', f'{pipeline_name}.{component_id}')
  executions = metadata.store.get_executions_by_context(context.id)
  latest_execution = max(executions,
                         key=lambda e:e.last_update_time_since_epoch)
  return execution_lib.get_artifacts_dict(metadata, latest_execution.id,
                                          [metadata_store_pb2.Event.OUTPUT])

# Non-public APIs, just for showcase.
from tfx.orchestration.experimental.interactive import visualizations

def visualize_artifacts(artifacts):
  """Visualizes artifacts using standard visualization modules."""
  for artifact in artifacts:
    visualization = visualizations.get_registry().get_visualization(
        artifact.type_name)
    if visualization:
      visualization.display(artifact)

from tfx.orchestration.experimental.interactive import standard_visualizations
standard_visualizations.register_standard_visualizations()

اکنون می توانیم خروجی های اجرای خط لوله را بررسی کنیم.

# Non-public APIs, just for showcase.
from tfx.orchestration.metadata import Metadata
from tfx.types import standard_component_specs

metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
    SCHEMA_METADATA_PATH)

with Metadata(metadata_connection_config) as metadata_handler:
  # Find output artifacts from MLMD.
  stat_gen_output = get_latest_artifacts(metadata_handler, SCHEMA_PIPELINE_NAME,
                                         'StatisticsGen')
  stats_artifacts = stat_gen_output[standard_component_specs.STATISTICS_KEY]

  schema_gen_output = get_latest_artifacts(metadata_handler,
                                           SCHEMA_PIPELINE_NAME, 'SchemaGen')
  schema_artifacts = schema_gen_output[standard_component_specs.SCHEMA_KEY]
INFO:absl:MetadataStore with DB connection initialized

زمان بررسی خروجی های هر جزء فرا رسیده است. همانطور که در بالا توضیح داده شد، Tensorflow داده اعتبار سنجی (TFDV) در استفاده StatisticsGen و SchemaGen و TFDV نیز فراهم می کند تجسم از خروجی از این قطعات.

در این آموزش از روش های کمکی تجسم در TFX استفاده می کنیم که از TFDV به صورت داخلی برای نمایش تصویرسازی استفاده می کنند.

خروجی StatisticsGen را بررسی کنید

# docs-infra: no-execute
visualize_artifacts(stats_artifacts)

می توانید آمارهای مختلفی را برای داده های ورودی مشاهده کنید. این آمار به عرضه SchemaGen برای ساخت یک طرح اولیه از داده ها به صورت خودکار.

خروجی SchemaGen را بررسی کنید

visualize_artifacts(schema_artifacts)

این طرح به طور خودکار از خروجی StatisticsGen استنباط می شود. شما باید بتوانید 4 ویژگی FLOAT و 1 ویژگی INT را ببینید.

این طرح را برای استفاده در آینده صادر کنید

ما باید طرحواره تولید شده را بررسی و اصلاح کنیم. طرح بررسی شده باید ادامه یابد تا در خطوط لوله بعدی برای آموزش مدل ML استفاده شود. به عبارت دیگر، ممکن است بخواهید فایل طرحواره را برای موارد استفاده واقعی به سیستم کنترل نسخه خود اضافه کنید. در این آموزش، ما برای سادگی طرحواره را در یک مسیر سیستم فایل از پیش تعریف شده کپی می کنیم.

import shutil

_schema_filename = 'schema.pbtxt'
SCHEMA_PATH = 'schema'

os.makedirs(SCHEMA_PATH, exist_ok=True)
_generated_path = os.path.join(schema_artifacts[0].uri, _schema_filename)

# Copy the 'schema.pbtxt' file from the artifact uri to a predefined path.
shutil.copy(_generated_path, SCHEMA_PATH)
'schema/schema.pbtxt'

فایل طرح با استفاده از قالب متن پروتکل بافر و یک نمونه از پروتو TensorFlow الگوی فراداده .

print(f'Schema at {SCHEMA_PATH}-----')
!cat {SCHEMA_PATH}/*
Schema at schema-----
feature {
  name: "body_mass_g"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "culmen_depth_mm"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "culmen_length_mm"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "flipper_length_mm"
  type: FLOAT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}
feature {
  name: "species"
  type: INT
  presence {
    min_fraction: 1.0
    min_count: 1
  }
  shape {
    dim {
      size: 1
    }
  }
}

باید مطمئن شوید که تعریف طرحواره را در صورت نیاز بررسی کرده و احتمالاً ویرایش کنید. در این آموزش، ما فقط از طرحواره تولید شده بدون تغییر استفاده می کنیم.

نمونه های ورودی را اعتبارسنجی کنید و یک مدل ML را آموزش دهید

ما تماس خواهد رفت به خط لوله که ما در ایجاد ساده TFX خط لوله آموزش ، برای آموزش یک مدل ML و استفاده از طرح های تولید شده برای نوشتن کد آموزش مدل.

ما همچنین یک افزودنی ExampleValidator جزء است که برای ناهنجاری و مقادیر از دست رفته در مجموعه داده های دریافتی با توجه به طرح نگاه خواهد کرد.

کد آموزشی مدل را بنویسید

ما نیاز به نوشتن کد مدل که ما در انجام ساده TFX خط لوله آموزش .

خود مدل مانند آموزش قبلی است، اما این بار به جای تعیین دستی ویژگی ها، از طرحواره تولید شده از خط لوله قبلی استفاده می کنیم. اکثر کدها تغییر نکردند. تنها تفاوت این است که ما نیازی به تعیین نام و نوع ویژگی ها در این فایل نداریم. در عوض، ما آنها را از فایل طرح به عنوان خوانده شده.

_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}

from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils

from tfx import v1 as tfx
from tfx_bsl.public import tfxio
from tensorflow_metadata.proto.v0 import schema_pb2

# We don't need to specify _FEATURE_KEYS and _FEATURE_SPEC any more.
# Those information can be read from the given schema file.

_LABEL_KEY = 'species'

_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10

def _input_fn(file_pattern: List[str],
              data_accessor: tfx.components.DataAccessor,
              schema: schema_pb2.Schema,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    schema: schema of the input data.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      tfxio.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      schema=schema).repeat()


def _build_keras_model(schema: schema_pb2.Schema) -> tf.keras.Model:
  """Creates a DNN Keras model for classifying penguin data.

  Returns:
    A Keras Model.
  """
  # The model below is built with Functional API, please refer to
  # https://www.tensorflow.org/guide/keras/overview for all API options.

  # ++ Changed code: Uses all features in the schema except the label.
  feature_keys = [f.name for f in schema.feature if f.name != _LABEL_KEY]
  inputs = [keras.layers.Input(shape=(1,), name=f) for f in feature_keys]
  # ++ End of the changed code.

  d = keras.layers.concatenate(inputs)
  for _ in range(2):
    d = keras.layers.Dense(8, activation='relu')(d)
  outputs = keras.layers.Dense(3)(d)

  model = keras.Model(inputs=inputs, outputs=outputs)
  model.compile(
      optimizer=keras.optimizers.Adam(1e-2),
      loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
      metrics=[keras.metrics.SparseCategoricalAccuracy()])

  model.summary(print_fn=logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """

  # ++ Changed code: Reads in schema file passed to the Trainer component.
  schema = tfx.utils.parse_pbtxt_file(fn_args.schema_path, schema_pb2.Schema())
  # ++ End of the changed code.

  train_dataset = _input_fn(
      fn_args.train_files,
      fn_args.data_accessor,
      schema,
      batch_size=_TRAIN_BATCH_SIZE)
  eval_dataset = _input_fn(
      fn_args.eval_files,
      fn_args.data_accessor,
      schema,
      batch_size=_EVAL_BATCH_SIZE)

  model = _build_keras_model(schema)
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps)

  # The result of the training should be saved in `fn_args.serving_model_dir`
  # directory.
  model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py

اکنون تمام مراحل آماده سازی برای ساخت خط لوله TFX برای آموزش مدل را تکمیل کرده اید.

یک تعریف خط لوله بنویسید

ما دو جزء جدید، اضافه کردن Importer و ExampleValidator . واردکننده یک فایل خارجی را به خط لوله TFX می آورد. در این مورد، فایلی حاوی تعریف طرحواره است. ExampleValidator داده های ورودی را بررسی می کند و تأیید می کند که آیا همه داده های ورودی با طرح داده ای که ارائه کردیم مطابقت دارند یا خیر.

def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
                     schema_path: str, module_file: str, serving_model_dir: str,
                     metadata_path: str) -> tfx.dsl.Pipeline:
  """Creates a pipeline using predefined schema with TFX."""
  # Brings data into the pipeline.
  example_gen = tfx.components.CsvExampleGen(input_base=data_root)

  # Computes statistics over data for visualization and example validation.
  statistics_gen = tfx.components.StatisticsGen(
      examples=example_gen.outputs['examples'])

  # NEW: Import the schema.
  schema_importer = tfx.dsl.Importer(
      source_uri=schema_path,
      artifact_type=tfx.types.standard_artifacts.Schema).with_id(
          'schema_importer')

  # NEW: Performs anomaly detection based on statistics and data schema.
  example_validator = tfx.components.ExampleValidator(
      statistics=statistics_gen.outputs['statistics'],
      schema=schema_importer.outputs['result'])

  # Uses user-provided Python function that trains a model.
  trainer = tfx.components.Trainer(
      module_file=module_file,
      examples=example_gen.outputs['examples'],
      schema=schema_importer.outputs['result'],  # Pass the imported schema.
      train_args=tfx.proto.TrainArgs(num_steps=100),
      eval_args=tfx.proto.EvalArgs(num_steps=5))

  # Pushes the model to a filesystem destination.
  pusher = tfx.components.Pusher(
      model=trainer.outputs['model'],
      push_destination=tfx.proto.PushDestination(
          filesystem=tfx.proto.PushDestination.Filesystem(
              base_directory=serving_model_dir)))

  components = [
      example_gen,

      # NEW: Following three components were added to the pipeline.
      statistics_gen,
      schema_importer,
      example_validator,

      trainer,
      pusher,
  ]

  return tfx.dsl.Pipeline(
      pipeline_name=pipeline_name,
      pipeline_root=pipeline_root,
      metadata_connection_config=tfx.orchestration.metadata
      .sqlite_metadata_connection_config(metadata_path),
      components=components)

خط لوله را اجرا کنید

tfx.orchestration.LocalDagRunner().run(
  _create_pipeline(
      pipeline_name=PIPELINE_NAME,
      pipeline_root=PIPELINE_ROOT,
      data_root=DATA_ROOT,
      schema_path=SCHEMA_PATH,
      module_file=_trainer_module_file,
      serving_model_dir=SERVING_MODEL_DIR,
      metadata_path=METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']).
INFO:absl:User module package has hash fingerprint version 000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp50dqc5bp/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp6_kn7s87', '--dist-dir', '/tmp/tmpwt7plki0']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'; target user module is 'penguin_trainer'.
INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'
INFO:absl:Using deployment config:
 executor_specs {
  key: "CsvExampleGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "ExampleValidator"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_validator.executor.Executor"
    }
  }
}
executor_specs {
  key: "Pusher"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.pusher.executor.Executor"
    }
  }
}
executor_specs {
  key: "StatisticsGen"
  value {
    beam_executable_spec {
      python_executor_spec {
        class_path: "tfx.components.statistics_gen.executor.Executor"
      }
    }
  }
}
executor_specs {
  key: "Trainer"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.trainer.executor.GenericExecutor"
    }
  }
}
custom_driver_specs {
  key: "CsvExampleGen"
  value {
    python_class_executable_spec {
      class_path: "tfx.components.example_gen.driver.FileBasedDriver"
    }
  }
}
metadata_connection_config {
  sqlite {
    filename_uri: "metadata/penguin-tfdv/metadata.db"
    connection_mode: READWRITE_OPENCREATE
  }
}

INFO:absl:Using connection config:
 sqlite {
  filename_uri: "metadata/penguin-tfdv/metadata.db"
  connection_mode: READWRITE_OPENCREATE
}

INFO:absl:Component CsvExampleGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:11.685647  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:11.692644  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:11.699625  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:11.708110  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 1
I1205 11:10:11.722760  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}), exec_properties={'input_base': '/tmp/tfx-datan3p7t1d2', 'input_config': '{\n  "splits": [\n    {\n      "name": "single_split",\n      "pattern": "*"\n    }\n  ]\n}', 'output_data_format': 6, 'output_config': '{\n  "split_config": {\n    "splits": [\n      {\n        "hash_buckets": 2,\n        "name": "train"\n      },\n      {\n        "hash_buckets": 1,\n        "name": "eval"\n      }\n    ]\n  }\n}', 'output_file_format': 5, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606'}, execution_output_uri='pipelines/penguin-tfdv/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/CsvExampleGen/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen"
  }
  id: "CsvExampleGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.CsvExampleGen"
      }
    }
  }
}
outputs {
  outputs {
    key: "examples"
    value {
      artifact_spec {
        type {
          name: "Examples"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
          properties {
            key: "version"
            value: INT
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "input_base"
    value {
      field_value {
        string_value: "/tmp/tfx-datan3p7t1d2"
      }
    }
  }
  parameters {
    key: "input_config"
    value {
      field_value {
        string_value: "{\n  \"splits\": [\n    {\n      \"name\": \"single_split\",\n      \"pattern\": \"*\"\n    }\n  ]\n}"
      }
    }
  }
  parameters {
    key: "output_config"
    value {
      field_value {
        string_value: "{\n  \"split_config\": {\n    \"splits\": [\n      {\n        \"hash_buckets\": 2,\n        \"name\": \"train\"\n      },\n      {\n        \"hash_buckets\": 1,\n        \"name\": \"eval\"\n      }\n    ]\n  }\n}"
      }
    }
  }
  parameters {
    key: "output_data_format"
    value {
      field_value {
        int_value: 6
      }
    }
  }
  parameters {
    key: "output_file_format"
    value {
      field_value {
        int_value: 5
      }
    }
  }
}
downstream_nodes: "StatisticsGen"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Generating examples.
INFO:absl:Processing input csv data /tmp/tfx-datan3p7t1d2/* to TFExample.
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying penguin_trainer.py -> build/lib
installing to /tmp/tmp6_kn7s87
running install
running install_lib
copying build/lib/penguin_trainer.py -> /tmp/tmp6_kn7s87
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmp6_kn7s87/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3.7.egg-info
running install_scripts
creating /tmp/tmp6_kn7s87/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/WHEEL
creating '/tmp/tmpwt7plki0/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl' and adding '/tmp/tmp6_kn7s87' to it
adding 'penguin_trainer.py'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2.dist-info/RECORD'
removing /tmp/tmp6_kn7s87
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Examples generated.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 1 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}) for execution 1
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component CsvExampleGen is finished.
INFO:absl:Component schema_importer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.dsl.components.common.importer.Importer"
  }
  id: "schema_importer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.schema_importer"
      }
    }
  }
}
outputs {
  outputs {
    key: "result"
    value {
      artifact_spec {
        type {
          name: "Schema"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "artifact_uri"
    value {
      field_value {
        string_value: "schema"
      }
    }
  }
  parameters {
    key: "reimport"
    value {
      field_value {
        int_value: 0
      }
    }
  }
}
downstream_nodes: "ExampleValidator"
downstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:Running as an importer node.
INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:12.796727  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Processing source uri: schema, properties: {}, custom_properties: {}
INFO:absl:Component schema_importer is finished.
I1205 11:10:12.806819  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component StatisticsGen is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "ExampleValidator"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:12.827589  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 3
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612780
last_update_time_since_epoch: 1638702612780
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv/StatisticsGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/StatisticsGen/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/StatisticsGen/.system/executor_execution/3/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.statistics_gen.component.StatisticsGen"
  }
  id: "StatisticsGen"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.StatisticsGen"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "statistics"
    value {
      artifact_spec {
        type {
          name: "ExampleStatistics"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
downstream_nodes: "ExampleValidator"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to pipelines/penguin-tfdv/StatisticsGen/statistics/3/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to pipelines/penguin-tfdv/StatisticsGen/statistics/3/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 3 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 3
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component StatisticsGen is finished.
INFO:absl:Component Trainer is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "schema_importer"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:15.426606  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 4
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'examples': [Artifact(artifact: id: 1
type_id: 15
uri: "pipelines/penguin-tfdv/CsvExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638702606,sum_checksum:1638702606"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:CsvExampleGen:examples:0"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612780
last_update_time_since_epoch: 1638702612780
, artifact_type: id: 15
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)], 'schema': [Artifact(artifact: id: 2
type_id: 17
uri: "schema"
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612810
last_update_time_since_epoch: 1638702612810
, artifact_type: id: 17
name: "Schema"
)]}, output_dict=defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model_run/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model_run:0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0"
  }
}
, artifact_type: name: "Model"
)]}), exec_properties={'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}'}, execution_output_uri='pipelines/penguin-tfdv/Trainer/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/Trainer/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/Trainer/.system/executor_execution/4/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.trainer.component.Trainer"
  }
  id: "Trainer"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Trainer"
      }
    }
  }
}
inputs {
  inputs {
    key: "examples"
    value {
      channels {
        producer_node_query {
          id: "CsvExampleGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.CsvExampleGen"
            }
          }
        }
        artifact_query {
          type {
            name: "Examples"
          }
        }
        output_key: "examples"
      }
      min_count: 1
    }
  }
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
    }
  }
}
outputs {
  outputs {
    key: "model"
    value {
      artifact_spec {
        type {
          name: "Model"
        }
      }
    }
  }
  outputs {
    key: "model_run"
    value {
      artifact_spec {
        type {
          name: "ModelRun"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "eval_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 5\n}"
      }
    }
  }
  parameters {
    key: "module_path"
    value {
      field_value {
        string_value: "penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl"
      }
    }
  }
  parameters {
    key: "train_args"
    value {
      field_value {
        string_value: "{\n  \"num_steps\": 100\n}"
      }
    }
  }
}
upstream_nodes: "CsvExampleGen"
upstream_nodes: "schema_importer"
downstream_nodes: "Pusher"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
INFO:absl:udf_utils.get_fn {'eval_args': '{\n  "num_steps": 5\n}', 'module_path': 'penguin_trainer@pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl', 'custom_config': 'null', 'train_args': '{\n  "num_steps": 100\n}'} 'run_fn'
INFO:absl:Installing 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpbb1l9_v7', 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl']
Processing ./pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl
INFO:absl:Successfully installed 'pipelines/penguin-tfdv/_wheels/tfx_user_code_Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+000876a22093ec764e3751d5a3ed939f1b107d1d6ade133f954ea2a767b8dfb2
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature body_mass_g has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_depth_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature culmen_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature flipper_length_mm has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Feature species has a shape dim {
  size: 1
}
. Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:body_mass_g (InputLayer)        [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_depth_mm (InputLayer)    [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:culmen_length_mm (InputLayer)   [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:flipper_length_mm (InputLayer)  [(None, 1)]          0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 4)            0           body_mass_g[0][0]                
INFO:absl:                                                                 culmen_depth_mm[0][0]            
INFO:absl:                                                                 culmen_length_mm[0][0]           
INFO:absl:                                                                 flipper_length_mm[0][0]          
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 8)            40          concatenate[0][0]                
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 8)            72          dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 3)            27          dense_1[0][0]                    
INFO:absl:==================================================================================================
INFO:absl:Total params: 139
INFO:absl:Trainable params: 139
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
100/100 [==============================] - 1s 3ms/step - loss: 0.5752 - sparse_categorical_accuracy: 0.8165 - val_loss: 0.2294 - val_sparse_categorical_accuracy: 0.9400
2021-12-05 11:10:20.208161: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: pipelines/penguin-tfdv/Trainer/model/4/Format-Serving/assets
INFO:tensorflow:Assets written to: pipelines/penguin-tfdv/Trainer/model/4/Format-Serving/assets
INFO:absl:Training complete. Model written to pipelines/penguin-tfdv/Trainer/model/4/Format-Serving. ModelRun written to pipelines/penguin-tfdv/Trainer/model_run/4
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 4 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model_run': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model_run/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model_run:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ModelRun"
)], 'model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Trainer/model/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "Model"
)]}) for execution 4
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component Trainer is finished.
I1205 11:10:20.766410  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I1205 11:10:20.770478  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component ExampleValidator is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.example_validator.component.ExampleValidator"
  }
  id: "ExampleValidator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.ExampleValidator"
      }
    }
  }
}
inputs {
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
upstream_nodes: "schema_importer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:20.793696  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Going to run a new execution 5
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'statistics': [Artifact(artifact: id: 3
type_id: 19
uri: "pipelines/penguin-tfdv/StatisticsGen/statistics/3"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:StatisticsGen:statistics:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702615406
last_update_time_since_epoch: 1638702615406
, artifact_type: id: 19
name: "ExampleStatistics"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)], 'schema': [Artifact(artifact: id: 2
type_id: 17
uri: "schema"
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702612810
last_update_time_since_epoch: 1638702612810
, artifact_type: id: 17
name: "Schema"
)]}, output_dict=defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-tfdv/ExampleValidator/anomalies/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:ExampleValidator:anomalies:0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-tfdv/ExampleValidator/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/ExampleValidator/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/ExampleValidator/.system/executor_execution/5/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.example_validator.component.ExampleValidator"
  }
  id: "ExampleValidator"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.ExampleValidator"
      }
    }
  }
}
inputs {
  inputs {
    key: "schema"
    value {
      channels {
        producer_node_query {
          id: "schema_importer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.schema_importer"
            }
          }
        }
        artifact_query {
          type {
            name: "Schema"
          }
        }
        output_key: "result"
      }
      min_count: 1
    }
  }
  inputs {
    key: "statistics"
    value {
      channels {
        producer_node_query {
          id: "StatisticsGen"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.StatisticsGen"
            }
          }
        }
        artifact_query {
          type {
            name: "ExampleStatistics"
          }
        }
        output_key: "statistics"
      }
      min_count: 1
    }
  }
}
outputs {
  outputs {
    key: "anomalies"
    value {
      artifact_spec {
        type {
          name: "ExampleAnomalies"
          properties {
            key: "span"
            value: INT
          }
          properties {
            key: "split_names"
            value: STRING
          }
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "exclude_splits"
    value {
      field_value {
        string_value: "[]"
      }
    }
  }
}
upstream_nodes: "StatisticsGen"
upstream_nodes: "schema_importer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to pipelines/penguin-tfdv/ExampleValidator/anomalies/5/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to pipelines/penguin-tfdv/ExampleValidator/anomalies/5/Split-eval.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 5 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-tfdv/ExampleValidator/anomalies/5"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:ExampleValidator:anomalies:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "ExampleAnomalies"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
)]}) for execution 5
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Component ExampleValidator is finished.
INFO:absl:Component Pusher is running.
INFO:absl:Running launcher for node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfdv\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}

INFO:absl:MetadataStore with DB connection initialized
INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:20.848567  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Going to run a new execution 6
INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=6, input_dict={'model': [Artifact(artifact: id: 5
type_id: 22
uri: "pipelines/penguin-tfdv/Trainer/model/4"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Trainer:model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
state: LIVE
create_time_since_epoch: 1638702620774
last_update_time_since_epoch: 1638702620774
, artifact_type: id: 22
name: "Model"
)]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Pusher/pushed_model/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Pusher:pushed_model:0"
  }
}
, artifact_type: name: "PushedModel"
)]}), exec_properties={'push_destination': '{\n  "filesystem": {\n    "base_directory": "serving_model/penguin-tfdv"\n  }\n}', 'custom_config': 'null'}, execution_output_uri='pipelines/penguin-tfdv/Pusher/.system/executor_execution/6/executor_output.pb', stateful_working_dir='pipelines/penguin-tfdv/Pusher/.system/stateful_working_dir/2021-12-05T11:10:11.667239', tmp_dir='pipelines/penguin-tfdv/Pusher/.system/executor_execution/6/.temp/', pipeline_node=node_info {
  type {
    name: "tfx.components.pusher.component.Pusher"
  }
  id: "Pusher"
}
contexts {
  contexts {
    type {
      name: "pipeline"
    }
    name {
      field_value {
        string_value: "penguin-tfdv"
      }
    }
  }
  contexts {
    type {
      name: "pipeline_run"
    }
    name {
      field_value {
        string_value: "2021-12-05T11:10:11.667239"
      }
    }
  }
  contexts {
    type {
      name: "node"
    }
    name {
      field_value {
        string_value: "penguin-tfdv.Pusher"
      }
    }
  }
}
inputs {
  inputs {
    key: "model"
    value {
      channels {
        producer_node_query {
          id: "Trainer"
        }
        context_queries {
          type {
            name: "pipeline"
          }
          name {
            field_value {
              string_value: "penguin-tfdv"
            }
          }
        }
        context_queries {
          type {
            name: "pipeline_run"
          }
          name {
            field_value {
              string_value: "2021-12-05T11:10:11.667239"
            }
          }
        }
        context_queries {
          type {
            name: "node"
          }
          name {
            field_value {
              string_value: "penguin-tfdv.Trainer"
            }
          }
        }
        artifact_query {
          type {
            name: "Model"
          }
        }
        output_key: "model"
      }
    }
  }
}
outputs {
  outputs {
    key: "pushed_model"
    value {
      artifact_spec {
        type {
          name: "PushedModel"
        }
      }
    }
  }
}
parameters {
  parameters {
    key: "custom_config"
    value {
      field_value {
        string_value: "null"
      }
    }
  }
  parameters {
    key: "push_destination"
    value {
      field_value {
        string_value: "{\n  \"filesystem\": {\n    \"base_directory\": \"serving_model/penguin-tfdv\"\n  }\n}"
      }
    }
  }
}
upstream_nodes: "Trainer"
execution_options {
  caching_options {
  }
}
, pipeline_info=id: "penguin-tfdv"
, pipeline_run_id='2021-12-05T11:10:11.667239')
WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline.
INFO:absl:Model version: 1638702620
INFO:absl:Model written to serving path serving_model/penguin-tfdv/1638702620.
INFO:absl:Model pushed to pipelines/penguin-tfdv/Pusher/pushed_model/6.
INFO:absl:Cleaning up stateless execution info.
INFO:absl:Execution 6 succeeded.
INFO:absl:Cleaning up stateful execution info.
INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-tfdv/Pusher/pushed_model/6"
custom_properties {
  key: "name"
  value {
    string_value: "penguin-tfdv:2021-12-05T11:10:11.667239:Pusher:pushed_model:0"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.4.0"
  }
}
, artifact_type: name: "PushedModel"
)]}) for execution 6
INFO:absl:MetadataStore with DB connection initialized
I1205 11:10:20.879335  4006 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Component Pusher is finished.

باید "INFO:absl:Component Pusher تمام شد" را ببینید. اگر خط لوله با موفقیت به پایان برسد.

خروجی های خط لوله را بررسی کنید

ما مدل طبقه‌بندی پنگوئن‌ها را آموزش داده‌ایم، و همچنین نمونه‌های ورودی را در مؤلفه ExampleValidator تأیید کرده‌ایم. می‌توانیم خروجی ExampleValidator را همانطور که با خط لوله قبلی انجام دادیم، تجزیه و تحلیل کنیم.

metadata_connection_config = tfx.orchestration.metadata.sqlite_metadata_connection_config(
    METADATA_PATH)

with Metadata(metadata_connection_config) as metadata_handler:
  ev_output = get_latest_artifacts(metadata_handler, PIPELINE_NAME,
                                   'ExampleValidator')
  anomalies_artifacts = ev_output[standard_component_specs.ANOMALIES_KEY]
INFO:absl:MetadataStore with DB connection initialized

ExampleAnomalies از ExampleValidator نیز قابل مشاهده است.

visualize_artifacts(anomalies_artifacts)

برای هر تقسیم از نمونه‌ها باید «هیچ ناهنجاری یافت نشد» را ببینید. از آنجایی که ما از همان داده‌هایی استفاده کردیم که برای تولید طرحواره در این خط لوله استفاده شد، هیچ ناهنجاری در اینجا انتظار نمی‌رود. اگر این خط لوله را به طور مکرر با داده های ورودی جدید اجرا کنید، ExampleValidator باید بتواند هر گونه اختلاف بین داده های جدید و طرح موجود را پیدا کند.

اگر هر گونه ناهنجاری پیدا شد، می توانید داده های خود را بررسی کنید تا ببینید آیا نمونه هایی از فرضیات شما پیروی نمی کنند یا خیر. خروجی های سایر مؤلفه ها مانند StatisticsGen ممکن است مفید باشد. با این حال، هر گونه ناهنجاری که پیدا شود، اجرای بیشتر خط لوله را مسدود نخواهد کرد.

مراحل بعدی

شما می توانید منابع بیشتری در پیدا https://www.tensorflow.org/tfx/tutorials

لطفا نگاه کنید به درک TFX خط لوله برای کسب اطلاعات بیشتر در مورد مفاهیم مختلف در TFX.