Esercitazione sul componente per la stima di TFX

Un'introduzione componente per componente a TensorFlow Extended (TFX)

Questo tutorial basato su Colab illustrerà in modo interattivo ogni componente integrato di TensorFlow Extended (TFX).

Copre ogni fase di una pipeline di machine learning end-to-end, dall'acquisizione dei dati al push di un modello alla pubblicazione.

Quando hai finito, il contenuto di questo notebook può essere esportato automaticamente come codice sorgente della pipeline TFX, che puoi orchestrare con Apache Airflow e Apache Beam.

Sfondo

Questo notebook mostra come utilizzare TFX in un ambiente Jupyter/Colab. Qui, esaminiamo l'esempio di Chicago Taxi in un taccuino interattivo.

Lavorare in un notebook interattivo è un modo utile per familiarizzare con la struttura di una pipeline TFX. È anche utile quando si esegue lo sviluppo delle proprie pipeline come ambiente di sviluppo leggero, ma è necessario essere consapevoli del fatto che esistono differenze nel modo in cui i notebook interattivi sono orchestrati e nel modo in cui accedono agli artefatti dei metadati.

Orchestrazione

In una distribuzione di produzione di TFX, utilizzerai un orchestratore come Apache Airflow, Kubeflow Pipelines o Apache Beam per orchestrare un grafico di pipeline predefinito dei componenti TFX. In un notebook interattivo, il notebook stesso è l'orchestratore, che esegue ogni componente TFX mentre si eseguono le celle del notebook.

Metadati

In una distribuzione di produzione di TFX, accederai ai metadati tramite l'API ML Metadata (MLMD). MLMD archivia le proprietà dei metadati in un database come MySQL o SQLite e archivia i payload dei metadati in un archivio persistente come nel file system. In un quaderno interattivo, entrambe le proprietà e carichi utili sono memorizzati in un database SQLite effimera nella /tmp directory sul notebook o sul server Jupyter Colab.

Impostare

Innanzitutto, installiamo e importiamo i pacchetti necessari, impostiamo percorsi e scarichiamo i dati.

Aggiorna Pip

Per evitare l'aggiornamento di Pip in un sistema durante l'esecuzione in locale, verifica che sia in esecuzione in Colab. I sistemi locali possono ovviamente essere aggiornati separatamente.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Installa TFX

pip install -U tfx

Hai riavviato il runtime?

Se stai utilizzando Google Colab, la prima volta che esegui la cella sopra, devi riavviare il runtime (Runtime > Riavvia runtime...). Ciò è dovuto al modo in cui Colab carica i pacchetti.

Importa pacchetti

Importiamo i pacchetti necessari, comprese le classi di componenti TFX standard.

import os
import pprint
import tempfile
import urllib

import absl
import tensorflow as tf
import tensorflow_model_analysis as tfma
tf.get_logger().propagate = False
pp = pprint.PrettyPrinter()

from tfx import v1 as tfx
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext

%load_ext tfx.orchestration.experimental.interactive.notebook_extensions.skip

Controlliamo le versioni della libreria.

print('TensorFlow version: {}'.format(tf.__version__))
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.4.0

Imposta i percorsi della pipeline

# This is the root directory for your TFX pip package installation.
_tfx_root = tfx.__path__[0]

# This is the directory containing the TFX Chicago Taxi Pipeline example.
_taxi_root = os.path.join(_tfx_root, 'examples/chicago_taxi_pipeline')

# This is the path where your model will be pushed for serving.
_serving_model_dir = os.path.join(
    tempfile.mkdtemp(), 'serving_model/taxi_simple')

# Set up logging.
absl.logging.set_verbosity(absl.logging.INFO)

Scarica dati di esempio

Scarichiamo il set di dati di esempio per l'utilizzo nella nostra pipeline TFX.

Il set di dati che stiamo utilizzando è il taxi Trips set di dati rilasciato dal Comune di Chicago. Le colonne in questo set di dati sono:

pick-up_community_area tariffa trip_start_month
trip_start_hour trip_start_day trip_start_timestamp
pickup_latitude pickup_longitudine dropoff_latitude
dropoff_longitude viaggio_miglia pickup_census_tract
dropoff_census_tract modalità di pagamento società
trip_seconds dropoff_community_area Consigli

Con questo set di dati, costruiremo un modello che prevede le tips di un viaggio.

_data_root = tempfile.mkdtemp(prefix='tfx-data')
DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/chicago_taxi_pipeline/data/simple/data.csv'
_data_filepath = os.path.join(_data_root, "data.csv")
urllib.request.urlretrieve(DATA_PATH, _data_filepath)
('/tmp/tfx-data6e4_3xo9/data.csv', <http.client.HTTPMessage at 0x7f1a7e8cfb10>)

Dai una rapida occhiata al file CSV.

head {_data_filepath}
pickup_community_area,fare,trip_start_month,trip_start_hour,trip_start_day,trip_start_timestamp,pickup_latitude,pickup_longitude,dropoff_latitude,dropoff_longitude,trip_miles,pickup_census_tract,dropoff_census_tract,payment_type,company,trip_seconds,dropoff_community_area,tips
,12.45,5,19,6,1400269500,,,,,0.0,,,Credit Card,Chicago Elite Cab Corp. (Chicago Carriag,0,,0.0
,0,3,19,5,1362683700,,,,,0,,,Unknown,Chicago Elite Cab Corp.,300,,0
60,27.05,10,2,3,1380593700,41.836150155,-87.648787952,,,12.6,,,Cash,Taxi Affiliation Services,1380,,0.0
10,5.85,10,1,2,1382319000,41.985015101,-87.804532006,,,0.0,,,Cash,Taxi Affiliation Services,180,,0.0
14,16.65,5,7,5,1369897200,41.968069,-87.721559063,,,0.0,,,Cash,Dispatch Taxi Affiliation,1080,,0.0
13,16.45,11,12,3,1446554700,41.983636307,-87.723583185,,,6.9,,,Cash,,780,,0.0
16,32.05,12,1,1,1417916700,41.953582125,-87.72345239,,,15.4,,,Cash,,1200,,0.0
30,38.45,10,10,5,1444301100,41.839086906,-87.714003807,,,14.6,,,Cash,,2580,,0.0
11,14.65,1,1,3,1358213400,41.978829526,-87.771166703,,,5.81,,,Cash,,1080,,0.0

Dichiarazione di non responsabilità: questo sito fornisce applicazioni che utilizzano dati che sono stati modificati per l'uso dalla sua fonte originale, www.cityofchicago.org, il sito Web ufficiale della città di Chicago. La città di Chicago non rivendica il contenuto, l'accuratezza, la tempestività o la completezza dei dati forniti in questo sito. I dati forniti in questo sito sono soggetti a modifica in qualsiasi momento. Resta inteso che i dati forniti in questo sito vengono utilizzati a proprio rischio.

Crea il contesto interattivo

Infine, creiamo un InteractiveContext, che ci consentirà di eseguire i componenti TFX in modo interattivo in questo notebook.

# Here, we create an InteractiveContext using default parameters. This will
# use a temporary directory with an ephemeral ML Metadata database instance.
# To use your own pipeline root or database, the optional properties
# `pipeline_root` and `metadata_connection_config` may be passed to
# InteractiveContext. Calls to InteractiveContext are no-ops outside of the
# notebook.
context = InteractiveContext()
WARNING:absl:InteractiveContext pipeline_root argument not provided: using temporary directory /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4 as root for pipeline outputs.
WARNING:absl:InteractiveContext metadata_connection_config not provided: using SQLite ML Metadata database at /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/metadata.sqlite.

Esegui componenti TFX in modo interattivo

Nelle celle che seguono, creiamo i componenti TFX uno per uno, eseguiamo ciascuno di essi e visualizziamo i loro artefatti di output.

EsempioGen

ExampleGen componente è di solito all'inizio di un oleodotto TFX. Lo farà:

  1. Dividi i dati in set di formazione e valutazione (per impostazione predefinita, 2/3 di formazione + 1/3 di valutazione)
  2. I dati convertendoli in tf.Example formato (ulteriori informazioni qui )
  3. Copiare i dati nella _tfx_root directory per altri componenti per l'accesso

ExampleGen prende come input il percorso per l'origine dati. Nel nostro caso, questo è il _data_root percorso che contiene il CSV scaricato.

example_gen = tfx.components.CsvExampleGen(input_base=_data_root)
context.run(example_gen)
INFO:absl:Running driver for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:Running executor for CsvExampleGen
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-data6e4_3xo9/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Running publisher for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo i manufatti di uscita di ExampleGen . Questo componente produce due artefatti, esempi di formazione ed esempi di valutazione:

artifact = example_gen.outputs['examples'].get()[0]
print(artifact.split_names, artifact.uri)
["train", "eval"] /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/CsvExampleGen/examples/1

Possiamo anche dare un'occhiata ai primi tre esempi di formazione:

# Get the URI of the output artifact representing the training examples, which is a directory
train_uri = os.path.join(example_gen.outputs['examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Chicago Elite Cab Corp. (Chicago Carriag"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 12.449999809265137
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Credit Card"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1400269500
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Taxi Affiliation Services"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 27.049999237060547
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.836151123046875
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.64878845214844
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 12.600000381469727
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 1380
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1380593700
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 16.450000762939453
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.98363494873047
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.72357940673828
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 6.900000095367432
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 780
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1446554700
      }
    }
  }
}

Ora che ExampleGen ha terminato l'ingestione dei dati, il passo successivo è l'analisi dei dati.

StatisticheGen

I StatisticsGen Calcola le componenti statistiche oltre il set di dati per l'analisi dei dati, così come per l'utilizzo in componenti a valle. Esso utilizza il tensorflow Data Validation biblioteca.

StatisticsGen prende come input il set di dati che abbiamo appena ingerito utilizzando ExampleGen .

statistics_gen = tfx.components.StatisticsGen(examples=example_gen.outputs['examples'])
context.run(statistics_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for StatisticsGen
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/StatisticsGen/statistics/2/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/StatisticsGen/statistics/2/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Running publisher for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized

Dopo StatisticsGen termina l'esecuzione, possiamo visualizzare le statistiche outputted. Prova a giocare con le diverse trame!

context.show(statistics_gen.outputs['statistics'])

SchemaGen

Lo SchemaGen componente genera uno schema, sulla base di dati statistici. (Uno schema definisce i limiti del previsto, i tipi e le proprietà delle funzioni di set di dati.) Si utilizza anche la tensorflow Data Validation biblioteca.

SchemaGen prenderà come input le statistiche che abbiamo generato con StatisticsGen , guardando la scissione di formazione per impostazione predefinita.

schema_gen = tfx.components.SchemaGen(
    statistics=statistics_gen.outputs['statistics'],
    infer_feature_shape=False)
context.run(schema_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for SchemaGen
INFO:absl:MetadataStore with DB connection initialized
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1205 10:59:36.632395  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for SchemaGen
INFO:absl:Processing schema from statistics for split train.
INFO:absl:Processing schema from statistics for split eval.
INFO:absl:Schema written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/SchemaGen/schema/3/schema.pbtxt.
INFO:absl:Running publisher for SchemaGen
INFO:absl:MetadataStore with DB connection initialized

Dopo SchemaGen termina l'esecuzione, possiamo visualizzare lo schema generato come una tabella.

context.show(schema_gen.outputs['schema'])

Ogni caratteristica nel tuo set di dati viene mostrata come una riga nella tabella dello schema, insieme alle sue proprietà. Lo schema cattura anche tutti i valori che assume una caratteristica categorica, indicata come il suo dominio.

Per ulteriori informazioni su schemi, consultare la documentazione SchemaGen .

Esempio Validator

ExampleValidator componente rileva le anomalie nei dati, sulla base delle aspettative definiti dallo schema. Esso utilizza anche la tensorflow Data Validation biblioteca.

ExampleValidator prenderà come input le statistiche da StatisticsGen , e lo schema da SchemaGen .

example_validator = tfx.components.ExampleValidator(
    statistics=statistics_gen.outputs['statistics'],
    schema=schema_gen.outputs['schema'])
context.run(example_validator)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for ExampleValidator
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/ExampleValidator/anomalies/4/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/ExampleValidator/anomalies/4/Split-eval.
INFO:absl:Running publisher for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized

Dopo ExampleValidator termina l'esecuzione, possiamo visualizzare le anomalie come un tavolo.

context.show(example_validator.outputs['anomalies'])

Nella tabella delle anomalie, possiamo vedere che non ci sono anomalie. Questo è ciò che ci aspetteremmo, poiché questo è il primo set di dati che abbiamo analizzato e lo schema è adattato ad esso. Dovresti rivedere questo schema: qualsiasi cosa inaspettata significa un'anomalia nei dati. Una volta rivisto, lo schema può essere utilizzato per proteggere i dati futuri e le anomalie prodotte qui possono essere utilizzate per eseguire il debug delle prestazioni del modello, comprendere l'evoluzione dei dati nel tempo e identificare gli errori dei dati.

Trasformare

Il Transform esegue componente caratteristica di ingegneria sia per la formazione e servire. Esso utilizza la tensorflow Transform biblioteca.

Transform avrà come input i dati dal ExampleGen , lo schema da SchemaGen , così come un modulo che contiene definito dall'utente Transform codice.

Vediamo un esempio definito dall'utente Transform codice qui sotto (per un'introduzione al tensorflow Transform API, vedere l'esercitazione ). Innanzitutto, definiamo alcune costanti per l'ingegneria delle caratteristiche:

_taxi_constants_module_file = 'taxi_constants.py'
%%writefile {_taxi_constants_module_file}

# Categorical features are assumed to each have a maximum value in the dataset.
MAX_CATEGORICAL_FEATURE_VALUES = [24, 31, 12]

CATEGORICAL_FEATURE_KEYS = [
    'trip_start_hour', 'trip_start_day', 'trip_start_month',
    'pickup_census_tract', 'dropoff_census_tract', 'pickup_community_area',
    'dropoff_community_area'
]

DENSE_FLOAT_FEATURE_KEYS = ['trip_miles', 'fare', 'trip_seconds']

# Number of buckets used by tf.transform for encoding each feature.
FEATURE_BUCKET_COUNT = 10

BUCKET_FEATURE_KEYS = [
    'pickup_latitude', 'pickup_longitude', 'dropoff_latitude',
    'dropoff_longitude'
]

# Number of vocabulary terms used for encoding VOCAB_FEATURES by tf.transform
VOCAB_SIZE = 1000

# Count of out-of-vocab buckets in which unrecognized VOCAB_FEATURES are hashed.
OOV_SIZE = 10

VOCAB_FEATURE_KEYS = [
    'payment_type',
    'company',
]

# Keys
LABEL_KEY = 'tips'
FARE_KEY = 'fare'
Writing taxi_constants.py

Successivamente, abbiamo scrivere la preprocessing_fn che prende in dati grezzi come input e restituisce funzioni trasformate che il nostro modello può allenarsi su:

_taxi_transform_module_file = 'taxi_transform.py'
%%writefile {_taxi_transform_module_file}

import tensorflow as tf
import tensorflow_transform as tft

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_FARE_KEY = taxi_constants.FARE_KEY
_LABEL_KEY = taxi_constants.LABEL_KEY


def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.
  Args:
    inputs: map from feature keys to raw not-yet-transformed features.
  Returns:
    Map from string feature key to transformed feature operations.
  """
  outputs = {}
  for key in _DENSE_FLOAT_FEATURE_KEYS:
    # If sparse make it dense, setting nan's to 0 or '', and apply zscore.
    outputs[key] = tft.scale_to_z_score(
        _fill_in_missing(inputs[key]))

  for key in _VOCAB_FEATURE_KEYS:
    # Build a vocabulary for this feature.
    outputs[key] = tft.compute_and_apply_vocabulary(
        _fill_in_missing(inputs[key]),
        top_k=_VOCAB_SIZE,
        num_oov_buckets=_OOV_SIZE)

  for key in _BUCKET_FEATURE_KEYS:
    outputs[key] = tft.bucketize(
        _fill_in_missing(inputs[key]), _FEATURE_BUCKET_COUNT)

  for key in _CATEGORICAL_FEATURE_KEYS:
    outputs[key] = _fill_in_missing(inputs[key])

  # Was this passenger a big tipper?
  taxi_fare = _fill_in_missing(inputs[_FARE_KEY])
  tips = _fill_in_missing(inputs[_LABEL_KEY])
  outputs[_LABEL_KEY] = tf.where(
      tf.math.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20% of the fare.
      tf.cast(
          tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

  return outputs


def _fill_in_missing(x):
  """Replace missing values in a SparseTensor.
  Fills in missing values of `x` with '' or 0, and converts to a dense tensor.
  Args:
    x: A `SparseTensor` of rank 2.  Its dense shape should have size at most 1
      in the second dimension.
  Returns:
    A rank 1 tensor where missing values of `x` have been filled in.
  """
  if not isinstance(x, tf.sparse.SparseTensor):
    return x

  default_value = '' if x.dtype == tf.string else 0
  return tf.squeeze(
      tf.sparse.to_dense(
          tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
          default_value),
      axis=1)
Writing taxi_transform.py

Ora, passiamo in questo codice funzione di ingegneria per la Transform dei componenti ed eseguirlo per trasformare i vostri dati.

transform = tfx.components.Transform(
    examples=example_gen.outputs['examples'],
    schema=schema_gen.outputs['schema'],
    module_file=os.path.abspath(_taxi_transform_module_file))
context.run(transform)
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_transform.py' (including modules: ['taxi_constants', 'taxi_transform']).
INFO:absl:User module package has hash fingerprint version f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp6h4enzoj/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp1kilc09_', '--dist-dir', '/tmp/tmpu7dszvtp']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'; target user module is 'taxi_transform'.
INFO:absl:Full user module path is 'taxi_transform@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'
INFO:absl:Running driver for Transform
INFO:absl:MetadataStore with DB connection initialized
I1205 10:59:37.233487  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Transform
I1205 10:59:37.237077  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl', 'preprocessing_fn': None} 'preprocessing_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp9ljjlr0t', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_constants.py -> build/lib
copying taxi_transform.py -> build/lib
installing to /tmp/tmp1kilc09_
running install
running install_lib
copying build/lib/taxi_constants.py -> /tmp/tmp1kilc09_
copying build/lib/taxi_transform.py -> /tmp/tmp1kilc09_
running install_egg_info
running egg_info
creating tfx_user_code_Transform.egg-info
writing tfx_user_code_Transform.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Transform.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Transform.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
Copying tfx_user_code_Transform.egg-info to /tmp/tmp1kilc09_/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3.7.egg-info
running install_scripts
creating /tmp/tmp1kilc09_/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/WHEEL
creating '/tmp/tmpu7dszvtp/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' and adding '/tmp/tmp1kilc09_' to it
adding 'taxi_constants.py'
adding 'taxi_transform.py'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/METADATA'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/WHEEL'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/top_level.txt'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/RECORD'
removing /tmp/tmp1kilc09_
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl', 'stats_options_updater_fn': None} 'stats_options_updater_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp6rcd17nh', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpbq8i22l2', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:289: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary_1/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary_1/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
2021-12-05 10:59:51.571461: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transform_graph/5/.temp_path/tftransform_tmp/7fa0435e7af949ef9e3b27e50d470602/assets
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transform_graph/5/.temp_path/tftransform_tmp/f9ed85f61d1f4528846646b3a922c30c/assets
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:absl:Running publisher for Transform
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo i manufatti di uscita di Transform . Questo componente produce due tipi di output:

  • transform_graph è il grafico che può eseguire le operazioni di pre-elaborazione (questo grafico sarà incluso nei modelli servire e valutazione).
  • transformed_examples rappresenta i dati di allenamento e di valutazione già preparati.
transform.outputs
{'transform_graph': Channel(
     type_name: TransformGraph
     artifacts: [Artifact(artifact: id: 5
 type_id: 22
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transform_graph/5"
 custom_properties {
   key: "name"
   value {
     string_value: "transform_graph"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 22
 name: "TransformGraph"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'transformed_examples': Channel(
     type_name: Examples
     artifacts: [Artifact(artifact: id: 6
 type_id: 14
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transformed_examples/5"
 properties {
   key: "split_names"
   value {
     string_value: "[\"train\", \"eval\"]"
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "transformed_examples"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 14
 name: "Examples"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 properties {
   key: "version"
   value: INT
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'updated_analyzer_cache': Channel(
     type_name: TransformCache
     artifacts: [Artifact(artifact: id: 7
 type_id: 23
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/updated_analyzer_cache/5"
 custom_properties {
   key: "name"
   value {
     string_value: "updated_analyzer_cache"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 23
 name: "TransformCache"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 8
 type_id: 18
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/pre_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 18
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 9
 type_id: 16
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/pre_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 16
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 10
 type_id: 18
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/post_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 18
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 11
 type_id: 16
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/post_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 16
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_anomalies': Channel(
     type_name: ExampleAnomalies
     artifacts: [Artifact(artifact: id: 12
 type_id: 20
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/post_transform_anomalies/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_anomalies"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 20
 name: "ExampleAnomalies"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

Dai un'occhiata al transform_graph manufatto. Punta a una directory contenente tre sottodirectory.

train_uri = transform.outputs['transform_graph'].get()[0].uri
os.listdir(train_uri)
['transform_fn', 'transformed_metadata', 'metadata']

Il transformed_metadata sottodirectory contiene lo schema dei dati pre-elaborati. Il transform_fn sottodirectory contiene il grafico preelaborazione effettivo. Il metadata sottodirectory contiene lo schema dei dati originali.

Possiamo anche dare un'occhiata ai primi tre esempi trasformati:

# Get the URI of the output artifact representing the transformed examples, which is a directory
train_uri = os.path.join(transform.outputs['transformed_examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 8
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 0.06106060370802879
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: -0.15886740386486053
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: -0.7118487358093262
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 1.2521241903305054
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.532160758972168
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: 0.5509493350982666
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 48
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 0.3873794674873352
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.21955278515815735
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: 0.0019067146349698305
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
}

Dopo il Transform componente ha trasformato i dati in caratteristiche, e il prossimo passo è quello di formare un modello.

Allenatore

Il Trainer componente formerà un modello che si definisce in tensorflow (sia utilizzando l'API per la stima o l'API Keras con model_to_estimator ).

Trainer prende in ingresso lo schema da SchemaGen , i dati trasformati e grafico dalla Transform , formazione parametri, così come un modulo che contiene il codice modello definito dall'utente.

Vediamo un esempio di codice del modello definito dall'utente di seguito (per un'introduzione allo stimatore API tensorflow, consultare il tutorial ):

_taxi_trainer_module_file = 'taxi_trainer.py'
%%writefile {_taxi_trainer_module_file}

import tensorflow as tf
import tensorflow_model_analysis as tfma
import tensorflow_transform as tft
from tensorflow_transform.tf_metadata import schema_utils
from tfx_bsl.tfxio import dataset_options

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_MAX_CATEGORICAL_FEATURE_VALUES = taxi_constants.MAX_CATEGORICAL_FEATURE_VALUES
_LABEL_KEY = taxi_constants.LABEL_KEY


# Tf.Transform considers these features as "raw"
def _get_raw_feature_spec(schema):
  return schema_utils.schema_as_feature_spec(schema).feature_spec


def _build_estimator(config, hidden_units=None, warm_start_from=None):
  """Build an estimator for predicting the tipping behavior of taxi riders.
  Args:
    config: tf.estimator.RunConfig defining the runtime environment for the
      estimator (including model_dir).
    hidden_units: [int], the layer sizes of the DNN (input layer first)
    warm_start_from: Optional directory to warm start from.
  Returns:
    A dict of the following:
      - estimator: The estimator that will be used for training and eval.
      - train_spec: Spec for training.
      - eval_spec: Spec for eval.
      - eval_input_receiver_fn: Input function for eval.
  """
  real_valued_columns = [
      tf.feature_column.numeric_column(key, shape=())
      for key in _DENSE_FLOAT_FEATURE_KEYS
  ]
  categorical_columns = [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
      for key in _VOCAB_FEATURE_KEYS
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
      for key in _BUCKET_FEATURE_KEYS
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(  # pylint: disable=g-complex-comprehension
          key,
          num_buckets=num_buckets,
          default_value=0) for key, num_buckets in zip(
              _CATEGORICAL_FEATURE_KEYS,
              _MAX_CATEGORICAL_FEATURE_VALUES)
  ]
  return tf.estimator.DNNLinearCombinedClassifier(
      config=config,
      linear_feature_columns=categorical_columns,
      dnn_feature_columns=real_valued_columns,
      dnn_hidden_units=hidden_units or [100, 70, 50, 25],
      warm_start_from=warm_start_from)


def _example_serving_receiver_fn(tf_transform_graph, schema):
  """Build the serving in inputs.
  Args:
    tf_transform_graph: A TFTransformOutput.
    schema: the schema of the input data.
  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(_LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_graph.transform_raw_features(
      serving_input_receiver.features)

  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.receiver_tensors)


def _eval_input_receiver_fn(tf_transform_graph, schema):
  """Build everything needed for the tf-model-analysis to run the model.
  Args:
    tf_transform_graph: A TFTransformOutput.
    schema: the schema of the input data.
  Returns:
    EvalInputReceiver function, which contains:
      - Tensorflow graph which parses raw untransformed features, applies the
        tf-transform preprocessing operators.
      - Set of raw, untransformed features.
      - Label against which predictions will be compared.
  """
  # Notice that the inputs are raw features, not transformed features here.
  raw_feature_spec = _get_raw_feature_spec(schema)

  serialized_tf_example = tf.compat.v1.placeholder(
      dtype=tf.string, shape=[None], name='input_example_tensor')

  # Add a parse_example operator to the tensorflow graph, which will parse
  # raw, untransformed, tf examples.
  features = tf.io.parse_example(serialized_tf_example, raw_feature_spec)

  # Now that we have our raw examples, process them through the tf-transform
  # function computed during the preprocessing step.
  transformed_features = tf_transform_graph.transform_raw_features(
      features)

  # The key name MUST be 'examples'.
  receiver_tensors = {'examples': serialized_tf_example}

  # NOTE: Model is driven by transformed features (since training works on the
  # materialized output of TFT, but slicing will happen on raw features.
  features.update(transformed_features)

  return tfma.export.EvalInputReceiver(
      features=features,
      receiver_tensors=receiver_tensors,
      labels=transformed_features[_LABEL_KEY])


def _input_fn(file_pattern, data_accessor, tf_transform_output, batch_size=200):
  """Generates features and label for tuning/training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    tf_transform_output: A TFTransformOutput.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      dataset_options.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      tf_transform_output.transformed_metadata.schema)


# TFX will call this function
def trainer_fn(trainer_fn_args, schema):
  """Build the estimator using the high level API.
  Args:
    trainer_fn_args: Holds args used to train the model as name/value pairs.
    schema: Holds the schema of the training examples.
  Returns:
    A dict of the following:
      - estimator: The estimator that will be used for training and eval.
      - train_spec: Spec for training.
      - eval_spec: Spec for eval.
      - eval_input_receiver_fn: Input function for eval.
  """
  # Number of nodes in the first layer of the DNN
  first_dnn_layer_size = 100
  num_dnn_layers = 4
  dnn_decay_factor = 0.7

  train_batch_size = 40
  eval_batch_size = 40

  tf_transform_graph = tft.TFTransformOutput(trainer_fn_args.transform_output)

  train_input_fn = lambda: _input_fn(  # pylint: disable=g-long-lambda
      trainer_fn_args.train_files,
      trainer_fn_args.data_accessor,
      tf_transform_graph,
      batch_size=train_batch_size)

  eval_input_fn = lambda: _input_fn(  # pylint: disable=g-long-lambda
      trainer_fn_args.eval_files,
      trainer_fn_args.data_accessor,
      tf_transform_graph,
      batch_size=eval_batch_size)

  train_spec = tf.estimator.TrainSpec(  # pylint: disable=g-long-lambda
      train_input_fn,
      max_steps=trainer_fn_args.train_steps)

  serving_receiver_fn = lambda: _example_serving_receiver_fn(  # pylint: disable=g-long-lambda
      tf_transform_graph, schema)

  exporter = tf.estimator.FinalExporter('chicago-taxi', serving_receiver_fn)
  eval_spec = tf.estimator.EvalSpec(
      eval_input_fn,
      steps=trainer_fn_args.eval_steps,
      exporters=[exporter],
      name='chicago-taxi-eval')

  run_config = tf.estimator.RunConfig(
      save_checkpoints_steps=999, keep_checkpoint_max=1)

  run_config = run_config.replace(model_dir=trainer_fn_args.serving_model_dir)

  estimator = _build_estimator(
      # Construct layers sizes with exponetial decay
      hidden_units=[
          max(2, int(first_dnn_layer_size * dnn_decay_factor**i))
          for i in range(num_dnn_layers)
      ],
      config=run_config,
      warm_start_from=trainer_fn_args.base_model)

  # Create an input receiver for TFMA processing
  receiver_fn = lambda: _eval_input_receiver_fn(  # pylint: disable=g-long-lambda
      tf_transform_graph, schema)

  return {
      'estimator': estimator,
      'train_spec': train_spec,
      'eval_spec': eval_spec,
      'eval_input_receiver_fn': receiver_fn
  }
Writing taxi_trainer.py

Ora, passiamo in questo codice modello per il Trainer componenti ed eseguirlo per il training del modello.

from tfx.components.trainer.executor import Executor
from tfx.dsl.components.base import executor_spec

trainer = tfx.components.Trainer(
    module_file=os.path.abspath(_taxi_trainer_module_file),
    custom_executor_spec=executor_spec.ExecutorClassSpec(Executor),
    examples=transform.outputs['transformed_examples'],
    schema=schema_gen.outputs['schema'],
    transform_graph=transform.outputs['transform_graph'],
    train_args=tfx.proto.TrainArgs(num_steps=10000),
    eval_args=tfx.proto.EvalArgs(num_steps=5000))
context.run(trainer)
WARNING:absl:`custom_executor_spec` is deprecated. Please customize component directly.
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_trainer.py' (including modules: ['taxi_constants', 'taxi_trainer', 'taxi_transform']).
INFO:absl:User module package has hash fingerprint version e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpfdfqeq3n/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmplwndr27q', '--dist-dir', '/tmp/tmpm5jkf1c7']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'; target user module is 'taxi_trainer'.
INFO:absl:Full user module path is 'taxi_trainer@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'
INFO:absl:Running driver for Trainer
INFO:absl:MetadataStore with DB connection initialized
I1205 11:00:05.421522  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Trainer
I1205 11:00:05.425110  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
INFO:absl:udf_utils.get_fn {'train_args': '{\n  "num_steps": 10000\n}', 'eval_args': '{\n  "num_steps": 5000\n}', 'module_file': None, 'run_fn': None, 'trainer_fn': None, 'custom_config': 'null', 'module_path': 'taxi_trainer@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'} 'trainer_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpudspobnm', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_constants.py -> build/lib
copying taxi_trainer.py -> build/lib
copying taxi_transform.py -> build/lib
installing to /tmp/tmplwndr27q
running install
running install_lib
copying build/lib/taxi_constants.py -> /tmp/tmplwndr27q
copying build/lib/taxi_transform.py -> /tmp/tmplwndr27q
copying build/lib/taxi_trainer.py -> /tmp/tmplwndr27q
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmplwndr27q/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3.7.egg-info
running install_scripts
creating /tmp/tmplwndr27q/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/WHEEL
creating '/tmp/tmpm5jkf1c7/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl' and adding '/tmp/tmplwndr27q' to it
adding 'taxi_constants.py'
adding 'taxi_trainer.py'
adding 'taxi_transform.py'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/RECORD'
removing /tmp/tmplwndr27q
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 999, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 1, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:absl:Training model.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 999 or save_checkpoints_secs None.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer_v1.py:1684: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/adagrad.py:84: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.7078417, step = 0
INFO:tensorflow:global_step/sec: 70.3244
INFO:tensorflow:loss = 0.54806644, step = 100 (1.423 sec)
INFO:tensorflow:global_step/sec: 86.7936
INFO:tensorflow:loss = 0.61360043, step = 200 (1.152 sec)
INFO:tensorflow:global_step/sec: 85.3687
INFO:tensorflow:loss = 0.4860243, step = 300 (1.171 sec)
INFO:tensorflow:global_step/sec: 86.4491
INFO:tensorflow:loss = 0.4932023, step = 400 (1.157 sec)
INFO:tensorflow:global_step/sec: 84.918
INFO:tensorflow:loss = 0.41420126, step = 500 (1.177 sec)
INFO:tensorflow:global_step/sec: 85.5433
INFO:tensorflow:loss = 0.502645, step = 600 (1.169 sec)
INFO:tensorflow:global_step/sec: 85.7348
INFO:tensorflow:loss = 0.5135077, step = 700 (1.166 sec)
INFO:tensorflow:global_step/sec: 85.9959
INFO:tensorflow:loss = 0.50064766, step = 800 (1.163 sec)
INFO:tensorflow:global_step/sec: 84.4301
INFO:tensorflow:loss = 0.5338023, step = 900 (1.185 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 999...
INFO:tensorflow:Saving checkpoints for 999 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/saver.py:971: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 999...
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-12-05T11:00:25
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-999
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Inference Time : 45.25082s
INFO:tensorflow:Finished evaluation at 2021-12-05-11:01:10
INFO:tensorflow:Saving dict for global step 999: accuracy = 0.77114, accuracy_baseline = 0.77114, auc = 0.92330086, auc_precision_recall = 0.66446304, average_loss = 0.46160534, global_step = 999, label/mean = 0.22886, loss = 0.46160552, precision = 0.0, prediction/mean = 0.24982427, recall = 0.0
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 999: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-999
INFO:tensorflow:global_step/sec: 2.07624
INFO:tensorflow:loss = 0.5403578, step = 1000 (48.163 sec)
INFO:tensorflow:global_step/sec: 86.3781
INFO:tensorflow:loss = 0.38168782, step = 1100 (1.158 sec)
INFO:tensorflow:global_step/sec: 85.2624
INFO:tensorflow:loss = 0.39346403, step = 1200 (1.173 sec)
INFO:tensorflow:global_step/sec: 83.7912
INFO:tensorflow:loss = 0.40447283, step = 1300 (1.194 sec)
INFO:tensorflow:global_step/sec: 84.0061
INFO:tensorflow:loss = 0.44532022, step = 1400 (1.190 sec)
INFO:tensorflow:global_step/sec: 85.6364
INFO:tensorflow:loss = 0.44722432, step = 1500 (1.169 sec)
INFO:tensorflow:global_step/sec: 86.1981
INFO:tensorflow:loss = 0.38483262, step = 1600 (1.159 sec)
INFO:tensorflow:global_step/sec: 86.8631
INFO:tensorflow:loss = 0.5259759, step = 1700 (1.152 sec)
INFO:tensorflow:global_step/sec: 84.9455
INFO:tensorflow:loss = 0.55505085, step = 1800 (1.177 sec)
INFO:tensorflow:global_step/sec: 86.3588
INFO:tensorflow:loss = 0.38577095, step = 1900 (1.158 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1998...
INFO:tensorflow:Saving checkpoints for 1998 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1998...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 78.271
INFO:tensorflow:loss = 0.5068237, step = 2000 (1.277 sec)
INFO:tensorflow:global_step/sec: 86.0626
INFO:tensorflow:loss = 0.43203792, step = 2100 (1.162 sec)
INFO:tensorflow:global_step/sec: 84.691
INFO:tensorflow:loss = 0.4243142, step = 2200 (1.181 sec)
INFO:tensorflow:global_step/sec: 86.057
INFO:tensorflow:loss = 0.33626375, step = 2300 (1.162 sec)
INFO:tensorflow:global_step/sec: 86.4836
INFO:tensorflow:loss = 0.5215112, step = 2400 (1.156 sec)
INFO:tensorflow:global_step/sec: 86.1571
INFO:tensorflow:loss = 0.3480332, step = 2500 (1.161 sec)
INFO:tensorflow:global_step/sec: 83.5733
INFO:tensorflow:loss = 0.3900601, step = 2600 (1.197 sec)
INFO:tensorflow:global_step/sec: 85.2641
INFO:tensorflow:loss = 0.41936797, step = 2700 (1.174 sec)
INFO:tensorflow:global_step/sec: 84.707
INFO:tensorflow:loss = 0.37252873, step = 2800 (1.179 sec)
INFO:tensorflow:global_step/sec: 84.4798
INFO:tensorflow:loss = 0.38240016, step = 2900 (1.184 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2997...
INFO:tensorflow:Saving checkpoints for 2997 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2997...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 75.8418
INFO:tensorflow:loss = 0.2528301, step = 3000 (1.318 sec)
INFO:tensorflow:global_step/sec: 84.156
INFO:tensorflow:loss = 0.4254836, step = 3100 (1.188 sec)
INFO:tensorflow:global_step/sec: 85.0661
INFO:tensorflow:loss = 0.5024188, step = 3200 (1.176 sec)
INFO:tensorflow:global_step/sec: 82.2437
INFO:tensorflow:loss = 0.3909358, step = 3300 (1.216 sec)
INFO:tensorflow:global_step/sec: 82.2637
INFO:tensorflow:loss = 0.328662, step = 3400 (1.216 sec)
INFO:tensorflow:global_step/sec: 84.4683
INFO:tensorflow:loss = 0.36957046, step = 3500 (1.184 sec)
INFO:tensorflow:global_step/sec: 84.4389
INFO:tensorflow:loss = 0.43177825, step = 3600 (1.184 sec)
INFO:tensorflow:global_step/sec: 85.2814
INFO:tensorflow:loss = 0.43844128, step = 3700 (1.173 sec)
INFO:tensorflow:global_step/sec: 83.9934
INFO:tensorflow:loss = 0.3894402, step = 3800 (1.191 sec)
INFO:tensorflow:global_step/sec: 85.6644
INFO:tensorflow:loss = 0.3499531, step = 3900 (1.167 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3996...
INFO:tensorflow:Saving checkpoints for 3996 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3996...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 77.2294
INFO:tensorflow:loss = 0.43472967, step = 4000 (1.294 sec)
INFO:tensorflow:global_step/sec: 86.9355
INFO:tensorflow:loss = 0.31338528, step = 4100 (1.151 sec)
INFO:tensorflow:global_step/sec: 86.7796
INFO:tensorflow:loss = 0.45728058, step = 4200 (1.152 sec)
INFO:tensorflow:global_step/sec: 86.8483
INFO:tensorflow:loss = 0.39699784, step = 4300 (1.151 sec)
INFO:tensorflow:global_step/sec: 87.1248
INFO:tensorflow:loss = 0.43616992, step = 4400 (1.148 sec)
INFO:tensorflow:global_step/sec: 86.8816
INFO:tensorflow:loss = 0.35230064, step = 4500 (1.151 sec)
INFO:tensorflow:global_step/sec: 86.9788
INFO:tensorflow:loss = 0.36814964, step = 4600 (1.150 sec)
INFO:tensorflow:global_step/sec: 86.884
INFO:tensorflow:loss = 0.39265686, step = 4700 (1.151 sec)
INFO:tensorflow:global_step/sec: 86.3142
INFO:tensorflow:loss = 0.3569767, step = 4800 (1.159 sec)
INFO:tensorflow:global_step/sec: 86.7831
INFO:tensorflow:loss = 0.38372093, step = 4900 (1.152 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4995...
INFO:tensorflow:Saving checkpoints for 4995 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4995...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 77.8516
INFO:tensorflow:loss = 0.37753737, step = 5000 (1.284 sec)
INFO:tensorflow:global_step/sec: 86.9472
INFO:tensorflow:loss = 0.39870018, step = 5100 (1.150 sec)
INFO:tensorflow:global_step/sec: 87.6235
INFO:tensorflow:loss = 0.3469496, step = 5200 (1.141 sec)
INFO:tensorflow:global_step/sec: 85.5072
INFO:tensorflow:loss = 0.4431352, step = 5300 (1.169 sec)
INFO:tensorflow:global_step/sec: 86.753
INFO:tensorflow:loss = 0.4120473, step = 5400 (1.153 sec)
INFO:tensorflow:global_step/sec: 87.9292
INFO:tensorflow:loss = 0.41318005, step = 5500 (1.137 sec)
INFO:tensorflow:global_step/sec: 86.9944
INFO:tensorflow:loss = 0.33395153, step = 5600 (1.150 sec)
INFO:tensorflow:global_step/sec: 85.7159
INFO:tensorflow:loss = 0.39095598, step = 5700 (1.167 sec)
INFO:tensorflow:global_step/sec: 86.5248
INFO:tensorflow:loss = 0.3990689, step = 5800 (1.156 sec)
INFO:tensorflow:global_step/sec: 87.7908
INFO:tensorflow:loss = 0.35857546, step = 5900 (1.139 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5994...
INFO:tensorflow:Saving checkpoints for 5994 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5994...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 77.8735
INFO:tensorflow:loss = 0.3701624, step = 6000 (1.284 sec)
INFO:tensorflow:global_step/sec: 87.5076
INFO:tensorflow:loss = 0.41708413, step = 6100 (1.143 sec)
INFO:tensorflow:global_step/sec: 84.466
INFO:tensorflow:loss = 0.29821724, step = 6200 (1.184 sec)
INFO:tensorflow:global_step/sec: 83.526
INFO:tensorflow:loss = 0.35562894, step = 6300 (1.197 sec)
INFO:tensorflow:global_step/sec: 87.5455
INFO:tensorflow:loss = 0.28250116, step = 6400 (1.142 sec)
INFO:tensorflow:global_step/sec: 86.3403
INFO:tensorflow:loss = 0.3280113, step = 6500 (1.158 sec)
INFO:tensorflow:global_step/sec: 87.024
INFO:tensorflow:loss = 0.3482268, step = 6600 (1.149 sec)
INFO:tensorflow:global_step/sec: 85.355
INFO:tensorflow:loss = 0.37907737, step = 6700 (1.172 sec)
INFO:tensorflow:global_step/sec: 84.621
INFO:tensorflow:loss = 0.31550306, step = 6800 (1.182 sec)
INFO:tensorflow:global_step/sec: 83.3363
INFO:tensorflow:loss = 0.3832593, step = 6900 (1.202 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6993...
INFO:tensorflow:Saving checkpoints for 6993 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6993...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 74.4455
INFO:tensorflow:loss = 0.41803008, step = 7000 (1.342 sec)
INFO:tensorflow:global_step/sec: 82.7229
INFO:tensorflow:loss = 0.32837537, step = 7100 (1.209 sec)
INFO:tensorflow:global_step/sec: 84.3715
INFO:tensorflow:loss = 0.33435482, step = 7200 (1.185 sec)
INFO:tensorflow:global_step/sec: 84.2735
INFO:tensorflow:loss = 0.26065814, step = 7300 (1.187 sec)
INFO:tensorflow:global_step/sec: 85.663
INFO:tensorflow:loss = 0.41420022, step = 7400 (1.167 sec)
INFO:tensorflow:global_step/sec: 87.0079
INFO:tensorflow:loss = 0.40608707, step = 7500 (1.150 sec)
INFO:tensorflow:global_step/sec: 87.7408
INFO:tensorflow:loss = 0.36437988, step = 7600 (1.140 sec)
INFO:tensorflow:global_step/sec: 87.4937
INFO:tensorflow:loss = 0.39505738, step = 7700 (1.144 sec)
INFO:tensorflow:global_step/sec: 88.4098
INFO:tensorflow:loss = 0.2943158, step = 7800 (1.130 sec)
INFO:tensorflow:global_step/sec: 87.3161
INFO:tensorflow:loss = 0.352277, step = 7900 (1.145 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7992...
INFO:tensorflow:Saving checkpoints for 7992 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7992...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 78.0033
INFO:tensorflow:loss = 0.24916664, step = 8000 (1.282 sec)
INFO:tensorflow:global_step/sec: 87.818
INFO:tensorflow:loss = 0.23849675, step = 8100 (1.139 sec)
INFO:tensorflow:global_step/sec: 86.7864
INFO:tensorflow:loss = 0.35711345, step = 8200 (1.152 sec)
INFO:tensorflow:global_step/sec: 87.5709
INFO:tensorflow:loss = 0.3992316, step = 8300 (1.142 sec)
INFO:tensorflow:global_step/sec: 86.4715
INFO:tensorflow:loss = 0.38699418, step = 8400 (1.157 sec)
INFO:tensorflow:global_step/sec: 87.1347
INFO:tensorflow:loss = 0.27517205, step = 8500 (1.147 sec)
INFO:tensorflow:global_step/sec: 87.6778
INFO:tensorflow:loss = 0.3764573, step = 8600 (1.140 sec)
INFO:tensorflow:global_step/sec: 86.488
INFO:tensorflow:loss = 0.38588572, step = 8700 (1.156 sec)
INFO:tensorflow:global_step/sec: 88.0878
INFO:tensorflow:loss = 0.34926754, step = 8800 (1.135 sec)
INFO:tensorflow:global_step/sec: 86.5916
INFO:tensorflow:loss = 0.3552958, step = 8900 (1.155 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8991...
INFO:tensorflow:Saving checkpoints for 8991 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8991...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 75.4932
INFO:tensorflow:loss = 0.36349216, step = 9000 (1.325 sec)
INFO:tensorflow:global_step/sec: 83.4161
INFO:tensorflow:loss = 0.35490102, step = 9100 (1.199 sec)
INFO:tensorflow:global_step/sec: 87.0142
INFO:tensorflow:loss = 0.36661166, step = 9200 (1.149 sec)
INFO:tensorflow:global_step/sec: 86.8802
INFO:tensorflow:loss = 0.42985326, step = 9300 (1.151 sec)
INFO:tensorflow:global_step/sec: 87.3449
INFO:tensorflow:loss = 0.47281235, step = 9400 (1.145 sec)
INFO:tensorflow:global_step/sec: 88.3826
INFO:tensorflow:loss = 0.22590041, step = 9500 (1.131 sec)
INFO:tensorflow:global_step/sec: 87.3166
INFO:tensorflow:loss = 0.4162217, step = 9600 (1.145 sec)
INFO:tensorflow:global_step/sec: 87.5265
INFO:tensorflow:loss = 0.37611717, step = 9700 (1.143 sec)
INFO:tensorflow:global_step/sec: 86.1899
INFO:tensorflow:loss = 0.3856167, step = 9800 (1.160 sec)
INFO:tensorflow:global_step/sec: 87.7519
INFO:tensorflow:loss = 0.24105208, step = 9900 (1.140 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9990...
INFO:tensorflow:Saving checkpoints for 9990 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9990...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10000...
INFO:tensorflow:Saving checkpoints for 10000 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10000...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-12-05T11:02:58
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Inference Time : 43.13040s
INFO:tensorflow:Finished evaluation at 2021-12-05-11:03:41
INFO:tensorflow:Saving dict for global step 10000: accuracy = 0.787805, accuracy_baseline = 0.771235, auc = 0.9339468, auc_precision_recall = 0.70544505, average_loss = 0.3452758, global_step = 10000, label/mean = 0.228765, loss = 0.34527487, precision = 0.69398266, prediction/mean = 0.2301482, recall = 0.12956527
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10000: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Performing the final export in the end of training.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:145: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification']
INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression']
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict']
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/export/chicago-taxi/temp-1638702221/assets
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/export/chicago-taxi/temp-1638702221/saved_model.pb
INFO:tensorflow:Loss for final step: 0.3770034.
INFO:absl:Training complete. Model written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving. ModelRun written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6
INFO:absl:Exporting eval_savedmodel for TFMA.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Predict: None
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval']
WARNING:tensorflow:Export includes no default signature!
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-TFMA/temp-1638702224/assets
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-TFMA/temp-1638702224/saved_model.pb
INFO:absl:Exported eval_savedmodel to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-TFMA.
WARNING:absl:Support for estimator-based executor and model export will be deprecated soon. Please use export structure <ModelExportPath>/serving_model_dir/saved_model.pb"
INFO:absl:Serving model copied to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-Serving.
WARNING:absl:Support for estimator-based executor and model export will be deprecated soon. Please use export structure <ModelExportPath>/eval_model_dir/saved_model.pb"
INFO:absl:Eval model copied to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-TFMA.
INFO:absl:Running publisher for Trainer
INFO:absl:MetadataStore with DB connection initialized

Analizza l'allenamento con TensorBoard

Facoltativamente, possiamo collegare TensorBoard al Trainer per analizzare le curve di allenamento del nostro modello.

# Get the URI of the output artifact representing the training logs, which is a directory
model_run_dir = trainer.outputs['model_run'].get()[0].uri

%load_ext tensorboard
%tensorboard --logdir {model_run_dir}

valutatore

Il Evaluator componente calcola metriche modello prestazioni rispetto il set di valutazione. Esso utilizza il tensorflow modello di analisi biblioteca. Il Evaluator può anche opzionalmente convalidare che un modello di nuova formazione è migliore rispetto al modello precedente. Ciò è utile in un'impostazione di pipeline di produzione in cui è possibile addestrare e convalidare automaticamente un modello ogni giorno. In questo notebook, abbiamo solo alleniamo un modello, in modo che il Evaluator automaticamente verrà etichettare il modello come "buono".

Evaluator prenderà come input i dati dal ExampleGen , il modello addestrato da Trainer , e la configurazione di taglio. La configurazione delle sezioni ti consente di suddividere le tue metriche sui valori delle caratteristiche (ad esempio, come si comporta il tuo modello sui viaggi in taxi che iniziano alle 8:00 rispetto alle 20:00?). Vedere un esempio di questa configurazione di seguito:

eval_config = tfma.EvalConfig(
    model_specs=[
        # Using signature 'eval' implies the use of an EvalSavedModel. To use
        # a serving model remove the signature to defaults to 'serving_default'
        # and add a label_key.
        tfma.ModelSpec(signature_name='eval')
    ],
    metrics_specs=[
        tfma.MetricsSpec(
            # The metrics added here are in addition to those saved with the
            # model (assuming either a keras model or EvalSavedModel is used).
            # Any metrics added into the saved model (for example using
            # model.compile(..., metrics=[...]), etc) will be computed
            # automatically.
            metrics=[
                tfma.MetricConfig(class_name='ExampleCount')
            ],
            # To add validation thresholds for metrics saved with the model,
            # add them keyed by metric name to the thresholds map.
            thresholds = {
                'accuracy': tfma.MetricThreshold(
                    value_threshold=tfma.GenericValueThreshold(
                        lower_bound={'value': 0.5}),
                    # Change threshold will be ignored if there is no
                    # baseline model resolved from MLMD (first run).
                    change_threshold=tfma.GenericChangeThreshold(
                       direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                       absolute={'value': -1e-10}))
            }
        )
    ],
    slicing_specs=[
        # An empty slice spec means the overall slice, i.e. the whole dataset.
        tfma.SlicingSpec(),
        # Data can be sliced along a feature column. In this case, data is
        # sliced along feature column trip_start_hour.
        tfma.SlicingSpec(feature_keys=['trip_start_hour'])
    ])

Avanti, diamo questa configurazione al Evaluator ed eseguirlo.

# Use TFMA to compute a evaluation statistics over features of a model and
# validate them against a baseline.

# The model resolver is only required if performing model validation in addition
# to evaluation. In this case we validate against the latest blessed model. If
# no model has been blessed before (as in this case) the evaluator will make our
# candidate the first blessed model.
model_resolver = tfx.dsl.Resolver(
      strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
      model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
      model_blessing=tfx.dsl.Channel(
          type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
              'latest_blessed_model_resolver')
context.run(model_resolver)

evaluator = tfx.components.Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer.outputs['model'],
    eval_config=eval_config)
context.run(evaluator)
INFO:absl:Running driver for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running publisher for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running driver for Evaluator
INFO:absl:MetadataStore with DB connection initialized
I1205 11:03:46.279654  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Evaluator
I1205 11:03:46.282887  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Nonempty beam arg extra_packages already includes dependency
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        }\n      ],\n      "thresholds": {\n        "accuracy": {\n          "change_threshold": {\n            "absolute": -1e-10,\n            "direction": "HIGHER_IS_BETTER"\n          },\n          "value_threshold": {\n            "lower_bound": 0.5\n          }\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "signature_name": "eval"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': 'null', 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_eval_shared_model'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Using /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-TFMA as  model.
WARNING:tensorflow:SavedModel saved prior to TF 2.5 detected when loading Keras model. Please ensure that you are saving the model with model.save() or tf.keras.models.save_model(), *NOT* tf.saved_model.save(). To confirm, there should be a file named "keras_metadata.pb" in the SavedModel directory.
INFO:absl:The 'example_splits' parameter is not set, using 'eval' split.
INFO:absl:Evaluating model.
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        }\n      ],\n      "thresholds": {\n        "accuracy": {\n          "change_threshold": {\n            "absolute": -1e-10,\n            "direction": "HIGHER_IS_BETTER"\n          },\n          "value_threshold": {\n            "lower_bound": 0.5\n          }\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "signature_name": "eval"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': 'null', 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_extractors'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  model_names: ""
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  model_names: ""
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  model_names: ""
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:169: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-TFMA/variables/variables
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:189: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info.
INFO:absl:Evaluation complete. Results written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/evaluation/8.
INFO:absl:Checking validation results.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
INFO:absl:Blessing result True written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/blessing/8.
INFO:absl:Running publisher for Evaluator
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo ora i manufatti di uscita del Evaluator .

evaluator.outputs
{'evaluation': Channel(
     type_name: ModelEvaluation
     artifacts: [Artifact(artifact: id: 15
 type_id: 29
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/evaluation/8"
 custom_properties {
   key: "name"
   value {
     string_value: "evaluation"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 29
 name: "ModelEvaluation"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'blessing': Channel(
     type_name: ModelBlessing
     artifacts: [Artifact(artifact: id: 16
 type_id: 30
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/blessing/8"
 custom_properties {
   key: "blessed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "current_model"
   value {
     string_value: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6"
   }
 }
 custom_properties {
   key: "current_model_id"
   value {
     int_value: 13
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "blessing"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 30
 name: "ModelBlessing"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

Utilizzando la evaluation dell'uscita si può mostrare la visualizzazione predefinita di metriche globali sull'intero set di valutazione.

context.show(evaluator.outputs['evaluation'])

Per vedere la visualizzazione per le metriche di valutazione suddivise, possiamo chiamare direttamente la libreria TensorFlow Model Analysis.

import tensorflow_model_analysis as tfma

# Get the TFMA output result path and load the result.
PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
tfma_result = tfma.load_eval_result(PATH_TO_RESULT)

# Show data sliced along feature column trip_start_hour.
tfma.view.render_slicing_metrics(
    tfma_result, slicing_column='trip_start_hour')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'trip_start_hour:19',…

Questa visualizzazione mostra gli stessi parametri, ma calcolato ad ogni valore di caratteristica trip_start_hour trascurando l'intero set di valutazione.

TensorFlow Model Analysis supporta molte altre visualizzazioni, come gli indicatori di correttezza e il tracciamento di una serie temporale delle prestazioni del modello. Per ulteriori informazioni, consultare il tutorial .

Poiché abbiamo aggiunto le soglie alla nostra configurazione, è disponibile anche l'output di convalida. Il precence di una blessing manufatto indica che il nostro modello superato la convalida. Poiché questa è la prima convalida eseguita, il candidato viene automaticamente benedetto.

blessing_uri = evaluator.outputs['blessing'].get()[0].uri
!ls -l {blessing_uri}
total 0
-rw-rw-r-- 1 kbuilder kbuilder 0 Dec  5 11:03 BLESSED

Ora puoi anche verificare il successo caricando il record del risultato della convalida:

PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
print(tfma.load_validation_result(PATH_TO_RESULT))
validation_ok: true
validation_details {
  slicing_details {
    slicing_spec {
    }
    num_matching_slices: 25
  }
}

pusher

Il Pusher componente è di solito alla fine di una condotta TFX. Si controlla se un modello è superato la convalida, e in caso affermativo, le esportazioni il modello da _serving_model_dir .

pusher = tfx.components.Pusher(
    model=trainer.outputs['model'],
    model_blessing=evaluator.outputs['blessing'],
    push_destination=tfx.proto.PushDestination(
        filesystem=tfx.proto.PushDestination.Filesystem(
            base_directory=_serving_model_dir)))
context.run(pusher)
INFO:absl:Running driver for Pusher
INFO:absl:MetadataStore with DB connection initialized
I1205 11:03:54.694877  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Pusher
INFO:absl:Model version: 1638702234
INFO:absl:Model written to serving path /tmp/tmposmo4233/serving_model/taxi_simple/1638702234.
INFO:absl:Model pushed to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Pusher/pushed_model/9.
INFO:absl:Running publisher for Pusher
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo i manufatti di uscita di Pusher .

pusher.outputs
{'pushed_model': Channel(
     type_name: PushedModel
     artifacts: [Artifact(artifact: id: 17
 type_id: 32
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Pusher/pushed_model/9"
 custom_properties {
   key: "name"
   value {
     string_value: "pushed_model"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Pusher"
   }
 }
 custom_properties {
   key: "pushed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "pushed_destination"
   value {
     string_value: "/tmp/tmposmo4233/serving_model/taxi_simple/1638702234"
   }
 }
 custom_properties {
   key: "pushed_version"
   value {
     string_value: "1638702234"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 32
 name: "PushedModel"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

In particolare, il Pusher esporterà il tuo modello nel formato SavedModel, che assomiglia a questo:

push_uri = pusher.outputs['pushed_model'].get()[0].uri
model = tf.saved_model.load(push_uri)

for item in model.signatures.items():
  pp.pprint(item)
('regression', <ConcreteFunction pruned(inputs) at 0x7F19BF0F9510>)
('classification', <ConcreteFunction pruned(inputs) at 0x7F19BE0EC350>)
('serving_default', <ConcreteFunction pruned(inputs) at 0x7F19BC6BE210>)
('predict', <ConcreteFunction pruned(examples) at 0x7F19BC4F9090>)

Abbiamo terminato il nostro tour dei componenti TFX integrati!