Trenuj i obsługuj model TensorFlow z TensorFlow Serving

Ten przewodnik trenuje modelu sieci neuronowej do klasyfikacji obrazów ubrania, jak trampki i koszulki , ratuje wyszkolonego model, a następnie zaprasza ją TensorFlow serwowania . Nacisk położony jest na TensorFlow Serving zamiast modelowania i szkolenia w TensorFlow, tak aby uzyskać pełną przykład, który skupia się na modelowaniu i szkolenia patrz przykład Podstawowe klasyfikacyjny .

Podręcznik ten wykorzystuje tf.keras , wysokiego poziomu API do budowania i pociągów modeli TensorFlow.

import sys

# Confirm that we're using Python 3
assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0

import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess

print('TensorFlow version: {}'.format(tf.__version__))

Stwórz swój model

Zaimportuj zestaw danych Fashion MNIST

Podręcznik ten używa Moda MNIST zbiór danych, który zawiera 70.000 obrazów w skali szarości w 10 kategoriach. Zdjęcia przedstawiają poszczególne artykuły odzieżowe w niskiej rozdzielczości (28 na 28 pikseli), jak widać tutaj:

Moda MNIST sprite
Rysunek 1. Próbki mody-MNIST (o Zalando MIT prawo jazdy).

Moda MNIST ma służyć jako zamiennik dla klasycznej MNIST zbiór danych, często wykorzystywane jako „Hello, World” programów uczenia maszynowego dla wizji komputerowej. Możesz uzyskać dostęp do Fashion MNIST bezpośrednio z TensorFlow, wystarczy zaimportować i załadować dane.

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0

# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step

train_images.shape: (60000, 28, 28, 1), of float64
test_images.shape: (10000, 28, 28, 1), of float64

Trenuj i oceniaj swój model

Użyjmy najprostszego możliwego CNN, ponieważ nie skupiamy się na części modelowania.

model = keras.Sequential([
  keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, 
                      strides=2, activation='relu', name='Conv1'),
  keras.layers.Flatten(),
  keras.layers.Dense(10, name='Dense')
])
model.summary()

testing = False
epochs = 5

model.compile(optimizer='adam', 
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
2021-12-04 10:29:34.128871: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory
2021-12-04 10:29:34.129907: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Conv1 (Conv2D)               (None, 13, 13, 8)         80        
_________________________________________________________________
flatten (Flatten)            (None, 1352)              0         
_________________________________________________________________
Dense (Dense)                (None, 10)                13530     
=================================================================
Total params: 13,610
Trainable params: 13,610
Non-trainable params: 0
_________________________________________________________________
Epoch 1/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.7204 - sparse_categorical_accuracy: 0.7549
Epoch 2/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3997 - sparse_categorical_accuracy: 0.8611
Epoch 3/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3580 - sparse_categorical_accuracy: 0.8754
Epoch 4/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3399 - sparse_categorical_accuracy: 0.8780
Epoch 5/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3232 - sparse_categorical_accuracy: 0.8849
313/313 [==============================] - 0s 1ms/step - loss: 0.3586 - sparse_categorical_accuracy: 0.8738

Test accuracy: 0.8737999796867371

Zapisz swój model

Aby załadować nasz wyszkolony modelu do TensorFlow Serving najpierw musimy zapisać go w SavedModel formacie. Spowoduje to utworzenie pliku protobuf w dobrze zdefiniowanej hierarchii katalogów i będzie zawierało numer wersji. TensorFlow Serving pozwala nam wybrać, która wersja modelu, czyli „servable” Chcemy wykorzystać kiedy żądań wnioskowania. Każda wersja zostanie wyeksportowana do innego podkatalogu pod podaną ścieżką.

# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))

tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1
2021-12-04 10:29:53.392905: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/1/assets

Saved model:
total 88
drwxr-xr-x 2 kbuilder kbuilder  4096 Dec  4 10:29 assets
-rw-rw-r-- 1 kbuilder kbuilder 78055 Dec  4 10:29 saved_model.pb
drwxr-xr-x 2 kbuilder kbuilder  4096 Dec  4 10:29 variables

Sprawdź swój zapisany model

Użyjemy polecenia narzędzia wiersza saved_model_cli spojrzeć na MetaGraphDefs (The modeli) i SignatureDefs (metody można nazwać) w naszej SavedModel. Zobacz tę dyskusję na SavedModel CLI w TensorFlow Guide.

saved_model_cli show --dir {export_path} --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['Conv1_input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 28, 28, 1)
        name: serving_default_Conv1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['Dense'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 10)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict

Defined Functions:
  Function Name: '__call__'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

  Function Name: '_default_save_signature'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')

  Function Name: 'call_and_return_all_conditional_losses'
    Option #1
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

To wiele mówi nam o naszym modelu! W tym przypadku właśnie wytrenowaliśmy nasz model, więc znamy już dane wejściowe i wyjściowe, ale gdybyśmy tego nie zrobili, byłaby to ważna informacja. Nie mówi nam wszystkiego, na przykład o tym, że są to dane obrazu w skali szarości, ale to świetny początek.

Obsługuj swój model za pomocą TensorFlow Serving

Dodaj URI dystrybucji TensorFlow Serving jako źródło pakietu:

Przygotowujemy się do zainstalowania TensorFlow Serving używając Aptitude ponieważ Colab przebiega w środowisku Debian. Dodamy tensorflow-model-server pakiet z listy pakietów Aptitude o nich wiedział. Zauważ, że działamy jako root.

import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
  SUDO_IF_NEEDED = 'sudo'
else:
  SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2943  100  2943    0     0  15571      0 --:--:-- --:--:-- --:--:-- 15571
OK
Hit:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic InRelease
Hit:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates InRelease
Hit:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-backports InRelease
Hit:4 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64  InRelease
Get:5 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  InRelease [1481 B]
Get:6 https://nvidia.github.io/nvidia-docker/ubuntu18.04/amd64  InRelease [1474 B]
Ign:7 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  InRelease
Get:8 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3012 B]
Hit:9 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64  Release
Get:10 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]
Get:11 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease [5419 B]
Get:12 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease [5483 B]
Hit:13 http://archive.canonical.com/ubuntu bionic InRelease
Err:11 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease
  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
Get:15 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [339 B]
Err:12 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease
  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
Get:16 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [348 B]
Fetched 106 kB in 1s (103 kB/s)



119 packages can be upgraded. Run 'apt list --upgradable' to see them.
W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: https://packages.cloud.google.com/apt eip-cloud-bionic InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Failed to fetch https://packages.cloud.google.com/apt/dists/eip-cloud-bionic/InRelease  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Failed to fetch http://packages.cloud.google.com/apt/dists/google-cloud-logging-wheezy/InRelease  The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB
W: Some index files failed to download. They have been ignored, or old ones used instead.

Zainstaluj obsługę TensorFlow

To wszystko, czego potrzebujesz - jedna linia poleceń!

{SUDO_IF_NEEDED} apt-get install tensorflow-model-server
The following packages were automatically installed and are no longer required:
  linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043
  linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed:
  tensorflow-model-server
0 upgraded, 1 newly installed, 0 to remove and 119 not upgraded.
Need to get 335 MB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.7.0 [335 MB]
Fetched 335 MB in 7s (45.2 MB/s)
Selecting previously unselected package tensorflow-model-server.
(Reading database ... 264341 files and directories currently installed.)
Preparing to unpack .../tensorflow-model-server_2.7.0_all.deb ...
Unpacking tensorflow-model-server (2.7.0) ...
Setting up tensorflow-model-server (2.7.0) ...

Rozpocznij udostępnianie TensorFlow

Tutaj zaczynamy uruchamiać TensorFlow Serving i ładować nasz model. Po załadowaniu możemy rozpocząć wykonywanie żądań wnioskowania za pomocą REST. Istnieje kilka ważnych parametrów:

  • rest_api_port : port, który będzie używany dla wniosków o resztę.
  • model_name : Będziesz korzystać z tego w adresie URL żądania REST. Może to być wszystko.
  • model_base_path : Jest to ścieżka do katalogu, w którym został zapisany model.
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
  --rest_api_port=8501 \
  --model_name=fashion_model \
  --model_base_path="${MODEL_DIR}" >server.log 2>&1
tail server.log

Złóż wniosek do swojego modelu w TensorFlow Serving

Najpierw spójrzmy na losowy przykład z naszych danych testowych.

def show(idx, title):
  plt.figure()
  plt.imshow(test_images[idx].reshape(28,28))
  plt.axis('off')
  plt.title('\n\n{}'.format(title), fontdict={'size': 16})

import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))

png

Ok, to wygląda interesująco. Jak trudno ci to rozpoznać? Teraz utwórzmy obiekt JSON dla partii trzech żądań wnioskowania i zobaczmy, jak dobrze nasz model rozpoznaje rzeczy:

import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ...  [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}

Zgłaszaj żądania REST

Najnowsza wersja serwable

Wyślemy żądanie przewidywania jako POST do punktu końcowego REST naszego serwera i przekażemy mu trzy przykłady. Poprosimy nasz serwer, aby udostępnił nam najnowszą wersję naszego serwera, bez określania konkretnej wersji.

# docs_infra: no_execute
!pip install -q requests

import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
  class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))

Konkretna wersja serwowalnego

Teraz określmy konkretną wersję naszego serwowalnego. Ponieważ mamy tylko jeden, wybierzmy wersję 1. Przyjrzymy się również wszystkim trzem wynikom.

# docs_infra: no_execute
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

for i in range(0,3):
  show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
    class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))