इस गाइड को वर्गीकृत करने के लिए एक तंत्रिका नेटवर्क मॉडल गाड़ियों कपड़ों की छवियों, स्नीकर्स और शर्ट की तरह , प्रशिक्षित मॉडल की बचत होती है, और उसके बाद के साथ कार्य करता है TensorFlow सेवित । फोकस TensorFlow, सेवित पर नहीं बल्कि मॉडलिंग और TensorFlow में प्रशिक्षण से, तो एक पूर्ण उदाहरण जो मॉडलिंग और प्रशिक्षण को देखने पर केंद्रित है के लिए है बुनियादी वर्गीकरण उदाहरण ।
इस गाइड का उपयोग करता tf.keras , TensorFlow में निर्माण और ट्रेन मॉडल के लिए एक उच्च स्तरीय एपीआई।
import sys
# Confirm that we're using Python 3
assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess
print('TensorFlow version: {}'.format(tf.__version__))
अपना मॉडल बनाएं
फैशन एमएनआईएसटी डेटासेट आयात करें
इस गाइड का उपयोग करता है फैशन MNIST डाटासेट जो 10 श्रेणियों में 70,000 ग्रेस्केल चित्र शामिल हैं। छवियाँ कम रिज़ॉल्यूशन (28 गुणा 28 पिक्सेल) पर कपड़ों के अलग-अलग लेख दिखाती हैं, जैसा कि यहाँ देखा गया है:
चित्र 1 फैशन-MNIST नमूने (Zalando, एमआईटी लाइसेंस द्वारा)। |
फैशन MNIST क्लासिक के लिए एक ड्रॉप में स्थानापन्न के रूप में करना है MNIST डाटासेट-अक्सर कंप्यूटर दृष्टि के लिए मशीन सीखने कार्यक्रमों की "नमस्ते, दुनिया" के रूप में इस्तेमाल किया। आप TensorFlow से सीधे Fashion MNIST तक पहुंच सकते हैं, बस डेटा आयात और लोड करें।
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0
# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz 32768/29515 [=================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz 26427392/26421880 [==============================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz 8192/5148 [===============================================] - 0s 0us/step Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz 4423680/4422102 [==============================] - 0s 0us/step train_images.shape: (60000, 28, 28, 1), of float64 test_images.shape: (10000, 28, 28, 1), of float64
अपने मॉडल को प्रशिक्षित और मूल्यांकन करें
आइए सबसे सरल संभव सीएनएन का उपयोग करें, क्योंकि हम मॉडलिंग भाग पर ध्यान केंद्रित नहीं कर रहे हैं।
model = keras.Sequential([
keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3,
strides=2, activation='relu', name='Conv1'),
keras.layers.Flatten(),
keras.layers.Dense(10, name='Dense')
])
model.summary()
testing = False
epochs = 5
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
2021-12-04 10:29:34.128871: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:29:34.129907: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= Conv1 (Conv2D) (None, 13, 13, 8) 80 _________________________________________________________________ flatten (Flatten) (None, 1352) 0 _________________________________________________________________ Dense (Dense) (None, 10) 13530 ================================================================= Total params: 13,610 Trainable params: 13,610 Non-trainable params: 0 _________________________________________________________________ Epoch 1/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.7204 - sparse_categorical_accuracy: 0.7549 Epoch 2/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3997 - sparse_categorical_accuracy: 0.8611 Epoch 3/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3580 - sparse_categorical_accuracy: 0.8754 Epoch 4/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3399 - sparse_categorical_accuracy: 0.8780 Epoch 5/5 1875/1875 [==============================] - 4s 2ms/step - loss: 0.3232 - sparse_categorical_accuracy: 0.8849 313/313 [==============================] - 0s 1ms/step - loss: 0.3586 - sparse_categorical_accuracy: 0.8738 Test accuracy: 0.8737999796867371
अपना मॉडल सहेजें
हम में सहेजने के लिए पहली जरूरत सेवित TensorFlow में हमारे प्रशिक्षित मॉडल लोड करने के लिए SavedModel प्रारूप। यह एक अच्छी तरह से परिभाषित निर्देशिका पदानुक्रम में एक प्रोटोबफ फ़ाइल बनाएगा, और इसमें एक संस्करण संख्या शामिल होगी। TensorFlow प्रस्तुति हमें एक मॉडल का कौन सा संस्करण, या "servable" हम उपयोग करने के लिए जब हम अनुमान अनुरोध करने चाहते हैं का चयन करने के लिए अनुमति देता है। प्रत्येक संस्करण दिए गए पथ के तहत एक अलग उप-निर्देशिका में निर्यात किया जाएगा।
# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile
MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))
tf.keras.models.save_model(
model,
export_path,
overwrite=True,
include_optimizer=True,
save_format=None,
signatures=None,
options=None
)
print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1 2021-12-04 10:29:53.392905: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/1/assets Saved model: total 88 drwxr-xr-x 2 kbuilder kbuilder 4096 Dec 4 10:29 assets -rw-rw-r-- 1 kbuilder kbuilder 78055 Dec 4 10:29 saved_model.pb drwxr-xr-x 2 kbuilder kbuilder 4096 Dec 4 10:29 variables
अपने सहेजे गए मॉडल की जांच करें
हम कमांड लाइन उपयोगिता का उपयोग करेंगे saved_model_cli
को देखने के लिए MetaGraphDefs (मॉडल) और SignatureDefs (तरीकों आप कॉल कर सकते हैं) हमारे SavedModel में। देखें SavedModel CLI की इस चर्चा TensorFlow गाइड में।
saved_model_cli show --dir {export_path} --all
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']: The given SavedModel SignatureDef contains the following input(s): The given SavedModel SignatureDef contains the following output(s): outputs['__saved_model_init_op'] tensor_info: dtype: DT_INVALID shape: unknown_rank name: NoOp Method name is: signature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['Conv1_input'] tensor_info: dtype: DT_FLOAT shape: (-1, 28, 28, 1) name: serving_default_Conv1_input:0 The given SavedModel SignatureDef contains the following output(s): outputs['Dense'] tensor_info: dtype: DT_FLOAT shape: (-1, 10) name: StatefulPartitionedCall:0 Method name is: tensorflow/serving/predict Defined Functions: Function Name: '__call__' Option #1 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #2 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #3 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Option #4 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Function Name: '_default_save_signature' Option #1 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Function Name: 'call_and_return_all_conditional_losses' Option #1 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #2 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Option #3 Callable with: Argument #1 Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #4 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None
यह हमें हमारे मॉडल के बारे में बहुत कुछ बताता है! इस मामले में हमने सिर्फ अपने मॉडल को प्रशिक्षित किया है, इसलिए हम पहले से ही इनपुट और आउटपुट जानते हैं, लेकिन अगर हमने ऐसा नहीं किया तो यह महत्वपूर्ण जानकारी होगी। यह हमें सब कुछ नहीं बताता है, उदाहरण के लिए यह ग्रेस्केल छवि डेटा है, लेकिन यह एक शानदार शुरुआत है।
अपने मॉडल को TensorFlow सर्विंग के साथ परोसें
पैकेज स्रोत के रूप में TensorFlow सर्विंग वितरण URI जोड़ें:
हम TensorFlow का उपयोग कर सेवित स्थापित करने के लिए तैयारी कर रहे हैं योग्यता के बाद से इस Colab एक डेबियन वातावरण में चलाता है। हम जोड़ देंगे tensorflow-model-server
संकुल कि योग्यता के बारे में जानता की सूची में पैकेज। ध्यान दें कि हम रूट के रूप में चल रहे हैं।
import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
SUDO_IF_NEEDED = 'sudo'
else:
SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -
!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 2943 100 2943 0 0 15571 0 --:--:-- --:--:-- --:--:-- 15571 OK Hit:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic InRelease Hit:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates InRelease Hit:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-backports InRelease Hit:4 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64 InRelease Get:5 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64 InRelease [1481 B] Get:6 https://nvidia.github.io/nvidia-docker/ubuntu18.04/amd64 InRelease [1474 B] Ign:7 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 InRelease Get:8 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3012 B] Hit:9 http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 Release Get:10 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB] Get:11 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease [5419 B] Get:12 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease [5483 B] Hit:13 http://archive.canonical.com/ubuntu bionic InRelease Err:11 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB Get:15 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [339 B] Err:12 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB Get:16 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [348 B] Fetched 106 kB in 1s (103 kB/s) 119 packages can be upgraded. Run 'apt list --upgradable' to see them. W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: https://packages.cloud.google.com/apt eip-cloud-bionic InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: An error occurred during the signature verification. The repository is not updated and the previous index files will be used. GPG error: http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: Failed to fetch https://packages.cloud.google.com/apt/dists/eip-cloud-bionic/InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: Failed to fetch http://packages.cloud.google.com/apt/dists/google-cloud-logging-wheezy/InRelease The following signatures couldn't be verified because the public key is not available: NO_PUBKEY FEEA9169307EA071 NO_PUBKEY 8B57C5C2836F4BEB W: Some index files failed to download. They have been ignored, or old ones used instead.
TensorFlow सर्विंग स्थापित करें
आपको बस इतना ही चाहिए - एक कमांड लाइन!
{SUDO_IF_NEEDED} apt-get install tensorflow-model-server
The following packages were automatically installed and are no longer required: linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043 linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049 Use 'sudo apt autoremove' to remove them. The following NEW packages will be installed: tensorflow-model-server 0 upgraded, 1 newly installed, 0 to remove and 119 not upgraded. Need to get 335 MB of archives. After this operation, 0 B of additional disk space will be used. Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.7.0 [335 MB] Fetched 335 MB in 7s (45.2 MB/s) Selecting previously unselected package tensorflow-model-server. (Reading database ... 264341 files and directories currently installed.) Preparing to unpack .../tensorflow-model-server_2.7.0_all.deb ... Unpacking tensorflow-model-server (2.7.0) ... Setting up tensorflow-model-server (2.7.0) ...
TensorFlow सर्विंग चलाना प्रारंभ करें
यहीं से हम TensorFlow सर्विंग चलाना शुरू करते हैं और अपने मॉडल को लोड करते हैं। इसके लोड होने के बाद हम REST का उपयोग करके अनुमान अनुरोध करना शुरू कर सकते हैं। कुछ महत्वपूर्ण पैरामीटर हैं:
-
rest_api_port
: बंदरगाह है कि आप बाकी अनुरोधों के लिए इस्तेमाल करेंगे। -
model_name
: आप बाकी अनुरोध के URL में इसका उपयोग करेंगे। यह कुछ भी हो सकता है। -
model_base_path
: इस निर्देशिका है जहाँ आप अपने मॉडल को सहेज लिया है करने के लिए पथ है।
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
--rest_api_port=8501 \
--model_name=fashion_model \
--model_base_path="${MODEL_DIR}" >server.log 2>&1
tail server.log
TensorFlow सर्विंग में अपने मॉडल के लिए एक अनुरोध करें
सबसे पहले, आइए हमारे परीक्षण डेटा से एक यादृच्छिक उदाहरण देखें।
def show(idx, title):
plt.figure()
plt.imshow(test_images[idx].reshape(28,28))
plt.axis('off')
plt.title('\n\n{}'.format(title), fontdict={'size': 16})
import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))
ठीक है, यह दिलचस्प लग रहा है। आपके लिए इसे पहचानना कितना कठिन है? आइए अब तीन अनुमान अनुरोधों के बैच के लिए JSON ऑब्जेक्ट बनाएं, और देखें कि हमारा मॉडल चीजों को कितनी अच्छी तरह पहचानता है:
import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ... [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}
बाकी अनुरोध करें
सर्व करने योग्य का नवीनतम संस्करण
हम अपने सर्वर के आरईएसटी एंडपॉइंट पर एक पोस्ट के रूप में एक पूर्वानुमान अनुरोध भेजेंगे, और इसे तीन उदाहरण पास करेंगे। हम अपने सर्वर से किसी विशेष संस्करण को निर्दिष्ट न करके हमें अपने सर्व करने योग्य का नवीनतम संस्करण देने के लिए कहेंगे।
# docs_infra: no_execute
!pip install -q requests
import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']
show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))
सर्व करने योग्य का एक विशेष संस्करण
अब हमारे सर्व करने योग्य का एक विशेष संस्करण निर्दिष्ट करते हैं। चूंकि हमारे पास केवल एक है, आइए संस्करण 1 का चयन करें। हम तीनों परिणामों को भी देखेंगे।
# docs_infra: no_execute
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']
for i in range(0,3):
show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))