View source on GitHub |
Init module for TensorFlow Model Analysis metrics.
Classes
class AUC
: Approximates the AUC (Area under the curve) of the ROC or PR curves.
class AUCCurve
: An enumeration.
class AUCPrecisionRecall
: Alias for AUC(curve='PR').
class AUCSummationMethod
: An enumeration.
class AttributionsMetric
: Base type for attribution metrics.
class BalancedAccuracy
: Balanced accuracy (BA).
class BinaryAccuracy
: Calculates how often predictions match binary labels.
class BinaryCrossEntropy
: Calculates the binary cross entropy.
class BooleanFlipRates
: FlipRate is the rate at which predictions between models switch.
class COCOAveragePrecision
: Confusion matrix at thresholds.
class COCOAverageRecall
: Average recall metric for object detection.
class COCOMeanAveragePrecision
: Mean average precision for object detections.
class COCOMeanAverageRecall
: Mean Average recall metric for object detection.
class Calibration
: Calibration.
class CalibrationPlot
: Calibration plot.
class CategoricalCrossEntropy
: Calculates the categorical cross entropy.
class CoefficientOfDiscrimination
: Coefficient of discrimination metric.
class ConfusionMatrixAtThresholds
: Confusion matrix at thresholds.
class ConfusionMatrixPlot
: Confusion matrix plot.
class DerivedMetricComputation
: DerivedMetricComputation derives its result from other computations.
class DiagnosticOddsRatio
: Diagnostic odds ratio (DOR).
class ExactMatch
: Exact Match Metric.
class ExampleCount
: Example count.
class F1Score
: F1 score.
class FN
: Alias for FalseNegatives.
class FNR
: Alias for MissRate.
class FP
: Alias for FalsePositives.
class FPR
: Alias for FallOut.
class FallOut
: Fall-out (FPR).
class FalseDiscoveryRate
: False discovery rate (FDR).
class FalseNegatives
: Calculates the number of false negatives.
class FalseOmissionRate
: False omission rate (FOR).
class FalsePositives
: Calculates the number of false positives.
class FowlkesMallowsIndex
: Fowlkes-Mallows index (FM).
class Informedness
: Informedness or bookmaker informedness (BM).
class Markedness
: Markedness (MK) or deltaP.
class MatthewsCorrelationCoefficient
: Matthews corrrelation coefficient (MCC).
class MaxRecall
: Computes the max recall of the predictions with respect to the labels.
class Mean
: Mean metric.
class MeanAbsoluteAttributions
: Mean aboslute attributions metric.
class MeanAbsoluteError
: Calculates the mean of absolute error between labels and predictions.
class MeanAbsolutePercentageError
: Calculates the mean of absolute percentage error.
class MeanAttributions
: Mean attributions metric.
class MeanLabel
: Mean label.
class MeanPrediction
: Mean prediction.
class MeanSquaredError
: Calculates the mean of squared error between labels and predictions.
class MeanSquaredLogarithmicError
: Calculates the mean of squared logarithmic error.
class Metric
: Metric wraps a set of metric computations.
class MetricComputation
: MetricComputation represents one or more metric computations.
class MetricKey
: A MetricKey uniquely identifies a metric.
class MinLabelPosition
: Min label position metric.
class MissRate
: Miss rate (FNR).
class MultiClassConfusionMatrixAtThresholds
: Multi-class confusion matrix metrics at thresholds.
class MultiClassConfusionMatrixPlot
: Multi-class confusion matrix plot.
class MultiLabelConfusionMatrixPlot
: Multi-label confusion matrix.
class NDCG
: NDCG (normalized discounted cumulative gain) metric.
class NPV
: Alias for NegativePredictiveValue.
class NegativeLikelihoodRatio
: Negative likelihood ratio (LR-).
class NegativePredictiveValue
: Negative predictive value (NPV).
class ObjectDetectionConfusionMatrixPlot
: Object Detection Confusion matrix plot.
class ObjectDetectionMaxRecall
: Computes the max recall of the predictions with respect to the labels.
class ObjectDetectionPrecision
: Computes the precision of the predictions with respect to the labels.
class ObjectDetectionPrecisionAtRecall
: Computes best precision where recall is >= specified value.
class ObjectDetectionRecall
: Computes the recall of the predictions with respect to the labels.
class ObjectDetectionThresholdAtRecall
: Computes maximum threshold where recall is >= specified value.
class PPV
: Alias for Precision.
class PlotKey
: A PlotKey is a metric key that uniquely identifies a plot.
class PositiveLikelihoodRatio
: Positive likelihood ratio (LR+).
class Precision
: Computes the precision of the predictions with respect to the labels.
class PrecisionAtRecall
: Computes best precision where recall is >= specified value.
class Preprocessor
: Preprocessor wrapper for preprocessing data in the metric computation.
class Prevalence
: Prevalence.
class PrevalenceThreshold
: Prevalence threshold (PT).
class QueryStatistics
: Query statistic metrics.
class Recall
: Computes the recall of the predictions with respect to the labels.
class RecallAtPrecision
: Computes best recall where precision is >= specified value.
class RelativeCoefficientOfDiscrimination
: Relative coefficient of discrimination metric.
class ScoreDistributionPlot
: Score distribution plot.
class SemanticSegmentationConfusionMatrix
: Computes confusion matrices for semantic segmentation.
class SemanticSegmentationFalsePositive
: Calculates the true postive for semantic segmentation.
class SemanticSegmentationTruePositive
: Calculates the true postive for semantic segmentation.
class SensitivityAtSpecificity
: Computes best sensitivity where specificity is >= specified value.
class SetMatchPrecision
: Computes precision for sets of labels and predictions.
class SetMatchRecall
: Computes recall for sets of labels and predictions.
class Specificity
: Specificity (TNR) or selectivity.
class SpecificityAtSensitivity
: Computes best specificity where sensitivity is >= specified value.
class SquaredPearsonCorrelation
: Squared pearson correlation (r^2) metric.
class StandardMetricInputs
: Standard inputs used by most metric computations.
class SubKey
: A SubKey identifies a sub-types of metrics and plots.
class SymmetricPredictionDifference
: PredictionDifference computes the avg pointwise diff between models.
class TN
: Alias for TrueNegatives.
class TNR
: Alias for Specificity.
class TP
: Alias for TruePositives.
class TPR
: Alias for Recall.
class ThreatScore
: Threat score or critical success index (TS or CSI).
class TotalAbsoluteAttributions
: Total absolute attributions metric.
class TotalAttributions
: Total attributions metric.
class TrueNegatives
: Calculates the number of true negatives.
class TruePositives
: Calculates the number of true positives.
class WeightedExampleCount
: Weighted example count (deprecated - use ExampleCount).
Functions
CombinedFeaturePreprocessor(...)
: Returns preprocessor for incl combined features in StandardMetricInputs.
FeaturePreprocessor(...)
: Returns preprocessor for including features in StandardMetricInputs.
default_binary_classification_specs(...)
: Returns default metric specs for binary classification problems.
default_multi_class_classification_specs(...)
: Returns default metric specs for multi-class classification problems.
default_regression_specs(...)
: Returns default metric specs for for regression problems.
has_attributions_metrics(...)
: Returns true if any of the metrics_specs have attributions metrics.
merge_per_key_computations(...)
: Wraps create_computations_fn to be called separately for each key.
metric_thresholds_from_metrics_specs(...)
: Returns thresholds associated with given metrics specs.
specs_from_metrics(...)
: Returns specs for tf_keras.metrics/losses or tfma.metrics classes.
to_label_prediction_example_weight(...)
: Yields label, prediction, and example weights for use in calculations.
to_standard_metric_inputs(...)
: Verifies extract keys and converts extracts to StandardMetricInputs.
Type Aliases
Other Members | |
---|---|
NO_PREDICTED_CLASS_ID |
-1
|