View source on GitHub |
Calculates the true postive for semantic segmentation.
Inherits From: Metric
tfma.metrics.SemanticSegmentationTruePositive(
class_ids: List[int],
ground_truth_key: str,
prediction_key: str,
decode_ground_truth: bool = True,
decode_prediction: bool = False,
ignore_ground_truth_id: Optional[int] = None,
name: Optional[str] = None
)
Methods
computations
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
@classmethod
from_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any]
Returns serializable config.