Diseño de código de modelado TensorFlow para TFX

Al diseñar su código de modelado de TensorFlow para TFX, hay algunos elementos que debe tener en cuenta, incluida la elección de una API de modelado.

  • Consume: SavedModel de Transform y datos de EjemploGen
  • Emite: modelo entrenado en formato SavedModel

La capa de entrada de su modelo debe consumir del SavedModel que fue creado por un componente Transform , y las capas del modelo Transform deben incluirse con su modelo para que cuando exporte su SavedModel y EvalSavedModel incluyan las transformaciones que fueron creadas por Transform. componente.

Un diseño de modelo típico de TensorFlow para TFX se ve así:

def _build_estimator(tf_transform_dir,
                     config,
                     hidden_units=None,
                     warm_start_from=None):
  """Build an estimator for predicting the tipping behavior of taxi riders.

  Args:
    tf_transform_dir: directory in which the tf-transform model was written
      during the preprocessing step.
    config: tf.contrib.learn.RunConfig defining the runtime environment for the
      estimator (including model_dir).
    hidden_units: [int], the layer sizes of the DNN (input layer first)
    warm_start_from: Optional directory to warm start from.

  Returns:
    Resulting DNNLinearCombinedClassifier.
  """
  metadata_dir = os.path.join(tf_transform_dir,
                              transform_fn_io.TRANSFORMED_METADATA_DIR)
  transformed_metadata = metadata_io.read_metadata(metadata_dir)
  transformed_feature_spec = transformed_metadata.schema.as_feature_spec()

  transformed_feature_spec.pop(_transformed_name(_LABEL_KEY))

  real_valued_columns = [
      tf.feature_column.numeric_column(key, shape=())
      for key in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)
  ]
  categorical_columns = [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
      for key in _transformed_names(_VOCAB_FEATURE_KEYS)
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
      for key in _transformed_names(_BUCKET_FEATURE_KEYS)
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=num_buckets, default_value=0)
      for key, num_buckets in zip(
          _transformed_names(_CATEGORICAL_FEATURE_KEYS),  #
          _MAX_CATEGORICAL_FEATURE_VALUES)
  ]
  return tf.estimator.DNNLinearCombinedClassifier(
      config=config,
      linear_feature_columns=categorical_columns,
      dnn_feature_columns=real_valued_columns,
      dnn_hidden_units=hidden_units or [100, 70, 50, 25],
      warm_start_from=warm_start_from)