ModelValidator TFX パイプライン コンポーネント (非推奨)

ModelValidator は、モデルが運用環境で使用するのに十分かどうかをチェックするために使用されました。私たちは検証が便利であると今でも考えていますが、モデルエバリュエーターが検証対象のすべてのメトリクスをすでに計算しているため、計算を複製する必要がないように 2 つを融合することにしました。

ModelValidator は非推奨となっており、使用はお勧めしませんが、既存の ModelValidator コンポーネントを維持する必要がある場合の構成例は次のとおりです。

import tfx
import tensorflow_model_analysis as tfma
from tfx.components.model_validator.component import ModelValidator

...

model_validator = ModelValidator(
      examples=example_gen.outputs['output_data'],
      model=trainer.outputs['model'])

構成をエバリュエーターに移行したい場合、エバリュエーターの同様の構成は次のようになります。

from tfx import components
import tensorflow_model_analysis as tfma

...

eval_config = tfma.EvalConfig(
    model_specs=[
        # This assumes a serving model with signature 'serving_default'. If
        # using estimator based EvalSavedModel, add signature_name: 'eval' and
        # remove the label_key.
        tfma.ModelSpec(label_key='<label_key>')
    ],
    metrics_specs=[
        tfma.MetricsSpec(
            # The metrics added here are in addition to those saved with the
            # model (assuming either a keras model or EvalSavedModel is used).
            # Any metrics added into the saved model (for example using
            # model.compile(..., metrics=[...]), etc) will be computed
            # automatically.
            metrics=[
                tfma.MetricConfig(class_name='ExampleCount'),
                tfma.MetricConfig(
                    class_name='BinaryAccuracy',
                    threshold=tfma.MetricThreshold(
                        value_threshold=tfma.GenericValueThreshold(
                            lower_bound={'value': 0.5}),
                        change_threshold=tfma.GenericChangeThreshold(
                            direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                            absolute={'value': -1e-10})))
            ]
        )
    ],
    slicing_specs=[
        # An empty slice spec means the overall slice, i.e. the whole dataset.
        tfma.SlicingSpec(),
        # Data can be sliced along a feature column. In this case, data is
        # sliced along feature column trip_start_hour.
        tfma.SlicingSpec(feature_keys=['trip_start_hour'])
    ])

model_resolver = Resolver(
      strategy_class=latest_blessed_model_resolver.LatestBlessedModelResolver,
      model=Channel(type=Model),
      model_blessing=Channel(type=ModelBlessing)
).with_id('latest_blessed_model_resolver')

model_analyzer = components.Evaluator(
      examples=examples_gen.outputs['examples'],
      model=trainer.outputs['model'],
      baseline_model=model_resolver.outputs['model'],
      # Change threshold will be ignored if there is no baseline (first run).
      eval_config=eval_config)