Ver no TensorFlow.org | Executar no Google Colab | Ver fonte no GitHub | Baixar caderno |
Este notebook treina uma seqüência de modelo de sequência (seq2seq) para Espanhol para Inglês com base em Abordagens eficazes para à base de Atenção Neural Machine Translation . Este é um exemplo avançado que pressupõe algum conhecimento de:
- Sequência para modelos de sequência
- Fundamentos do TensorFlow abaixo da camada keras:
- Trabalhando com tensores diretamente
- Escrevendo costume
keras.Model
s ekeras.layers
Embora esta arquitetura é um pouco desatualizado, ainda é um projeto muito útil para os trabalhos através de obter uma compreensão mais profunda dos mecanismos de atenção (antes de ir para transformadores ).
Depois de treinar o modelo neste caderno, você será capaz de introduzir uma frase espanhol, tais como, e retornar a tradução em Inglês "¿todavia estan en casa?": "Você ainda está em casa"
O modelo resultante é exportável como um tf.saved_model
, para que ele possa ser usado em outros ambientes TensorFlow.
A qualidade da tradução é razoável para um exemplo de brinquedo, mas o gráfico de atenção gerado é talvez mais interessante. Isso mostra quais partes da frase de entrada chamam a atenção do modelo durante a tradução:
Configurar
pip install tensorflow_text
import numpy as np
import typing
from typing import Any, Tuple
import tensorflow as tf
import tensorflow_text as tf_text
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
Este tutorial cria algumas camadas do zero, use esta variável se quiser alternar entre as implementações customizadas e integradas.
use_builtins = True
Este tutorial usa muitas APIs de baixo nível onde é fácil errar as formas. Esta classe é usada para verificar as formas ao longo do tutorial.
Verificador de forma
class ShapeChecker():
def __init__(self):
# Keep a cache of every axis-name seen
self.shapes = {}
def __call__(self, tensor, names, broadcast=False):
if not tf.executing_eagerly():
return
if isinstance(names, str):
names = (names,)
shape = tf.shape(tensor)
rank = tf.rank(tensor)
if rank != len(names):
raise ValueError(f'Rank mismatch:\n'
f' found {rank}: {shape.numpy()}\n'
f' expected {len(names)}: {names}\n')
for i, name in enumerate(names):
if isinstance(name, int):
old_dim = name
else:
old_dim = self.shapes.get(name, None)
new_dim = shape[i]
if (broadcast and new_dim == 1):
continue
if old_dim is None:
# If the axis name is new, add its length to the cache.
self.shapes[name] = new_dim
continue
if new_dim != old_dim:
raise ValueError(f"Shape mismatch for dimension: '{name}'\n"
f" found: {new_dim}\n"
f" expected: {old_dim}\n")
Os dados
Usaremos um conjunto de dados linguagem fornecida pelo http://www.manythings.org/anki/ Este conjunto de dados contém pares de tradução de idioma no formato:
May I borrow this book? ¿Puedo tomar prestado este libro?
Eles têm uma variedade de idiomas disponíveis, mas usaremos o conjunto de dados inglês-espanhol.
Baixe e prepare o conjunto de dados
Por conveniência, hospedamos uma cópia deste conjunto de dados no Google Cloud, mas você também pode baixar sua própria cópia. Depois de baixar o conjunto de dados, aqui estão as etapas que seguiremos para preparar os dados:
- Adicionar um começo e fim token para cada frase.
- Limpe as frases removendo caracteres especiais.
- Crie um índice de palavras e inverta o índice de palavras (mapeamento de dicionários de palavra → id e id → palavra).
- Preencha cada frase com um comprimento máximo.
# Download the file
import pathlib
path_to_zip = tf.keras.utils.get_file(
'spa-eng.zip', origin='http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip',
extract=True)
path_to_file = pathlib.Path(path_to_zip).parent/'spa-eng/spa.txt'
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip 2646016/2638744 [==============================] - 0s 0us/step 2654208/2638744 [==============================] - 0s 0us/step
def load_data(path):
text = path.read_text(encoding='utf-8')
lines = text.splitlines()
pairs = [line.split('\t') for line in lines]
inp = [inp for targ, inp in pairs]
targ = [targ for targ, inp in pairs]
return targ, inp
targ, inp = load_data(path_to_file)
print(inp[-1])
Si quieres sonar como un hablante nativo, debes estar dispuesto a practicar diciendo la misma frase una y otra vez de la misma manera en que un músico de banjo practica el mismo fraseo una y otra vez hasta que lo puedan tocar correctamente y en el tiempo esperado.
print(targ[-1])
If you want to sound like a native speaker, you must be willing to practice saying the same sentence over and over in the same way that banjo players practice the same phrase over and over until they can play it correctly and at the desired tempo.
Crie um conjunto de dados tf.data
A partir dessas matrizes de cadeias você pode criar um tf.data.Dataset
de strings que embaralha e lotes los de forma eficiente:
BUFFER_SIZE = len(inp)
BATCH_SIZE = 64
dataset = tf.data.Dataset.from_tensor_slices((inp, targ)).shuffle(BUFFER_SIZE)
dataset = dataset.batch(BATCH_SIZE)
for example_input_batch, example_target_batch in dataset.take(1):
print(example_input_batch[:5])
print()
print(example_target_batch[:5])
break
tf.Tensor( [b'No s\xc3\xa9 lo que quiero.' b'\xc2\xbfDeber\xc3\xada repetirlo?' b'Tard\xc3\xa9 m\xc3\xa1s de 2 horas en traducir unas p\xc3\xa1ginas en ingl\xc3\xa9s.' b'A Tom comenz\xc3\xb3 a temerle a Mary.' b'Mi pasatiempo es la lectura.'], shape=(5,), dtype=string) tf.Tensor( [b"I don't know what I want." b'Should I repeat it?' b'It took me more than two hours to translate a few pages of English.' b'Tom became afraid of Mary.' b'My hobby is reading.'], shape=(5,), dtype=string)
Pré-processamento de texto
Um dos objetivos deste tutorial é construir um modelo que pode ser exportado como um tf.saved_model
. Para tornar esse modelo exportado útil ele deve tomar tf.string
entradas e retornar tf.string
saídas: Todo o processamento de texto acontece dentro do modelo.
estandardização
O modelo lida com texto multilíngue com um vocabulário limitado. Portanto, será importante padronizar o texto de entrada.
A primeira etapa é a normalização Unicode para dividir caracteres acentuados e substituir caracteres de compatibilidade por seus equivalentes ASCII.
O tensorflow_text
pacote contém uma operação de unicode normalize:
example_text = tf.constant('¿Todavía está en casa?')
print(example_text.numpy())
print(tf_text.normalize_utf8(example_text, 'NFKD').numpy())
b'\xc2\xbfTodav\xc3\xada est\xc3\xa1 en casa?' b'\xc2\xbfTodavi\xcc\x81a esta\xcc\x81 en casa?'
A normalização Unicode será a primeira etapa na função de padronização de texto:
def tf_lower_and_split_punct(text):
# Split accecented characters.
text = tf_text.normalize_utf8(text, 'NFKD')
text = tf.strings.lower(text)
# Keep space, a to z, and select punctuation.
text = tf.strings.regex_replace(text, '[^ a-z.?!,¿]', '')
# Add spaces around punctuation.
text = tf.strings.regex_replace(text, '[.?!,¿]', r' \0 ')
# Strip whitespace.
text = tf.strings.strip(text)
text = tf.strings.join(['[START]', text, '[END]'], separator=' ')
return text
print(example_text.numpy().decode())
print(tf_lower_and_split_punct(example_text).numpy().decode())
¿Todavía está en casa? [START] ¿ todavia esta en casa ? [END]
Vetorização de Texto
Esta função de normalização vai ser enrolada numa tf.keras.layers.TextVectorization
camada que irá tratar a extracção vocabulário e conversão de texto de entrada de sequências de símbolos.
max_vocab_size = 5000
input_text_processor = tf.keras.layers.TextVectorization(
standardize=tf_lower_and_split_punct,
max_tokens=max_vocab_size)
O TextVectorization
camada e muitas outras camadas de pré-processamento têm uma adapt
do método. Este método lê uma época dos dados de treinamento, e funciona muito como Model.fix
. Esta adapt
método inicializa a camada com base nos dados. Aqui, ele determina o vocabulário:
input_text_processor.adapt(inp)
# Here are the first 10 words from the vocabulary:
input_text_processor.get_vocabulary()[:10]
['', '[UNK]', '[START]', '[END]', '.', 'que', 'de', 'el', 'a', 'no']
Esse é o espanhol TextVectorization
camada, agora construir e .adapt()
do Inglês um:
output_text_processor = tf.keras.layers.TextVectorization(
standardize=tf_lower_and_split_punct,
max_tokens=max_vocab_size)
output_text_processor.adapt(targ)
output_text_processor.get_vocabulary()[:10]
['', '[UNK]', '[START]', '[END]', '.', 'the', 'i', 'to', 'you', 'tom']
Agora, essas camadas podem converter um lote de strings em um lote de IDs de token:
example_tokens = input_text_processor(example_input_batch)
example_tokens[:3, :10]
<tf.Tensor: shape=(3, 10), dtype=int64, numpy= array([[ 2, 9, 17, 22, 5, 48, 4, 3, 0, 0], [ 2, 13, 177, 1, 12, 3, 0, 0, 0, 0], [ 2, 120, 35, 6, 290, 14, 2134, 506, 2637, 14]])>
O get_vocabulary
método pode ser usado para converter IDs token de volta ao texto:
input_vocab = np.array(input_text_processor.get_vocabulary())
tokens = input_vocab[example_tokens[0].numpy()]
' '.join(tokens)
'[START] no se lo que quiero . [END] '
Os IDs de token retornados são preenchidos com zeros. Isso pode ser facilmente transformado em uma máscara:
plt.subplot(1, 2, 1)
plt.pcolormesh(example_tokens)
plt.title('Token IDs')
plt.subplot(1, 2, 2)
plt.pcolormesh(example_tokens != 0)
plt.title('Mask')
Text(0.5, 1.0, 'Mask')
O modelo do codificador / decodificador
O diagrama a seguir mostra uma visão geral do modelo. Em cada etapa de tempo, a saída do decodificador é combinada com uma soma ponderada sobre a entrada codificada, para prever a próxima palavra. O diagrama e fórmulas são de papel de Luong .
Antes de entrar nisso, defina algumas constantes para o modelo:
embedding_dim = 256
units = 1024
O codificador
Comece construindo o codificador, a parte azul do diagrama acima.
O codificador:
- Recebe uma lista de IDs de token (de
input_text_processor
). - Olha para a incorporação de um vector para cada símbolo (Usando um
layers.Embedding
). - Processa os mergulhos em uma nova sequência (utilizando um
layers.GRU
). - Retorna:
- A sequência processada. Isso será passado para o chefe de atendimento.
- O estado interno. Isso será usado para inicializar o decodificador
class Encoder(tf.keras.layers.Layer):
def __init__(self, input_vocab_size, embedding_dim, enc_units):
super(Encoder, self).__init__()
self.enc_units = enc_units
self.input_vocab_size = input_vocab_size
# The embedding layer converts tokens to vectors
self.embedding = tf.keras.layers.Embedding(self.input_vocab_size,
embedding_dim)
# The GRU RNN layer processes those vectors sequentially.
self.gru = tf.keras.layers.GRU(self.enc_units,
# Return the sequence and state
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
def call(self, tokens, state=None):
shape_checker = ShapeChecker()
shape_checker(tokens, ('batch', 's'))
# 2. The embedding layer looks up the embedding for each token.
vectors = self.embedding(tokens)
shape_checker(vectors, ('batch', 's', 'embed_dim'))
# 3. The GRU processes the embedding sequence.
# output shape: (batch, s, enc_units)
# state shape: (batch, enc_units)
output, state = self.gru(vectors, initial_state=state)
shape_checker(output, ('batch', 's', 'enc_units'))
shape_checker(state, ('batch', 'enc_units'))
# 4. Returns the new sequence and its state.
return output, state
Aqui está como tudo se encaixa até agora:
# Convert the input text to tokens.
example_tokens = input_text_processor(example_input_batch)
# Encode the input sequence.
encoder = Encoder(input_text_processor.vocabulary_size(),
embedding_dim, units)
example_enc_output, example_enc_state = encoder(example_tokens)
print(f'Input batch, shape (batch): {example_input_batch.shape}')
print(f'Input batch tokens, shape (batch, s): {example_tokens.shape}')
print(f'Encoder output, shape (batch, s, units): {example_enc_output.shape}')
print(f'Encoder state, shape (batch, units): {example_enc_state.shape}')
Input batch, shape (batch): (64,) Input batch tokens, shape (batch, s): (64, 14) Encoder output, shape (batch, s, units): (64, 14, 1024) Encoder state, shape (batch, units): (64, 1024)
O codificador retorna seu estado interno para que seu estado possa ser usado para inicializar o decodificador.
Também é comum que um RNN retorne seu estado para que possa processar uma sequência em várias chamadas. Você verá mais sobre como construir o decodificador.
A cabeça de atenção
O decodificador usa a atenção para focar seletivamente em partes da sequência de entrada. A atenção pega uma sequência de vetores como entrada para cada exemplo e retorna um vetor de "atenção" para cada exemplo. Esta camada atenção é semelhante a um layers.GlobalAveragePoling1D
mas a camada de atenção executa uma média ponderada.
Vejamos como isso funciona:
Onde:
- \(s\) é o índice do codificador.
- \(t\) é o índice de descodificador.
- \(\alpha_{ts}\) é os pesos de atenção.
- \(h_s\) é a sequência de saídas do codificador sendo atendidos (a "tecla de" atenção e "valor" em terminologia transformador).
- \(h_t\) é o estado do descodificador assistir à sequência de (a "consulta" atenção na terminologia transformador).
- \(c_t\) é o vector resultante contexto.
- \(a_t\) é o resultado final, combinando o "contexto" e "consulta".
As equações:
- Calcula os pesos de atenção, \(\alpha_{ts}\), como um softmax através de sequência de saída do codificador.
- Calcula o vetor de contexto como a soma ponderada das saídas do codificador.
Última é a \(score\) função. Seu trabalho é calcular uma pontuação logit escalar para cada par de consulta de chave. Existem duas abordagens comuns:
Este tutorial usa a atenção aditivo de Bahdanau . TensorFlow inclui implementações de tanto como layers.Attention
e layers.AdditiveAttention
. A classe abaixo alças as matrizes de peso em um par de layers.Dense
camadas, e solicita a execução incorporado.
class BahdanauAttention(tf.keras.layers.Layer):
def __init__(self, units):
super().__init__()
# For Eqn. (4), the Bahdanau attention
self.W1 = tf.keras.layers.Dense(units, use_bias=False)
self.W2 = tf.keras.layers.Dense(units, use_bias=False)
self.attention = tf.keras.layers.AdditiveAttention()
def call(self, query, value, mask):
shape_checker = ShapeChecker()
shape_checker(query, ('batch', 't', 'query_units'))
shape_checker(value, ('batch', 's', 'value_units'))
shape_checker(mask, ('batch', 's'))
# From Eqn. (4), `W1@ht`.
w1_query = self.W1(query)
shape_checker(w1_query, ('batch', 't', 'attn_units'))
# From Eqn. (4), `W2@hs`.
w2_key = self.W2(value)
shape_checker(w2_key, ('batch', 's', 'attn_units'))
query_mask = tf.ones(tf.shape(query)[:-1], dtype=bool)
value_mask = mask
context_vector, attention_weights = self.attention(
inputs = [w1_query, value, w2_key],
mask=[query_mask, value_mask],
return_attention_scores = True,
)
shape_checker(context_vector, ('batch', 't', 'value_units'))
shape_checker(attention_weights, ('batch', 't', 's'))
return context_vector, attention_weights
Teste a camada de atenção
Criar um BahdanauAttention
camada:
attention_layer = BahdanauAttention(units)
Esta camada tem 3 entradas:
- A
query
: Isto irá ser gerado pelo descodificador, mais tarde. - O
value
: Esta será a saída do codificador. - A
mask
: Para excluir o preenchimento,example_tokens != 0
(example_tokens != 0).shape
TensorShape([64, 14])
A implementação vetorizada da camada de atenção permite que você passe um lote de sequências de vetores de consulta e um lote de sequências de vetores de valor. O resultado é:
- Um lote de sequências de vetores de resultado do tamanho das consultas.
- A atenção lote mapas, com o tamanho
(query_length, value_length)
.
# Later, the decoder will generate this attention query
example_attention_query = tf.random.normal(shape=[len(example_tokens), 2, 10])
# Attend to the encoded tokens
context_vector, attention_weights = attention_layer(
query=example_attention_query,
value=example_enc_output,
mask=(example_tokens != 0))
print(f'Attention result shape: (batch_size, query_seq_length, units): {context_vector.shape}')
print(f'Attention weights shape: (batch_size, query_seq_length, value_seq_length): {attention_weights.shape}')
Attention result shape: (batch_size, query_seq_length, units): (64, 2, 1024) Attention weights shape: (batch_size, query_seq_length, value_seq_length): (64, 2, 14)
Os pesos atenção deve resumir a 1.0
para cada sequência.
Aqui estão os pesos atenção através das seqüências em t=0
:
plt.subplot(1, 2, 1)
plt.pcolormesh(attention_weights[:, 0, :])
plt.title('Attention weights')
plt.subplot(1, 2, 2)
plt.pcolormesh(example_tokens != 0)
plt.title('Mask')
Text(0.5, 1.0, 'Mask')
Por causa da pequena inicialização-aleatória os pesos de atenção são todos perto de 1/(sequence_length)
. Se você zoom e os pesos para uma única seqüência, você pode ver que há alguma pequena variação que o modelo pode aprender a se expandir, e explorar.
attention_weights.shape
TensorShape([64, 2, 14])
attention_slice = attention_weights[0, 0].numpy()
attention_slice = attention_slice[attention_slice != 0]
plt.suptitle('Attention weights for one sequence')
plt.figure(figsize=(12, 6))
a1 = plt.subplot(1, 2, 1)
plt.bar(range(len(attention_slice)), attention_slice)
# freeze the xlim
plt.xlim(plt.xlim())
plt.xlabel('Attention weights')
a2 = plt.subplot(1, 2, 2)
plt.bar(range(len(attention_slice)), attention_slice)
plt.xlabel('Attention weights, zoomed')
# zoom in
top = max(a1.get_ylim())
zoom = 0.85*top
a2.set_ylim([0.90*top, top])
a1.plot(a1.get_xlim(), [zoom, zoom], color='k')
[<matplotlib.lines.Line2D at 0x7fb42c5b1090>] <Figure size 432x288 with 0 Axes>
O decodificador
O trabalho do decodificador é gerar previsões para o próximo token de saída.
- O decodificador recebe a saída completa do codificador.
- Ele usa um RNN para rastrear o que gerou até agora.
- Ele usa sua saída RNN como a consulta para chamar a atenção sobre a saída do codificador, produzindo o vetor de contexto.
- Ele combina a saída RNN e o vetor de contexto usando a Equação 3 (abaixo) para gerar o "vetor de atenção".
- Ele gera previsões logit para o próximo token com base no "vetor de atenção".
Aqui está o Decoder
classe e seu inicializador. O inicializador cria todas as camadas necessárias.
class Decoder(tf.keras.layers.Layer):
def __init__(self, output_vocab_size, embedding_dim, dec_units):
super(Decoder, self).__init__()
self.dec_units = dec_units
self.output_vocab_size = output_vocab_size
self.embedding_dim = embedding_dim
# For Step 1. The embedding layer convets token IDs to vectors
self.embedding = tf.keras.layers.Embedding(self.output_vocab_size,
embedding_dim)
# For Step 2. The RNN keeps track of what's been generated so far.
self.gru = tf.keras.layers.GRU(self.dec_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
# For step 3. The RNN output will be the query for the attention layer.
self.attention = BahdanauAttention(self.dec_units)
# For step 4. Eqn. (3): converting `ct` to `at`
self.Wc = tf.keras.layers.Dense(dec_units, activation=tf.math.tanh,
use_bias=False)
# For step 5. This fully connected layer produces the logits for each
# output token.
self.fc = tf.keras.layers.Dense(self.output_vocab_size)
A call
método para essa camada leva e retorna vários tensores. Organize-os em classes de contêiner simples:
class DecoderInput(typing.NamedTuple):
new_tokens: Any
enc_output: Any
mask: Any
class DecoderOutput(typing.NamedTuple):
logits: Any
attention_weights: Any
Aqui está a implementação da call
método:
def call(self,
inputs: DecoderInput,
state=None) -> Tuple[DecoderOutput, tf.Tensor]:
shape_checker = ShapeChecker()
shape_checker(inputs.new_tokens, ('batch', 't'))
shape_checker(inputs.enc_output, ('batch', 's', 'enc_units'))
shape_checker(inputs.mask, ('batch', 's'))
if state is not None:
shape_checker(state, ('batch', 'dec_units'))
# Step 1. Lookup the embeddings
vectors = self.embedding(inputs.new_tokens)
shape_checker(vectors, ('batch', 't', 'embedding_dim'))
# Step 2. Process one step with the RNN
rnn_output, state = self.gru(vectors, initial_state=state)
shape_checker(rnn_output, ('batch', 't', 'dec_units'))
shape_checker(state, ('batch', 'dec_units'))
# Step 3. Use the RNN output as the query for the attention over the
# encoder output.
context_vector, attention_weights = self.attention(
query=rnn_output, value=inputs.enc_output, mask=inputs.mask)
shape_checker(context_vector, ('batch', 't', 'dec_units'))
shape_checker(attention_weights, ('batch', 't', 's'))
# Step 4. Eqn. (3): Join the context_vector and rnn_output
# [ct; ht] shape: (batch t, value_units + query_units)
context_and_rnn_output = tf.concat([context_vector, rnn_output], axis=-1)
# Step 4. Eqn. (3): `at = tanh(Wc@[ct; ht])`
attention_vector = self.Wc(context_and_rnn_output)
shape_checker(attention_vector, ('batch', 't', 'dec_units'))
# Step 5. Generate logit predictions:
logits = self.fc(attention_vector)
shape_checker(logits, ('batch', 't', 'output_vocab_size'))
return DecoderOutput(logits, attention_weights), state
Decoder.call = call
O codificador processa a sua sequência de entrada cheia com uma única chamada para o seu RNN. Esta implementação do decodificador pode fazer isso também para o treinamento eficiente. Mas este tutorial executará o decodificador em um loop por alguns motivos:
- Flexibilidade: escrever o loop dá a você controle direto sobre o procedimento de treinamento.
- Clareza: É possível fazer truques de máscara e usar
layers.RNN
, outfa.seq2seq
APIs para embalar tudo isso em uma única chamada. Mas escrever como um loop pode ser mais claro.- Treinamento gratuito loop é demonstrado na geração Texto tutiorial.
Agora tente usar este decodificador.
decoder = Decoder(output_text_processor.vocabulary_size(),
embedding_dim, units)
O decodificador leva 4 entradas.
-
new_tokens
- O último token gerado. Inicializar o decodificador com o"[START]"
token. -
enc_output
- Gerado peloEncoder
. -
mask
- Um tensor booleano que indica ondetokens != 0
-
state
- O anteriorstate
de saída do descodificador (o estado interno de RNN do descodificador). PasseNone
de zero-inicializar-lo. O papel original inicializa-o a partir do estado RNN final do codificador.
# Convert the target sequence, and collect the "[START]" tokens
example_output_tokens = output_text_processor(example_target_batch)
start_index = output_text_processor.get_vocabulary().index('[START]')
first_token = tf.constant([[start_index]] * example_output_tokens.shape[0])
# Run the decoder
dec_result, dec_state = decoder(
inputs = DecoderInput(new_tokens=first_token,
enc_output=example_enc_output,
mask=(example_tokens != 0)),
state = example_enc_state
)
print(f'logits shape: (batch_size, t, output_vocab_size) {dec_result.logits.shape}')
print(f'state shape: (batch_size, dec_units) {dec_state.shape}')
logits shape: (batch_size, t, output_vocab_size) (64, 1, 5000) state shape: (batch_size, dec_units) (64, 1024)
Experimente um token de acordo com os logits:
sampled_token = tf.random.categorical(dec_result.logits[:, 0, :], num_samples=1)
Decodifique o token como a primeira palavra da saída:
vocab = np.array(output_text_processor.get_vocabulary())
first_word = vocab[sampled_token.numpy()]
first_word[:5]
array([['already'], ['plants'], ['pretended'], ['convince'], ['square']], dtype='<U16')
Agora use o decodificador para gerar um segundo conjunto de logits.
- Passe o mesmo
enc_output
emask
, estes não mudaram. - Passe o amostrado token como
new_tokens
. - Passe o
decoder_state
o decodificador devolvido última vez, de modo que o RNN continua com uma memória de onde parou da última vez.
dec_result, dec_state = decoder(
DecoderInput(sampled_token,
example_enc_output,
mask=(example_tokens != 0)),
state=dec_state)
sampled_token = tf.random.categorical(dec_result.logits[:, 0, :], num_samples=1)
first_word = vocab[sampled_token.numpy()]
first_word[:5]
array([['nap'], ['mean'], ['worker'], ['passage'], ['baked']], dtype='<U16')
Treinamento
Agora que você tem todos os componentes do modelo, é hora de começar a treinar o modelo. Você precisará:
- Uma função de perda e otimizador para realizar a otimização.
- Uma função de etapa de treinamento que define como atualizar o modelo para cada lote de entrada / destino.
- Um ciclo de treinamento para conduzir o treinamento e salvar pontos de verificação.
Defina a função de perda
class MaskedLoss(tf.keras.losses.Loss):
def __init__(self):
self.name = 'masked_loss'
self.loss = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none')
def __call__(self, y_true, y_pred):
shape_checker = ShapeChecker()
shape_checker(y_true, ('batch', 't'))
shape_checker(y_pred, ('batch', 't', 'logits'))
# Calculate the loss for each item in the batch.
loss = self.loss(y_true, y_pred)
shape_checker(loss, ('batch', 't'))
# Mask off the losses on padding.
mask = tf.cast(y_true != 0, tf.float32)
shape_checker(mask, ('batch', 't'))
loss *= mask
# Return the total.
return tf.reduce_sum(loss)
Implementar a etapa de treinamento
Comece com uma classe de modelo, o processo de formação será implementada como o train_step
método neste modelo. Veja Personalizando caber para mais detalhes.
Aqui o train_step
método é um invólucro em torno do _train_step
execução, que virá mais tarde. Este invólucro inclui um interruptor para ligar e desligar tf.function
compilação, para fazer a depuração mais fácil.
class TrainTranslator(tf.keras.Model):
def __init__(self, embedding_dim, units,
input_text_processor,
output_text_processor,
use_tf_function=True):
super().__init__()
# Build the encoder and decoder
encoder = Encoder(input_text_processor.vocabulary_size(),
embedding_dim, units)
decoder = Decoder(output_text_processor.vocabulary_size(),
embedding_dim, units)
self.encoder = encoder
self.decoder = decoder
self.input_text_processor = input_text_processor
self.output_text_processor = output_text_processor
self.use_tf_function = use_tf_function
self.shape_checker = ShapeChecker()
def train_step(self, inputs):
self.shape_checker = ShapeChecker()
if self.use_tf_function:
return self._tf_train_step(inputs)
else:
return self._train_step(inputs)
No geral a implementação para o Model.train_step
método é o seguinte:
- Receber um lote de
input_text, target_text
dotf.data.Dataset
. - Converta essas entradas de texto bruto em embeddings de tokens e máscaras.
- Execute o codificador nas
input_tokens
para obter oencoder_output
eencoder_state
. - Inicialize o estado do decodificador e perda.
- Loop sobre os
target_tokens
:- Execute o decodificador uma etapa de cada vez.
- Calcule a perda de cada etapa.
- Acumule a perda média.
- Calcular o gradiente da perda e usar o otimizador para aplicar as atualizações para o modelo
trainable_variables
.
O _preprocess
método, adicionada a seguir, implementa os passos # 1 e # 2:
def _preprocess(self, input_text, target_text):
self.shape_checker(input_text, ('batch',))
self.shape_checker(target_text, ('batch',))
# Convert the text to token IDs
input_tokens = self.input_text_processor(input_text)
target_tokens = self.output_text_processor(target_text)
self.shape_checker(input_tokens, ('batch', 's'))
self.shape_checker(target_tokens, ('batch', 't'))
# Convert IDs to masks.
input_mask = input_tokens != 0
self.shape_checker(input_mask, ('batch', 's'))
target_mask = target_tokens != 0
self.shape_checker(target_mask, ('batch', 't'))
return input_tokens, input_mask, target_tokens, target_mask
TrainTranslator._preprocess = _preprocess
O _train_step
método, adicionada a seguir, processa os restantes passos, excepto para efectivamente executar o descodificador:
def _train_step(self, inputs):
input_text, target_text = inputs
(input_tokens, input_mask,
target_tokens, target_mask) = self._preprocess(input_text, target_text)
max_target_length = tf.shape(target_tokens)[1]
with tf.GradientTape() as tape:
# Encode the input
enc_output, enc_state = self.encoder(input_tokens)
self.shape_checker(enc_output, ('batch', 's', 'enc_units'))
self.shape_checker(enc_state, ('batch', 'enc_units'))
# Initialize the decoder's state to the encoder's final state.
# This only works if the encoder and decoder have the same number of
# units.
dec_state = enc_state
loss = tf.constant(0.0)
for t in tf.range(max_target_length-1):
# Pass in two tokens from the target sequence:
# 1. The current input to the decoder.
# 2. The target for the decoder's next prediction.
new_tokens = target_tokens[:, t:t+2]
step_loss, dec_state = self._loop_step(new_tokens, input_mask,
enc_output, dec_state)
loss = loss + step_loss
# Average the loss over all non padding tokens.
average_loss = loss / tf.reduce_sum(tf.cast(target_mask, tf.float32))
# Apply an optimization step
variables = self.trainable_variables
gradients = tape.gradient(average_loss, variables)
self.optimizer.apply_gradients(zip(gradients, variables))
# Return a dict mapping metric names to current value
return {'batch_loss': average_loss}
TrainTranslator._train_step = _train_step
O _loop_step
método, adicionada a seguir, é executado o descodificador e calcula a perda progressiva e novo estado do descodificador ( dec_state
).
def _loop_step(self, new_tokens, input_mask, enc_output, dec_state):
input_token, target_token = new_tokens[:, 0:1], new_tokens[:, 1:2]
# Run the decoder one step.
decoder_input = DecoderInput(new_tokens=input_token,
enc_output=enc_output,
mask=input_mask)
dec_result, dec_state = self.decoder(decoder_input, state=dec_state)
self.shape_checker(dec_result.logits, ('batch', 't1', 'logits'))
self.shape_checker(dec_result.attention_weights, ('batch', 't1', 's'))
self.shape_checker(dec_state, ('batch', 'dec_units'))
# `self.loss` returns the total for non-padded tokens
y = target_token
y_pred = dec_result.logits
step_loss = self.loss(y, y_pred)
return step_loss, dec_state
TrainTranslator._loop_step = _loop_step
Teste a etapa de treinamento
Construir uma TrainTranslator
, e configurá-lo para treinar usando o Model.compile
método:
translator = TrainTranslator(
embedding_dim, units,
input_text_processor=input_text_processor,
output_text_processor=output_text_processor,
use_tf_function=False)
# Configure the loss and optimizer
translator.compile(
optimizer=tf.optimizers.Adam(),
loss=MaskedLoss(),
)
Testar o train_step
. Para um modelo de texto como este, a perda deve começar perto de:
np.log(output_text_processor.vocabulary_size())
8.517193191416236
%%time
for n in range(10):
print(translator.train_step([example_input_batch, example_target_batch]))
print()
{'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=7.5849695>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=7.55271>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=7.4929113>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=7.3296022>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=6.80437>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=5.000246>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=5.8740363>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.794589>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.3175836>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.108163>} CPU times: user 5.49 s, sys: 0 ns, total: 5.49 s Wall time: 5.45 s
Embora seja mais fácil de depurar sem tf.function
ela dá um aumento de desempenho. Portanto, agora que o _train_step
método está funcionando, tente a tf.function
-wrapped _tf_train_step
, para maximizar o desempenho durante o treinamento:
@tf.function(input_signature=[[tf.TensorSpec(dtype=tf.string, shape=[None]),
tf.TensorSpec(dtype=tf.string, shape=[None])]])
def _tf_train_step(self, inputs):
return self._train_step(inputs)
TrainTranslator._tf_train_step = _tf_train_step
translator.use_tf_function = True
A primeira chamada será lenta, pois rastreia a função.
translator.train_step([example_input_batch, example_target_batch])
2021-12-04 12:09:48.074769: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] function_optimizer failed: INVALID_ARGUMENT: Input 6 of node gradient_tape/while/while_grad/body/_531/gradient_tape/while/gradients/while/decoder_1/gru_3/PartitionedCall_grad/PartitionedCall was passed variant from gradient_tape/while/while_grad/body/_531/gradient_tape/while/gradients/while/decoder_1/gru_3/PartitionedCall_grad/TensorListPopBack_2:1 incompatible with expected float. 2021-12-04 12:09:48.180156: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] layout failed: OUT_OF_RANGE: src_output = 25, but num_outputs is only 25 2021-12-04 12:09:48.285846: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] tfg_optimizer{} failed: INVALID_ARGUMENT: Input 6 of node gradient_tape/while/while_grad/body/_531/gradient_tape/while/gradients/while/decoder_1/gru_3/PartitionedCall_grad/PartitionedCall was passed variant from gradient_tape/while/while_grad/body/_531/gradient_tape/while/gradients/while/decoder_1/gru_3/PartitionedCall_grad/TensorListPopBack_2:1 incompatible with expected float. when importing GraphDef to MLIR module in GrapplerHook 2021-12-04 12:09:48.307794: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] function_optimizer failed: INVALID_ARGUMENT: Input 6 of node gradient_tape/while/while_grad/body/_531/gradient_tape/while/gradients/while/decoder_1/gru_3/PartitionedCall_grad/PartitionedCall was passed variant from gradient_tape/while/while_grad/body/_531/gradient_tape/while/gradients/while/decoder_1/gru_3/PartitionedCall_grad/TensorListPopBack_2:1 incompatible with expected float. 2021-12-04 12:09:48.425447: W tensorflow/core/common_runtime/process_function_library_runtime.cc:866] Ignoring multi-device function optimization failure: INVALID_ARGUMENT: Input 1 of node while/body/_1/while/TensorListPushBack_56 was passed float from while/body/_1/while/decoder_1/gru_3/PartitionedCall:6 incompatible with expected variant. {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.045638>}
Mas depois que ele é normalmente 2-3x mais rápido que o ansioso train_step
método:
%%time
for n in range(10):
print(translator.train_step([example_input_batch, example_target_batch]))
print()
{'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.1098256>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.169871>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.139249>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=4.0410743>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=3.9664454>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=3.895707>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=3.8154407>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=3.7583396>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=3.6986444>} {'batch_loss': <tf.Tensor: shape=(), dtype=float32, numpy=3.640298>} CPU times: user 4.4 s, sys: 960 ms, total: 5.36 s Wall time: 1.67 s
Um bom teste de um novo modelo é ver se ele pode super ajustar um único lote de entrada. Experimente, a perda deve ir rapidamente para zero:
losses = []
for n in range(100):
print('.', end='')
logs = translator.train_step([example_input_batch, example_target_batch])
losses.append(logs['batch_loss'].numpy())
print()
plt.plot(losses)
.................................................................................................... [<matplotlib.lines.Line2D at 0x7fb427edf210>]
Agora que você tem certeza de que a etapa de treinamento está funcionando, crie uma nova cópia do modelo para treinar do zero:
train_translator = TrainTranslator(
embedding_dim, units,
input_text_processor=input_text_processor,
output_text_processor=output_text_processor)
# Configure the loss and optimizer
train_translator.compile(
optimizer=tf.optimizers.Adam(),
loss=MaskedLoss(),
)
Treine o modelo
Enquanto não há nada de errado em escrever seu próprio loop de treinamento personalizado, implementando o Model.train_step
método, como na seção anterior, permite-lhe executar Model.fit
e evitar reescrever todo o código caldeira-plate.
Este tutorial apenas trens para um par de épocas, então use um callbacks.Callback
para recolher o histórico de perdas em lote, para traçar:
class BatchLogs(tf.keras.callbacks.Callback):
def __init__(self, key):
self.key = key
self.logs = []
def on_train_batch_end(self, n, logs):
self.logs.append(logs[self.key])
batch_loss = BatchLogs('batch_loss')
train_translator.fit(dataset, epochs=3,
callbacks=[batch_loss])
Epoch 1/3 2021-12-04 12:10:11.617839: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] function_optimizer failed: INVALID_ARGUMENT: Input 6 of node StatefulPartitionedCall/gradient_tape/while/while_grad/body/_589/gradient_tape/while/gradients/while/decoder_2/gru_5/PartitionedCall_grad/PartitionedCall was passed variant from StatefulPartitionedCall/gradient_tape/while/while_grad/body/_589/gradient_tape/while/gradients/while/decoder_2/gru_5/PartitionedCall_grad/TensorListPopBack_2:1 incompatible with expected float. 2021-12-04 12:10:11.737105: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] layout failed: OUT_OF_RANGE: src_output = 25, but num_outputs is only 25 2021-12-04 12:10:11.855054: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] tfg_optimizer{} failed: INVALID_ARGUMENT: Input 6 of node StatefulPartitionedCall/gradient_tape/while/while_grad/body/_589/gradient_tape/while/gradients/while/decoder_2/gru_5/PartitionedCall_grad/PartitionedCall was passed variant from StatefulPartitionedCall/gradient_tape/while/while_grad/body/_589/gradient_tape/while/gradients/while/decoder_2/gru_5/PartitionedCall_grad/TensorListPopBack_2:1 incompatible with expected float. when importing GraphDef to MLIR module in GrapplerHook 2021-12-04 12:10:11.878896: E tensorflow/core/grappler/optimizers/meta_optimizer.cc:812] function_optimizer failed: INVALID_ARGUMENT: Input 6 of node StatefulPartitionedCall/gradient_tape/while/while_grad/body/_589/gradient_tape/while/gradients/while/decoder_2/gru_5/PartitionedCall_grad/PartitionedCall was passed variant from StatefulPartitionedCall/gradient_tape/while/while_grad/body/_589/gradient_tape/while/gradients/while/decoder_2/gru_5/PartitionedCall_grad/TensorListPopBack_2:1 incompatible with expected float. 2021-12-04 12:10:12.004755: W tensorflow/core/common_runtime/process_function_library_runtime.cc:866] Ignoring multi-device function optimization failure: INVALID_ARGUMENT: Input 1 of node StatefulPartitionedCall/while/body/_59/while/TensorListPushBack_56 was passed float from StatefulPartitionedCall/while/body/_59/while/decoder_2/gru_5/PartitionedCall:6 incompatible with expected variant. 1859/1859 [==============================] - 349s 185ms/step - batch_loss: 2.0443 Epoch 2/3 1859/1859 [==============================] - 350s 188ms/step - batch_loss: 1.0382 Epoch 3/3 1859/1859 [==============================] - 343s 184ms/step - batch_loss: 0.8085 <keras.callbacks.History at 0x7fb42c3eda10>
plt.plot(batch_loss.logs)
plt.ylim([0, 3])
plt.xlabel('Batch #')
plt.ylabel('CE/token')
Text(0, 0.5, 'CE/token')
Os saltos visíveis na trama estão nos limites da época.
Traduzir
Agora que o modelo é treinado, implementar uma função para executar a full text => text
de tradução.
Para isso as necessidades modelo para inverter a text => token IDs
mapeamento fornecido pelo output_text_processor
. Ele também precisa saber os IDs para tokens especiais. Tudo isso é implementado no construtor para a nova classe. A implementação do método de tradução real seguirá.
No geral, isso é semelhante ao loop de treinamento, exceto que a entrada para o decodificador em cada etapa de tempo é uma amostra da última previsão do decodificador.
class Translator(tf.Module):
def __init__(self, encoder, decoder, input_text_processor,
output_text_processor):
self.encoder = encoder
self.decoder = decoder
self.input_text_processor = input_text_processor
self.output_text_processor = output_text_processor
self.output_token_string_from_index = (
tf.keras.layers.StringLookup(
vocabulary=output_text_processor.get_vocabulary(),
mask_token='',
invert=True))
# The output should never generate padding, unknown, or start.
index_from_string = tf.keras.layers.StringLookup(
vocabulary=output_text_processor.get_vocabulary(), mask_token='')
token_mask_ids = index_from_string(['', '[UNK]', '[START]']).numpy()
token_mask = np.zeros([index_from_string.vocabulary_size()], dtype=np.bool)
token_mask[np.array(token_mask_ids)] = True
self.token_mask = token_mask
self.start_token = index_from_string(tf.constant('[START]'))
self.end_token = index_from_string(tf.constant('[END]'))
translator = Translator(
encoder=train_translator.encoder,
decoder=train_translator.decoder,
input_text_processor=input_text_processor,
output_text_processor=output_text_processor,
)
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:21: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
Converter IDs de token em texto
O primeiro método para implementar é tokens_to_text
que converte a partir de IDs de token para um texto legível.
def tokens_to_text(self, result_tokens):
shape_checker = ShapeChecker()
shape_checker(result_tokens, ('batch', 't'))
result_text_tokens = self.output_token_string_from_index(result_tokens)
shape_checker(result_text_tokens, ('batch', 't'))
result_text = tf.strings.reduce_join(result_text_tokens,
axis=1, separator=' ')
shape_checker(result_text, ('batch'))
result_text = tf.strings.strip(result_text)
shape_checker(result_text, ('batch',))
return result_text
Translator.tokens_to_text = tokens_to_text
Insira alguns IDs de token aleatórios e veja o que ele gera:
example_output_tokens = tf.random.uniform(
shape=[5, 2], minval=0, dtype=tf.int64,
maxval=output_text_processor.vocabulary_size())
translator.tokens_to_text(example_output_tokens).numpy()
array([b'vain mysteries', b'funny ham', b'drivers responding', b'mysterious ignoring', b'fashion votes'], dtype=object)
Amostra das previsões do decodificador
Esta função pega as saídas logit do decodificador e amostras de IDs de token dessa distribuição:
def sample(self, logits, temperature):
shape_checker = ShapeChecker()
# 't' is usually 1 here.
shape_checker(logits, ('batch', 't', 'vocab'))
shape_checker(self.token_mask, ('vocab',))
token_mask = self.token_mask[tf.newaxis, tf.newaxis, :]
shape_checker(token_mask, ('batch', 't', 'vocab'), broadcast=True)
# Set the logits for all masked tokens to -inf, so they are never chosen.
logits = tf.where(self.token_mask, -np.inf, logits)
if temperature == 0.0:
new_tokens = tf.argmax(logits, axis=-1)
else:
logits = tf.squeeze(logits, axis=1)
new_tokens = tf.random.categorical(logits/temperature,
num_samples=1)
shape_checker(new_tokens, ('batch', 't'))
return new_tokens
Translator.sample = sample
Teste a execução desta função em algumas entradas aleatórias:
example_logits = tf.random.normal([5, 1, output_text_processor.vocabulary_size()])
example_output_tokens = translator.sample(example_logits, temperature=1.0)
example_output_tokens
<tf.Tensor: shape=(5, 1), dtype=int64, numpy= array([[4506], [3577], [2961], [4586], [ 944]])>
Implementar o loop de tradução
Aqui está uma implementação completa do ciclo de tradução de texto em texto.
Esta implementação recolhe os resultados em listas de python, antes de usar tf.concat
se juntar a eles em tensores.
Esta implementação estaticamente desenrola o gráfico para max_length
iterações. Tudo bem com execução rápida em python.
def translate_unrolled(self,
input_text, *,
max_length=50,
return_attention=True,
temperature=1.0):
batch_size = tf.shape(input_text)[0]
input_tokens = self.input_text_processor(input_text)
enc_output, enc_state = self.encoder(input_tokens)
dec_state = enc_state
new_tokens = tf.fill([batch_size, 1], self.start_token)
result_tokens = []
attention = []
done = tf.zeros([batch_size, 1], dtype=tf.bool)
for _ in range(max_length):
dec_input = DecoderInput(new_tokens=new_tokens,
enc_output=enc_output,
mask=(input_tokens!=0))
dec_result, dec_state = self.decoder(dec_input, state=dec_state)
attention.append(dec_result.attention_weights)
new_tokens = self.sample(dec_result.logits, temperature)
# If a sequence produces an `end_token`, set it `done`
done = done | (new_tokens == self.end_token)
# Once a sequence is done it only produces 0-padding.
new_tokens = tf.where(done, tf.constant(0, dtype=tf.int64), new_tokens)
# Collect the generated tokens
result_tokens.append(new_tokens)
if tf.executing_eagerly() and tf.reduce_all(done):
break
# Convert the list of generates token ids to a list of strings.
result_tokens = tf.concat(result_tokens, axis=-1)
result_text = self.tokens_to_text(result_tokens)
if return_attention:
attention_stack = tf.concat(attention, axis=1)
return {'text': result_text, 'attention': attention_stack}
else:
return {'text': result_text}
Translator.translate = translate_unrolled
Execute-o em uma entrada simples:
%%time
input_text = tf.constant([
'hace mucho frio aqui.', # "It's really cold here."
'Esta es mi vida.', # "This is my life.""
])
result = translator.translate(
input_text = input_text)
print(result['text'][0].numpy().decode())
print(result['text'][1].numpy().decode())
print()
its a long cold here . this is my life . CPU times: user 165 ms, sys: 4.37 ms, total: 169 ms Wall time: 164 ms
Se você deseja exportar este modelo que você vai precisar para embrulhar este método em um tf.function
. Esta implementação básica apresenta alguns problemas se você tentar fazer isso:
- Os gráficos resultantes são muito grandes e levam alguns segundos para construir, salvar ou carregar.
- Você não pode romper com um ciclo estaticamente desenrolado, por isso sempre será executado
max_length
iterações, mesmo se todas as saídas são feitas. Mas, mesmo assim, é um pouco mais rápido do que uma execução rápida.
@tf.function(input_signature=[tf.TensorSpec(dtype=tf.string, shape=[None])])
def tf_translate(self, input_text):
return self.translate(input_text)
Translator.tf_translate = tf_translate
Execute o tf.function
uma vez para compilá-lo:
%%time
result = translator.tf_translate(
input_text = input_text)
CPU times: user 18.8 s, sys: 0 ns, total: 18.8 s Wall time: 18.7 s
%%time
result = translator.tf_translate(
input_text = input_text)
print(result['text'][0].numpy().decode())
print(result['text'][1].numpy().decode())
print()
its very cold here . this is my life . CPU times: user 175 ms, sys: 0 ns, total: 175 ms Wall time: 88 ms
[Opcional] Use um loop simbólico
def translate_symbolic(self,
input_text,
*,
max_length=50,
return_attention=True,
temperature=1.0):
shape_checker = ShapeChecker()
shape_checker(input_text, ('batch',))
batch_size = tf.shape(input_text)[0]
# Encode the input
input_tokens = self.input_text_processor(input_text)
shape_checker(input_tokens, ('batch', 's'))
enc_output, enc_state = self.encoder(input_tokens)
shape_checker(enc_output, ('batch', 's', 'enc_units'))
shape_checker(enc_state, ('batch', 'enc_units'))
# Initialize the decoder
dec_state = enc_state
new_tokens = tf.fill([batch_size, 1], self.start_token)
shape_checker(new_tokens, ('batch', 't1'))
# Initialize the accumulators
result_tokens = tf.TensorArray(tf.int64, size=1, dynamic_size=True)
attention = tf.TensorArray(tf.float32, size=1, dynamic_size=True)
done = tf.zeros([batch_size, 1], dtype=tf.bool)
shape_checker(done, ('batch', 't1'))
for t in tf.range(max_length):
dec_input = DecoderInput(
new_tokens=new_tokens, enc_output=enc_output, mask=(input_tokens != 0))
dec_result, dec_state = self.decoder(dec_input, state=dec_state)
shape_checker(dec_result.attention_weights, ('batch', 't1', 's'))
attention = attention.write(t, dec_result.attention_weights)
new_tokens = self.sample(dec_result.logits, temperature)
shape_checker(dec_result.logits, ('batch', 't1', 'vocab'))
shape_checker(new_tokens, ('batch', 't1'))
# If a sequence produces an `end_token`, set it `done`
done = done | (new_tokens == self.end_token)
# Once a sequence is done it only produces 0-padding.
new_tokens = tf.where(done, tf.constant(0, dtype=tf.int64), new_tokens)
# Collect the generated tokens
result_tokens = result_tokens.write(t, new_tokens)
if tf.reduce_all(done):
break
# Convert the list of generated token ids to a list of strings.
result_tokens = result_tokens.stack()
shape_checker(result_tokens, ('t', 'batch', 't0'))
result_tokens = tf.squeeze(result_tokens, -1)
result_tokens = tf.transpose(result_tokens, [1, 0])
shape_checker(result_tokens, ('batch', 't'))
result_text = self.tokens_to_text(result_tokens)
shape_checker(result_text, ('batch',))
if return_attention:
attention_stack = attention.stack()
shape_checker(attention_stack, ('t', 'batch', 't1', 's'))
attention_stack = tf.squeeze(attention_stack, 2)
shape_checker(attention_stack, ('t', 'batch', 's'))
attention_stack = tf.transpose(attention_stack, [1, 0, 2])
shape_checker(attention_stack, ('batch', 't', 's'))
return {'text': result_text, 'attention': attention_stack}
else:
return {'text': result_text}
Translator.translate = translate_symbolic
A implementação inicial usou listas python para coletar as saídas. Isto usa tf.range
como a iteração circuito, permitindo tf.autograph
para converter o loop. A maior mudança nesta implementação é o uso de tf.TensorArray
vez de python list
de tensores acumular. tf.TensorArray
é necessário para recolher um número variável de tensores no modo gráfico.
Com execução rápida, esta implementação tem um desempenho semelhante ao original:
%%time
result = translator.translate(
input_text = input_text)
print(result['text'][0].numpy().decode())
print(result['text'][1].numpy().decode())
print()
its very cold here . this is my life . CPU times: user 175 ms, sys: 0 ns, total: 175 ms Wall time: 170 ms
Mas quando você envolvê-la em um tf.function
você vai notar duas diferenças.
@tf.function(input_signature=[tf.TensorSpec(dtype=tf.string, shape=[None])])
def tf_translate(self, input_text):
return self.translate(input_text)
Translator.tf_translate = tf_translate
Primeiro: a criação Graph é muito mais rápido (~ 10 vezes), uma vez que não cria max_iterations
cópias do modelo.
%%time
result = translator.tf_translate(
input_text = input_text)
CPU times: user 1.79 s, sys: 0 ns, total: 1.79 s Wall time: 1.77 s
Segundo: a função compilada é muito mais rápida em pequenas entradas (5x neste exemplo), porque pode sair do loop.
%%time
result = translator.tf_translate(
input_text = input_text)
print(result['text'][0].numpy().decode())
print(result['text'][1].numpy().decode())
print()
its very cold here . this is my life . CPU times: user 40.1 ms, sys: 0 ns, total: 40.1 ms Wall time: 17.1 ms
Visualize o processo
Os pesos atenção retornados pelo translate
método Show onde o modelo estava "procurando" quando gerado cada símbolo de saída.
Portanto, a soma da atenção sobre a entrada deve retornar todos:
a = result['attention'][0]
print(np.sum(a, axis=-1))
[1.0000001 0.99999994 1. 0.99999994 1. 0.99999994]
Aqui está a distribuição de atenção para a primeira etapa de saída do primeiro exemplo. Observe como a atenção agora está muito mais focada do que era para o modelo não treinado:
_ = plt.bar(range(len(a[0, :])), a[0, :])
Como há um alinhamento aproximado entre as palavras de entrada e saída, você espera que a atenção seja focada perto da diagonal:
plt.imshow(np.array(a), vmin=0.0)
<matplotlib.image.AxesImage at 0x7faf2886ced0>
Aqui está um código para fazer um gráfico de atenção melhor:
Gráficos de atenção rotulados
def plot_attention(attention, sentence, predicted_sentence):
sentence = tf_lower_and_split_punct(sentence).numpy().decode().split()
predicted_sentence = predicted_sentence.numpy().decode().split() + ['[END]']
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1)
attention = attention[:len(predicted_sentence), :len(sentence)]
ax.matshow(attention, cmap='viridis', vmin=0.0)
fontdict = {'fontsize': 14}
ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90)
ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict)
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
ax.set_xlabel('Input text')
ax.set_ylabel('Output text')
plt.suptitle('Attention weights')
i=0
plot_attention(result['attention'][i], input_text[i], result['text'][i])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:14: UserWarning: FixedFormatter should only be used together with FixedLocator /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:15: UserWarning: FixedFormatter should only be used together with FixedLocator from ipykernel import kernelapp as app
Traduza mais algumas frases e crie um gráfico:
%%time
three_input_text = tf.constant([
# This is my life.
'Esta es mi vida.',
# Are they still home?
'¿Todavía están en casa?',
# Try to find out.'
'Tratar de descubrir.',
])
result = translator.tf_translate(three_input_text)
for tr in result['text']:
print(tr.numpy().decode())
print()
this is my life . are you still at home ? all about killed . CPU times: user 78 ms, sys: 23 ms, total: 101 ms Wall time: 23.1 ms
result['text']
<tf.Tensor: shape=(3,), dtype=string, numpy= array([b'this is my life .', b'are you still at home ?', b'all about killed .'], dtype=object)>
i = 0
plot_attention(result['attention'][i], three_input_text[i], result['text'][i])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:14: UserWarning: FixedFormatter should only be used together with FixedLocator /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:15: UserWarning: FixedFormatter should only be used together with FixedLocator from ipykernel import kernelapp as app
i = 1
plot_attention(result['attention'][i], three_input_text[i], result['text'][i])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:14: UserWarning: FixedFormatter should only be used together with FixedLocator /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:15: UserWarning: FixedFormatter should only be used together with FixedLocator from ipykernel import kernelapp as app
i = 2
plot_attention(result['attention'][i], three_input_text[i], result['text'][i])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:14: UserWarning: FixedFormatter should only be used together with FixedLocator /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:15: UserWarning: FixedFormatter should only be used together with FixedLocator from ipykernel import kernelapp as app
As frases curtas geralmente funcionam bem, mas se a entrada for muito longa, o modelo literalmente perde o foco e para de fornecer previsões razoáveis. Existem duas razões principais para isso:
- O modelo foi treinado com o professor forçando a alimentação do token correto em cada etapa, independentemente das previsões do modelo. O modelo poderia se tornar mais robusto se às vezes fosse alimentado por suas próprias previsões.
- O modelo só tem acesso à sua saída anterior por meio do estado RNN. Se o estado RNN for corrompido, não haverá como o modelo se recuperar. Transformadores resolver isso usando auto-atenção no codificador e decodificador.
long_input_text = tf.constant([inp[-1]])
import textwrap
print('Expected output:\n', '\n'.join(textwrap.wrap(targ[-1])))
Expected output: If you want to sound like a native speaker, you must be willing to practice saying the same sentence over and over in the same way that banjo players practice the same phrase over and over until they can play it correctly and at the desired tempo.
result = translator.tf_translate(long_input_text)
i = 0
plot_attention(result['attention'][i], long_input_text[i], result['text'][i])
_ = plt.suptitle('This never works')
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:14: UserWarning: FixedFormatter should only be used together with FixedLocator /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/ipykernel_launcher.py:15: UserWarning: FixedFormatter should only be used together with FixedLocator from ipykernel import kernelapp as app
Exportar
Depois de ter um modelo que você está satisfeito com você pode querer exportá-lo como um tf.saved_model
para uso fora deste programa python que o criou.
Como o modelo é uma subclasse de tf.Module
(através keras.Model
), e toda a funcionalidade para exportação é compilado em um tf.function
o modelo deve exportar de forma limpa com tf.saved_model.save
:
Agora que a função foi atribuída ele pode ser exportado usando saved_model.save
:
tf.saved_model.save(translator, 'translator',
signatures={'serving_default': translator.tf_translate})
2021-12-04 12:27:54.310890: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Found untraced functions such as encoder_2_layer_call_fn, encoder_2_layer_call_and_return_conditional_losses, decoder_2_layer_call_fn, decoder_2_layer_call_and_return_conditional_losses, embedding_4_layer_call_fn while saving (showing 5 of 60). These functions will not be directly callable after loading. INFO:tensorflow:Assets written to: translator/assets INFO:tensorflow:Assets written to: translator/assets
reloaded = tf.saved_model.load('translator')
result = reloaded.tf_translate(three_input_text)
%%time
result = reloaded.tf_translate(three_input_text)
for tr in result['text']:
print(tr.numpy().decode())
print()
this is my life . are you still at home ? find out about to find out . CPU times: user 42.8 ms, sys: 7.69 ms, total: 50.5 ms Wall time: 20 ms
Próximos passos
- Baixar um conjunto de dados diferente de experimentar com traduções, por exemplo, Inglês para Alemão ou Inglês para Francês.
- Experimente treinar em um conjunto de dados maior ou usar mais épocas.
- Experimente o transformador tutorial que implementa uma tarefa de tradução semelhante, mas usa um transformador camadas em vez de RNNs. Esta versão também usa um
text.BertTokenizer
para implementar wordpiece tokenization. - Ter um olhar para o tensorflow_addons.seq2seq para a implementação deste tipo de sequência para modelo sequência. O
tfa.seq2seq
pacote inclui a funcionalidade de nível mais elevado, comoseq2seq.BeamSearchDecoder
.