Özel farklılaşma

TensorFlow.org'da görüntüleyin Google Colab'da çalıştırın Kaynağı GitHub'da görüntüle

Bu eğitim size Swift'in yalnızca 5 satırında kendi özel türevlerinizi nasıl tanımlayacağınızı, türev cerrahisini nasıl gerçekleştireceğinizi ve kendi degrade kontrol noktası API'nizi nasıl uygulayacağınızı gösterecek.

Özel türevlerin bildirilmesi

Türevlenebilir parametreleri ve sonuçları olan herhangi bir Swift işlevi için özel türevler tanımlayabilirsiniz. Bunu yaparak, bir C fonksiyonunu bile içe aktarabilir ve onu türevlenebilir hale getirebilirsiniz.

import Glibc

func sillyExp(_ x: Float) -> Float {
    let 𝑒 = Float(M_E)
    print("Taking 𝑒(\(𝑒)) to the power of \(x)!")
    return pow(𝑒, x)
}

@derivative(of: sillyExp)
func sillyDerivative(_ x: Float) -> (value: Float, pullback: (Float) -> Float) {
    let y = sillyExp(x)
    return (value: y, pullback: { v in v * y })
}

print("exp(3) =", sillyExp(3))
print("𝛁exp(3) =", gradient(of: sillyExp)(3))
Taking 𝑒(2.7182817) to the power of 3.0!
exp(3) = 20.085535
Taking 𝑒(2.7182817) to the power of 3.0!
𝛁exp(3) = 20.085535

Türevlerin yayılmasını durdurun

Makine öğrenimi kullanım örneklerinde yaygın olarak "gradyanı durdurma" olarak bilinen, withoutDerivative(at:) yöntem, türevlerin yayılmasını durdurur.

Ayrıca, withoutDerivative(at:) bazen Swift derleyicisine neyin farklılaştırılmayacağını belirlemede ve daha verimli türevler üretmede yardımcı olabilir. Bir fonksiyonun türevinin her zaman sıfır olacağı tespit edildiğinde Swift derleyicisi bir uyarı verecektir. withoutDerivative(at:) açıkça kullanılması bu uyarıyı susturur.

let x: Float = 2.0
let y: Float = 3.0
let xyGradient = gradient(at: x, y) { x, y in
    sin(sin(sin(x))) + withoutDerivative(at: cos(cos(cos(y))))
}
print(xyGradient)
(-0.18009877, 0.0)

Türev cerrahi

Method withDerivative(_:) çevreleyen fonksiyonun geri yayılımı sırasında bir değerde degrade üzerinde rastgele işlemlerin (mutasyon dahil) çalıştırılmasını sağlar.

Geri yayılımda hata ayıklamak veya deneysel ayarlamalar yapmak için bunu kullanın.

Her yerde çalışır

Standart kitaplık tarafından sağlanan tüm farklılaştırma API'leri, Differentiable protokole uygun tüm türler üzerinden genel olarak tanımlanır: Float , Double , Float80 , SIMD vektörleri ve hatta kendi türleriniz!

Differentiable protokol hakkında daha fazla bilgi için Diferansiyellenebilir Türler teknik belgesini okuyun.

var x: Float = 30
let xGradient = gradient(at: x) { x -> Float in
    // Print the partial derivative with respect to the result of `sin(x)`.
    let a = sin(x).withDerivative { print("+/sin = \($0)") } 
    // Force the partial derivative with respect to `x` to be `0.5`.
    let b = log(x.withDerivative { (dx: inout Float) in
        print("log/x = \(dx), but rewritten to 0.5");
        dx = 0.5
    })
    return a + b
}
print(xGradient)
∂log/∂x = 0.033333335, but rewritten to 0.5
∂+/∂sin = 1.0
0.65425146

Bir sinir ağı modülünde kullanın

Tıpkı basit bir Float fonksiyonunda kullandığımız gibi, Swift for TensorFlow Deep Learning Library kullanılarak oluşturulan aşağıdaki sinir ağı gibi herhangi bir sayısal uygulamada da kullanabiliriz.

import TensorFlow

struct MLP: Layer {
    var layer1 = Dense<Float>(inputSize: 2, outputSize: 10, activation: relu)
    var layer2 = Dense<Float>(inputSize: 10, outputSize: 1, activation: relu)

    @differentiable
    func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
        let h0 = layer1(input).withDerivative { print("L/layer1 =", $0) }
        return layer2(h0)
    }
}

var classifier = MLP()
let optimizer = SGD(for: classifier, learningRate: 0.02)

let x: Tensor<Float> = [[0, 0], [0, 1], [1, 0], [1, 1]]
let y: Tensor<Float> = [0, 1, 1, 0]

for _ in 0..<10 {
    let 𝛁model = gradient(at: classifier) { classifier -> Tensor<Float> in
        let ŷ = classifier(x).withDerivative { print("L/∂ŷ =", $0) }
        let loss = (ŷ - y).squared().mean()
        print("Loss: \(loss)")
        return loss
    }
    optimizer.update(&classifier, along: 𝛁model)
}
Loss: 0.45304087
∂L/∂ŷ = [[     -0.25],
 [     -0.25],
 [-0.2143442],
 [-0.1791575]]
∂L/∂layer1 = [[         0.0,          0.0,          0.0,          0.0,          0.0,          0.0,
           0.0,          0.0,          0.0,          0.0],
 [         0.0,          0.0,          0.0,          0.0,          0.0,          0.0,
           0.0,          0.0,          0.0,          0.0],
 [-0.046330024,  -0.07919147, -0.077494234,  -0.07907715,   0.14447221,  -0.07965051,
     0.0873662, -0.016764779,    0.1293755,  0.027867926],
 [-0.038724493, -0.066191405,   -0.0647728,  -0.06609586,   0.12075568,  -0.06657509,
    0.07302418, -0.014012676,  0.108137235,  0.023293132]]
Loss: 0.43502235
∂L/∂ŷ = [[-0.24459878],
 [-0.24358931],
 [-0.19911093],
 [-0.16190395]]
∂L/∂layer1 = [[-0.053103957,  -0.09203638,   -0.0885385,  -0.09065656,   0.16429774, -0.090893134,
    0.09901551, -0.019131118,   0.14763679,   0.03180147],
 [-0.052884795,  -0.09165655,   -0.0881731,  -0.09028242,   0.16361968,  -0.09051801,
    0.09860687, -0.019052165,   0.14702748,  0.031670224],
 [-0.043228254, -0.074920446, -0.072073065, -0.073797226,   0.13374342,   -0.0739898,
    0.08060167, -0.015573319,   0.12018088,  0.025887374],
 [-0.035150383, -0.060920395, -0.058605086,  -0.06000707,   0.10875137, -0.060163658,
    0.06553999, -0.012663202,   0.09772321,  0.021049915]]
Loss: 0.40576553
∂L/∂ŷ = [[-0.23289952],
 [-0.22639728],
 [-0.17728773],
 [-0.13724682]]
∂L/∂layer1 = [[-0.050774142,  -0.08952092, -0.084402055, -0.086720824,   0.15596299, -0.086545676,
    0.09358021,  -0.01821607,    0.1403872,  0.030280393],
 [-0.049356595,  -0.08702162,  -0.08204567,   -0.0842997,    0.1516087,  -0.08412944,
    0.09096757, -0.017707502,   0.13646778,  0.029435005],
 [ -0.03865028,   -0.0681451,  -0.06424852,  -0.06601361,   0.11872211,  -0.06588028,
   0.071235105, -0.013866433,  0.106865525,  0.023050034],
 [-0.029921012, -0.052754343, -0.049737815,  -0.05110426,    0.0919084, -0.051001046,
   0.055146467, -0.010734662,   0.08272966,  0.017844122]]
Loss: 0.38182113
∂L/∂ŷ = [[ -0.22214013],
 [ -0.21068493],
 [ -0.15761846],
 [-0.115079075]]
∂L/∂layer1 = [[-0.048611242,  -0.08700116,  -0.08059354,  -0.08307868,   0.14837542,  -0.08254748,
    0.08869235, -0.017374532,   0.13374089,  0.028881513],
 [ -0.04610448,  -0.08251473,  -0.07643753, -0.078794524,   0.14072408, -0.078290716,
    0.08411872, -0.016478572,    0.1268442,  0.027392166],
 [ -0.03449187, -0.061731257,  -0.05718476,  -0.05894808,  0.105279066, -0.058571167,
    0.06293123, -0.012328016,    0.0948952,  0.020492738],
 [-0.025182918, -0.045070708, -0.041751258,  -0.04303868,   0.07686547,  -0.04276349,
   0.045946825, -0.009000828,   0.06928409,  0.014961987]]
Loss: 0.36222494
∂L/∂ŷ = [[ -0.2122466],
 [-0.19632757],
 [-0.13990551],
 [-0.09517485]]
∂L/∂layer1 = [[ -0.046605036,   -0.08450727,  -0.077087075,   -0.07970615,    0.14145951,  -0.078871034,
     0.08428629,  -0.016600717,    0.12764633,   0.027595207],
 [ -0.043109544,   -0.07816901,   -0.07130535,   -0.07372799,    0.13084969,  -0.072955504,
    0.077964604, -0.0153556205,    0.11807254,   0.025525497],
 [ -0.030720405,   -0.05570423,  -0.050813094,  -0.052539498,    0.09324514,   -0.05198902,
    0.055558562,   -0.01094261,    0.08413999,   0.018189792],
 [ -0.020898461,  -0.037894443,  -0.034567107,   -0.03574154,    0.06343276,   -0.03536706,
     0.03779535,  -0.007444033,   0.057238705,   0.012374142]]
Loss: 0.34618416
∂L/∂ŷ = [[-0.20314947],
 [ -0.1832107],
 [-0.12396976],
 [-0.07732913]]
∂L/∂layer1 = [[  -0.04474547,  -0.082062505,   -0.07385858,   -0.07658187,    0.13514856,   -0.07549053,
     0.08030583,   -0.01588919,   0.122056164,   0.026412444],
 [  -0.04035378,   -0.07400821,   -0.06660949,    -0.0690655,   0.121883966,   -0.06808127,
     0.07242396,  -0.014329694,    0.11007657,    0.02382011],
 [  -0.02730544,  -0.050077755,    -0.0450714,  -0.046733256,    0.08247295,   -0.04606728,
    0.049005765,  -0.009696207,   0.074483454,   0.016117908],
 [ -0.017032426,  -0.031237207,  -0.028114373,  -0.029150996,    0.05144449,  -0.028735576,
    0.030568527, -0.0060482426,   0.046460852,  0.0100539345]]
Loss: 0.33304712
∂L/∂ŷ = [[ -0.19478384],
 [  -0.1712287],
 [ -0.10964805],
 [-0.061354905]]
∂L/∂layer1 = [[ -0.04302273,  -0.07968434,  -0.07088566,   -0.0736866,   0.12938349, -0.072381854,
   0.076702625, -0.015234879,   0.11692673,  0.025324788],
 [ -0.03782001, -0.070048146, -0.062313486,  -0.06477571,   0.11373719,  -0.06362875,
      0.067427, -0.013392531,   0.10278683,  0.022262271],
 [-0.024218429,  -0.04485604, -0.039903075, -0.041479785,   0.07283277, -0.040745318,
    0.04317757, -0.008576044,    0.0658206,  0.014255873],
 [-0.013551718, -0.025099747, -0.022328254, -0.023210522,  0.040754467,  -0.02279954,
   0.024160538,  -0.00479883,   0.03683072,  0.007977048]]
Loss: 0.32227832
∂L/∂ŷ = [[  -0.187089],
 [-0.16028392],
 [-0.09679102],
 [-0.04708069]]
∂L/∂layer1 = [[ -0.041427277,   -0.07738533,   -0.06814741,  -0.071002685,   0.124111414,   -0.06952245,
     0.07343468, -0.0146330325,    0.11221778,   0.024324344],
 [  -0.03549181,  -0.066297986,   -0.05838363,  -0.060829815,    0.10632942,  -0.059561655,
    0.062913366,  -0.012536493,    0.09613983,   0.020839289],
 [  -0.02143252,   -0.04003552,  -0.035256255,  -0.036733437,   0.064209394,  -0.035967633,
     0.03799164,  -0.007570441,   0.058056183,   0.012584269],
 [ -0.010425118,   -0.01947391,  -0.017149203,  -0.017867727,   0.031232467,  -0.017495228,
    0.018479737, -0.0036823824,   0.028239448,   0.006121188]]
Loss: 0.3134383
∂L/∂ŷ = [[ -0.18000817],
 [ -0.15028599],
 [ -0.08526195],
 [-0.034349076]]
∂L/∂layer1 = [[ -0.039949864,   -0.07517394,  -0.065624304,   -0.06851376,   0.119284846,    -0.0668912,
     0.07046529,  -0.014079211,     0.1078921,   0.023403734],
 [ -0.033353515,   -0.06276154,  -0.054788698,   -0.05720106,    0.09958904,   -0.05584641,
     0.05883036,  -0.011754512,   0.090077415,   0.019539408],
 [ -0.018922493,  -0.035606585,  -0.031083344,  -0.032451954,   0.056499984,   -0.03168342,
    0.033376306, -0.0066687027,   0.051103737,   0.011085318],
 [-0.0076232147,  -0.014344656, -0.0125223985,  -0.013073765,    0.02276188,  -0.012764148,
    0.013446154, -0.0026865886,   0.020587921,  0.0044658897]]
Loss: 0.30616698
∂L/∂ŷ = [[ -0.17348853],
 [ -0.14115131],
 [-0.074935496],
 [-0.023015507]]
∂L/∂layer1 = [[ -0.038581613,   -0.07305531,  -0.063298136,   -0.06620461,    0.11486097,  -0.064468496,
    0.067762226,  -0.013569281,   0.103915446,   0.022556083],
 [ -0.031390235,  -0.059438244,  -0.051499747,  -0.053864464,   0.093451574,  -0.052451957,
    0.055131756,  -0.011040049,    0.08454623,   0.018351763],
 [  -0.01666469,  -0.031555034,  -0.027340584,  -0.028595984,    0.04961229,    -0.0278461,
    0.029268773, -0.0058610262,   0.044884555,   0.009742727],
 [-0.0051183524,  -0.009691737,   -0.00839732,  -0.008782901,   0.015237799,  -0.008552584,
     0.00898954, -0.0018001414,   0.013785734,  0.0029923574]]

Bellekten tasarruf etmek için geri yayılım sırasında aktivasyonların yeniden hesaplanması (kontrol noktası oluşturma)

Kontrol noktası oluşturma, hafıza tasarrufu için ters modlu otomatik farklılaştırmada geleneksel bir tekniktir. Türevlerin hesaplanması için orijinal hesaplamada büyük ara değerleri kaydetmek yerine, ara değerler geri yayılma sırasında gerektiği gibi yeniden hesaplanır.

Bu teknik modern derin öğrenme kütüphanelerinde de hayata geçirilmiştir. Swift'de, API withRecomputationInPullbacks(_:) geri yayılma sırasında neyin yeniden hesaplanacağını kontrol etmenizi sağlar ve tüm Differentiable türlerde mevcuttur.

Ancak bugün kendi degrade kontrol noktası API'lerimizi yalnızca birkaç satır kodla sıfırdan nasıl tanımlayacağımızı öğrenelim.

Gradyan kontrol noktası API'miz

Kendi degrade kontrol noktası API'mizi, makeRecomputedInGradient(_:) standart kitaplık işlevi differentiableFunction(from:) cinsinden tanımlayabiliriz; bu, doğrudan bir türev işlevinden ("vektör-Jacobian çarpımları" olarak da bilinir) türevlenebilir bir işlev oluşturmanın bir kısaltmasıdır. (VJP) işlevi").

Daha önce gördüğümüz gibi, türev fonksiyonu orijinal fonksiyonun sonucunun bir demetini ve bir geri çekme kapanışını döndürür. original(x) value: döndürürüz ve orijinal işlevi tekrar değerlendirmek ve bir geri çekme almak için original pullback(at:in:) öğesini çağırırız.

/// Given a differentiable function, returns the same differentiable function except when
/// derivatives of this function are being computed. In that case, values in the original function needed
/// for computing the derivatives will be recomputed, instead of being captured by the differential or pullback.
///
/// - Parameter body: The body of the differentiable function.
/// - Returns: The same differentiable function whose derivatives, when computed, will recompute
///   some values from the original function.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable>(
    _ original: @escaping @differentiable (T) -> U
) -> @differentiable (T) -> U {
    return differentiableFunction { x in
        (value: original(x), pullback: { v in pullback(at: x, in: original)(v) })
    }
}

Çalıştığını doğrulayın

let input: Float = 10.0
print("Running original computation...")

// Differentiable multiplication with checkpointing.
let square = makeRecomputedInGradient { (x: Float) -> Float in
    print("  Computing square...")
    return x * x
}

// Differentiate `f(x) = (cos(x))^2`.
let (output, backprop) = valueWithPullback(at: input) { input -> Float in
    return square(cos(input))
}
print("Running backpropagation...")
let grad = backprop(1)
print("Gradient = \(grad)")
Running original computation...
  Computing square...
Running backpropagation...
  Computing square...
Gradient = -0.9129453

Sinir ağı modüllerine kadar genişletin

Bu örnekte basit bir evrişimsel sinir ağı tanımlıyoruz.

struct Model: Layer {
    var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6))
    var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
    var flatten = Flatten<Float>()
    var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)

    @differentiable
    func call(_ input: Tensor<Float>) -> Tensor<Float> {
        return input.sequenced(through: conv, maxPool, flatten, dense)
    }
}

Geri yayılım sırasında evrişim katmanındaki ( conv ) aktivasyonların yeniden hesaplanmasını sağlamak istiyoruz. Bununla birlikte, makeRecomputedInGradient(_:) kullanmak, özellikle sequenced(in:through:_:_:_:_:) kullanarak katmanları sırayla uygulamak istediğimizde ortaya çıkan kodun hantal görünmesine neden olabilir.

input.sequenced(in: context, through: conv, maxPool, flatten, dense)

Peki neden bir katmanı saran ve geri yayılım sırasında aktivasyonlarının yeniden hesaplanmasını sağlayan özel bir katman tipi tanımlamıyoruz? Hadi yapalım.

Öncelikle ikili fonksiyon alan makeRecomputedInGradient(_:) fonksiyonunu tanımlıyoruz.

// Same as the previous `makeRecomputedInGradient(_:)`, except it's for binary functions.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable, V: Differentiable>(
    _ original: @escaping @differentiable (T, U) -> V
) -> @differentiable (T, U) -> V {
    return differentiableFunction { x, y in
        (value: original(x, y), pullback: { v in pullback(at: x, y, in: original)(v) })
    }
}

Daha sonra genel bir katman ActivationDiscarding<Wrapped> tanımlarız.

import TensorFlow

/// A layer wrapper that makes the underlying layer's activations be discarded during application
/// and recomputed during backpropagation.
struct ActivationDiscarding<Wrapped: Layer>: Layer {
    /// The wrapped layer.
    var wrapped: Wrapped

    @differentiable
    func callAsFunction(_ input: Wrapped.Input) -> Wrapped.Output {
        let apply = makeRecomputedInGradient { (layer: Wrapped, input: Input) -> Wrapped.Output in
            print("    Applying \(Wrapped.self) layer...")
            return layer(input)
        }
        return apply(wrapped, input)
    }
}

Son olarak, uygulama sırasında aktivasyonlarının atılması ve geri yayılım sırasında yeniden hesaplanması dışında aynı katmanı döndüren tüm katmanlara bir yöntem ekleyebiliriz.

extension Layer {
    func discardingActivations() -> ActivationDiscarding<Self> {
        return ActivationDiscarding(wrapped: self)
    }
}

Modele döndüğümüzde, tek yapmamız gereken evrişim katmanını aktivasyon-yeniden hesaplama katmanına sarmak.

var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()

Şimdi bunu modelde kullanın!

struct Model: Layer {
    var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()
    var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
    var flatten = Flatten<Float>()
    var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)

    @differentiable
    func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
        return input.sequenced(through: conv, maxPool, flatten, dense)
    }
}

Bir eğitim döngüsü çalıştırdığımızda, evrişim katmanının aktivasyonlarının iki kez hesaplandığını görebiliriz: bir kez katman uygulaması sırasında ve bir kez de geri yayılım sırasında.

// Use random training data.
let x = Tensor<Float>(randomNormal: [10, 16, 16, 3])
let y = Tensor<Int32>(rangeFrom: 0, to: 10, stride: 1)

var model = Model()
let opt = SGD(for: model)

for i in 1...5 {
    print("Starting training step \(i)")
    print("  Running original computation...")
    let (logits, backprop) = model.appliedForBackpropagation(to: x)
    let (loss, dL_dŷ) = valueWithGradient(at: logits) { logits in
        softmaxCrossEntropy(logits: logits, labels: y)
    }
    print("  Loss: \(loss)")
    print("  Running backpropagation...")
    let (dL_dθ, _) = backprop(dL_dŷ)

    opt.update(&model, along: dL_dθ)
}
Starting training step 1
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 2.6726463
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 2
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 2.3370266
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 3
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 2.0828948
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 4
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 1.8765408
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 5
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 1.701678
  Running backpropagation...
    Applying Conv2D<Float> layer...

Aynen böyle, farklı alanlar için genel türevlenebilir programlama kitaplıklarını tanımlamak son derece kolaydır.