Пользовательская дифференциация

Посмотреть на TensorFlow.org Запустить в Google Colab Посмотреть исходный код на GitHub

Из этого туториала вы узнаете, как определить свои собственные производные, выполнить операции с производными и реализовать собственный API контрольных точек градиента всего за 5 строк Swift.

Объявление пользовательских производных

Вы можете определить собственные производные для любой функции Swift, имеющей дифференцируемые параметры и результаты. Сделав это, вы даже можете импортировать функцию C и сделать ее дифференцируемой.

import Glibc

func sillyExp(_ x: Float) -> Float {
    let 𝑒 = Float(M_E)
    print("Taking 𝑒(\(𝑒)) to the power of \(x)!")
    return pow(𝑒, x)
}

@derivative(of: sillyExp)
func sillyDerivative(_ x: Float) -> (value: Float, pullback: (Float) -> Float) {
    let y = sillyExp(x)
    return (value: y, pullback: { v in v * y })
}

print("exp(3) =", sillyExp(3))
print("𝛁exp(3) =", gradient(of: sillyExp)(3))
Taking 𝑒(2.7182817) to the power of 3.0!
exp(3) = 20.085535
Taking 𝑒(2.7182817) to the power of 3.0!
𝛁exp(3) = 20.085535

Остановить распространение деривативов

Обычно известный как «стоп-градиент» в случаях использования машинного обучения, метод withoutDerivative(at:) останавливает распространение производных.

Кроме того, withoutDerivative(at:) иногда может помочь компилятору Swift определить, что не следует различать, и создать более эффективные производные. Когда обнаруживается, что производная функции всегда равна нулю, компилятор Swift выдает предупреждение. Явное использование withoutDerivative(at:) отключает это предупреждение.

let x: Float = 2.0
let y: Float = 3.0
let xyGradient = gradient(at: x, y) { x, y in
    sin(sin(sin(x))) + withoutDerivative(at: cos(cos(cos(y))))
}
print(xyGradient)
(-0.18009877, 0.0)

Производная хирургия

Метод withDerivative(_:) запускает произвольные операции (включая мутацию) над градиентом со значением во время обратного распространения ошибки охватывающей функции.

Используйте это для отладки или экспериментальной настройки обратного распространения ошибки.

Это работает где угодно

Все API-интерфейсы дифференциации, предоставляемые стандартной библиотекой, определены в общих чертах для всех типов, соответствующих протоколу Differentiable : Float , Double , Float80 , векторы SIMD и даже ваши собственные типы!

Прочтите технический документ «Дифференцируемые типы» , чтобы получить дополнительную информацию о протоколе Differentiable .

var x: Float = 30
let xGradient = gradient(at: x) { x -> Float in
    // Print the partial derivative with respect to the result of `sin(x)`.
    let a = sin(x).withDerivative { print("+/sin = \($0)") } 
    // Force the partial derivative with respect to `x` to be `0.5`.
    let b = log(x.withDerivative { (dx: inout Float) in
        print("log/x = \(dx), but rewritten to 0.5");
        dx = 0.5
    })
    return a + b
}
print(xGradient)
∂log/∂x = 0.033333335, but rewritten to 0.5
∂+/∂sin = 1.0
0.65425146

Используйте его в модуле нейронной сети

Точно так же, как мы использовали его в простой функции Float , мы можем использовать его в любом числовом приложении, например, в следующей нейронной сети, созданной с использованием библиотеки глубокого обучения Swift для TensorFlow .

import TensorFlow

struct MLP: Layer {
    var layer1 = Dense<Float>(inputSize: 2, outputSize: 10, activation: relu)
    var layer2 = Dense<Float>(inputSize: 10, outputSize: 1, activation: relu)

    @differentiable
    func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
        let h0 = layer1(input).withDerivative { print("L/layer1 =", $0) }
        return layer2(h0)
    }
}

var classifier = MLP()
let optimizer = SGD(for: classifier, learningRate: 0.02)

let x: Tensor<Float> = [[0, 0], [0, 1], [1, 0], [1, 1]]
let y: Tensor<Float> = [0, 1, 1, 0]

for _ in 0..<10 {
    let 𝛁model = gradient(at: classifier) { classifier -> Tensor<Float> in
        let ŷ = classifier(x).withDerivative { print("L/∂ŷ =", $0) }
        let loss = (ŷ - y).squared().mean()
        print("Loss: \(loss)")
        return loss
    }
    optimizer.update(&classifier, along: 𝛁model)
}
Loss: 0.45304087
∂L/∂ŷ = [[     -0.25],
 [     -0.25],
 [-0.2143442],
 [-0.1791575]]
∂L/∂layer1 = [[         0.0,          0.0,          0.0,          0.0,          0.0,          0.0,
           0.0,          0.0,          0.0,          0.0],
 [         0.0,          0.0,          0.0,          0.0,          0.0,          0.0,
           0.0,          0.0,          0.0,          0.0],
 [-0.046330024,  -0.07919147, -0.077494234,  -0.07907715,   0.14447221,  -0.07965051,
     0.0873662, -0.016764779,    0.1293755,  0.027867926],
 [-0.038724493, -0.066191405,   -0.0647728,  -0.06609586,   0.12075568,  -0.06657509,
    0.07302418, -0.014012676,  0.108137235,  0.023293132]]
Loss: 0.43502235
∂L/∂ŷ = [[-0.24459878],
 [-0.24358931],
 [-0.19911093],
 [-0.16190395]]
∂L/∂layer1 = [[-0.053103957,  -0.09203638,   -0.0885385,  -0.09065656,   0.16429774, -0.090893134,
    0.09901551, -0.019131118,   0.14763679,   0.03180147],
 [-0.052884795,  -0.09165655,   -0.0881731,  -0.09028242,   0.16361968,  -0.09051801,
    0.09860687, -0.019052165,   0.14702748,  0.031670224],
 [-0.043228254, -0.074920446, -0.072073065, -0.073797226,   0.13374342,   -0.0739898,
    0.08060167, -0.015573319,   0.12018088,  0.025887374],
 [-0.035150383, -0.060920395, -0.058605086,  -0.06000707,   0.10875137, -0.060163658,
    0.06553999, -0.012663202,   0.09772321,  0.021049915]]
Loss: 0.40576553
∂L/∂ŷ = [[-0.23289952],
 [-0.22639728],
 [-0.17728773],
 [-0.13724682]]
∂L/∂layer1 = [[-0.050774142,  -0.08952092, -0.084402055, -0.086720824,   0.15596299, -0.086545676,
    0.09358021,  -0.01821607,    0.1403872,  0.030280393],
 [-0.049356595,  -0.08702162,  -0.08204567,   -0.0842997,    0.1516087,  -0.08412944,
    0.09096757, -0.017707502,   0.13646778,  0.029435005],
 [ -0.03865028,   -0.0681451,  -0.06424852,  -0.06601361,   0.11872211,  -0.06588028,
   0.071235105, -0.013866433,  0.106865525,  0.023050034],
 [-0.029921012, -0.052754343, -0.049737815,  -0.05110426,    0.0919084, -0.051001046,
   0.055146467, -0.010734662,   0.08272966,  0.017844122]]
Loss: 0.38182113
∂L/∂ŷ = [[ -0.22214013],
 [ -0.21068493],
 [ -0.15761846],
 [-0.115079075]]
∂L/∂layer1 = [[-0.048611242,  -0.08700116,  -0.08059354,  -0.08307868,   0.14837542,  -0.08254748,
    0.08869235, -0.017374532,   0.13374089,  0.028881513],
 [ -0.04610448,  -0.08251473,  -0.07643753, -0.078794524,   0.14072408, -0.078290716,
    0.08411872, -0.016478572,    0.1268442,  0.027392166],
 [ -0.03449187, -0.061731257,  -0.05718476,  -0.05894808,  0.105279066, -0.058571167,
    0.06293123, -0.012328016,    0.0948952,  0.020492738],
 [-0.025182918, -0.045070708, -0.041751258,  -0.04303868,   0.07686547,  -0.04276349,
   0.045946825, -0.009000828,   0.06928409,  0.014961987]]
Loss: 0.36222494
∂L/∂ŷ = [[ -0.2122466],
 [-0.19632757],
 [-0.13990551],
 [-0.09517485]]
∂L/∂layer1 = [[ -0.046605036,   -0.08450727,  -0.077087075,   -0.07970615,    0.14145951,  -0.078871034,
     0.08428629,  -0.016600717,    0.12764633,   0.027595207],
 [ -0.043109544,   -0.07816901,   -0.07130535,   -0.07372799,    0.13084969,  -0.072955504,
    0.077964604, -0.0153556205,    0.11807254,   0.025525497],
 [ -0.030720405,   -0.05570423,  -0.050813094,  -0.052539498,    0.09324514,   -0.05198902,
    0.055558562,   -0.01094261,    0.08413999,   0.018189792],
 [ -0.020898461,  -0.037894443,  -0.034567107,   -0.03574154,    0.06343276,   -0.03536706,
     0.03779535,  -0.007444033,   0.057238705,   0.012374142]]
Loss: 0.34618416
∂L/∂ŷ = [[-0.20314947],
 [ -0.1832107],
 [-0.12396976],
 [-0.07732913]]
∂L/∂layer1 = [[  -0.04474547,  -0.082062505,   -0.07385858,   -0.07658187,    0.13514856,   -0.07549053,
     0.08030583,   -0.01588919,   0.122056164,   0.026412444],
 [  -0.04035378,   -0.07400821,   -0.06660949,    -0.0690655,   0.121883966,   -0.06808127,
     0.07242396,  -0.014329694,    0.11007657,    0.02382011],
 [  -0.02730544,  -0.050077755,    -0.0450714,  -0.046733256,    0.08247295,   -0.04606728,
    0.049005765,  -0.009696207,   0.074483454,   0.016117908],
 [ -0.017032426,  -0.031237207,  -0.028114373,  -0.029150996,    0.05144449,  -0.028735576,
    0.030568527, -0.0060482426,   0.046460852,  0.0100539345]]
Loss: 0.33304712
∂L/∂ŷ = [[ -0.19478384],
 [  -0.1712287],
 [ -0.10964805],
 [-0.061354905]]
∂L/∂layer1 = [[ -0.04302273,  -0.07968434,  -0.07088566,   -0.0736866,   0.12938349, -0.072381854,
   0.076702625, -0.015234879,   0.11692673,  0.025324788],
 [ -0.03782001, -0.070048146, -0.062313486,  -0.06477571,   0.11373719,  -0.06362875,
      0.067427, -0.013392531,   0.10278683,  0.022262271],
 [-0.024218429,  -0.04485604, -0.039903075, -0.041479785,   0.07283277, -0.040745318,
    0.04317757, -0.008576044,    0.0658206,  0.014255873],
 [-0.013551718, -0.025099747, -0.022328254, -0.023210522,  0.040754467,  -0.02279954,
   0.024160538,  -0.00479883,   0.03683072,  0.007977048]]
Loss: 0.32227832
∂L/∂ŷ = [[  -0.187089],
 [-0.16028392],
 [-0.09679102],
 [-0.04708069]]
∂L/∂layer1 = [[ -0.041427277,   -0.07738533,   -0.06814741,  -0.071002685,   0.124111414,   -0.06952245,
     0.07343468, -0.0146330325,    0.11221778,   0.024324344],
 [  -0.03549181,  -0.066297986,   -0.05838363,  -0.060829815,    0.10632942,  -0.059561655,
    0.062913366,  -0.012536493,    0.09613983,   0.020839289],
 [  -0.02143252,   -0.04003552,  -0.035256255,  -0.036733437,   0.064209394,  -0.035967633,
     0.03799164,  -0.007570441,   0.058056183,   0.012584269],
 [ -0.010425118,   -0.01947391,  -0.017149203,  -0.017867727,   0.031232467,  -0.017495228,
    0.018479737, -0.0036823824,   0.028239448,   0.006121188]]
Loss: 0.3134383
∂L/∂ŷ = [[ -0.18000817],
 [ -0.15028599],
 [ -0.08526195],
 [-0.034349076]]
∂L/∂layer1 = [[ -0.039949864,   -0.07517394,  -0.065624304,   -0.06851376,   0.119284846,    -0.0668912,
     0.07046529,  -0.014079211,     0.1078921,   0.023403734],
 [ -0.033353515,   -0.06276154,  -0.054788698,   -0.05720106,    0.09958904,   -0.05584641,
     0.05883036,  -0.011754512,   0.090077415,   0.019539408],
 [ -0.018922493,  -0.035606585,  -0.031083344,  -0.032451954,   0.056499984,   -0.03168342,
    0.033376306, -0.0066687027,   0.051103737,   0.011085318],
 [-0.0076232147,  -0.014344656, -0.0125223985,  -0.013073765,    0.02276188,  -0.012764148,
    0.013446154, -0.0026865886,   0.020587921,  0.0044658897]]
Loss: 0.30616698
∂L/∂ŷ = [[ -0.17348853],
 [ -0.14115131],
 [-0.074935496],
 [-0.023015507]]
∂L/∂layer1 = [[ -0.038581613,   -0.07305531,  -0.063298136,   -0.06620461,    0.11486097,  -0.064468496,
    0.067762226,  -0.013569281,   0.103915446,   0.022556083],
 [ -0.031390235,  -0.059438244,  -0.051499747,  -0.053864464,   0.093451574,  -0.052451957,
    0.055131756,  -0.011040049,    0.08454623,   0.018351763],
 [  -0.01666469,  -0.031555034,  -0.027340584,  -0.028595984,    0.04961229,    -0.0278461,
    0.029268773, -0.0058610262,   0.044884555,   0.009742727],
 [-0.0051183524,  -0.009691737,   -0.00839732,  -0.008782901,   0.015237799,  -0.008552584,
     0.00898954, -0.0018001414,   0.013785734,  0.0029923574]]

Пересчет активаций во время обратного распространения ошибки для экономии памяти (контрольные точки)

Установление контрольных точек — это традиционный метод автоматического дифференцирования в обратном режиме для экономии памяти. Вместо сохранения больших промежуточных значений в исходных вычислениях для вычисления производных промежуточные значения пересчитываются по мере необходимости во время обратного распространения ошибки.

Этот метод реализован и в современных библиотеках глубокого обучения. В Swift API withRecomputationInPullbacks(_:) позволяет вам контролировать, что нужно пересчитывать во время обратного распространения ошибки, и он доступен для всех Differentiable типов.

Но сегодня давайте научимся определять наши собственные API-интерфейсы контрольных точек градиента с нуля, всего за несколько строк кода.

Наш API контрольных точек градиента

Мы можем определить наш собственный API контрольной точки градиента makeRecomputedInGradient(_:) в терминах стандартной библиотечной функции differentiableFunction(from:) , которая является сокращением для создания дифференцируемой функции непосредственно из производной функции (также называемой «векторно-якобиевым произведением»). (VJP) функция»).

Как мы видели ранее, производная функция возвращает кортеж результата исходной функции и обратное замыкание. Мы возвращаем original(x) в value: и вызываем pullback(at:in:) для original чтобы снова вычислить исходную функцию и получить откат.

/// Given a differentiable function, returns the same differentiable function except when
/// derivatives of this function are being computed. In that case, values in the original function needed
/// for computing the derivatives will be recomputed, instead of being captured by the differential or pullback.
///
/// - Parameter body: The body of the differentiable function.
/// - Returns: The same differentiable function whose derivatives, when computed, will recompute
///   some values from the original function.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable>(
    _ original: @escaping @differentiable (T) -> U
) -> @differentiable (T) -> U {
    return differentiableFunction { x in
        (value: original(x), pullback: { v in pullback(at: x, in: original)(v) })
    }
}

Убедитесь, что это работает

let input: Float = 10.0
print("Running original computation...")

// Differentiable multiplication with checkpointing.
let square = makeRecomputedInGradient { (x: Float) -> Float in
    print("  Computing square...")
    return x * x
}

// Differentiate `f(x) = (cos(x))^2`.
let (output, backprop) = valueWithPullback(at: input) { input -> Float in
    return square(cos(input))
}
print("Running backpropagation...")
let grad = backprop(1)
print("Gradient = \(grad)")
Running original computation...
  Computing square...
Running backpropagation...
  Computing square...
Gradient = -0.9129453

Распространите его на модули нейронных сетей

В этом примере мы определяем простую сверточную нейронную сеть.

struct Model: Layer {
    var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6))
    var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
    var flatten = Flatten<Float>()
    var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)

    @differentiable
    func call(_ input: Tensor<Float>) -> Tensor<Float> {
        return input.sequenced(through: conv, maxPool, flatten, dense)
    }
}

Мы хотим, чтобы активации в слое свертки ( conv ) пересчитывались во время обратного распространения ошибки. Однако использование makeRecomputedInGradient(_:) может привести к тому, что полученный код будет выглядеть громоздким, особенно если мы хотим применять слои последовательно с помощью sequenced(in:through:_:_:_:_:) .

input.sequenced(in: context, through: conv, maxPool, flatten, dense)

Итак, почему бы нам не определить специальный тип слоя , который обертывает слой и заставляет его активации пересчитываться во время обратного распространения ошибки? Давай сделаем это.

Сначала мы определяем функцию makeRecomputedInGradient(_:) , которая принимает двоичную функцию.

// Same as the previous `makeRecomputedInGradient(_:)`, except it's for binary functions.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable, V: Differentiable>(
    _ original: @escaping @differentiable (T, U) -> V
) -> @differentiable (T, U) -> V {
    return differentiableFunction { x, y in
        (value: original(x, y), pullback: { v in pullback(at: x, y, in: original)(v) })
    }
}

Затем мы определяем общий слой ActivationDiscarding<Wrapped> .

import TensorFlow

/// A layer wrapper that makes the underlying layer's activations be discarded during application
/// and recomputed during backpropagation.
struct ActivationDiscarding<Wrapped: Layer>: Layer {
    /// The wrapped layer.
    var wrapped: Wrapped

    @differentiable
    func callAsFunction(_ input: Wrapped.Input) -> Wrapped.Output {
        let apply = makeRecomputedInGradient { (layer: Wrapped, input: Input) -> Wrapped.Output in
            print("    Applying \(Wrapped.self) layer...")
            return layer(input)
        }
        return apply(wrapped, input)
    }
}

Наконец, мы можем добавить на все слои метод, который возвращает один и тот же слой, за исключением того, что его активации отбрасываются во время приложения и пересчитываются во время обратного распространения ошибки.

extension Layer {
    func discardingActivations() -> ActivationDiscarding<Self> {
        return ActivationDiscarding(wrapped: self)
    }
}

Вернувшись в модель, все, что нам нужно изменить, — это обернуть слой свертки в слой повторного вычисления активации.

var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()

Теперь просто используйте его в модели!

struct Model: Layer {
    var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()
    var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
    var flatten = Flatten<Float>()
    var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)

    @differentiable
    func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
        return input.sequenced(through: conv, maxPool, flatten, dense)
    }
}

Когда мы запускаем цикл обучения, мы видим, что активации слоя свертки вычисляются дважды: один раз во время применения слоя и один раз во время обратного распространения ошибки.

// Use random training data.
let x = Tensor<Float>(randomNormal: [10, 16, 16, 3])
let y = Tensor<Int32>(rangeFrom: 0, to: 10, stride: 1)

var model = Model()
let opt = SGD(for: model)

for i in 1...5 {
    print("Starting training step \(i)")
    print("  Running original computation...")
    let (logits, backprop) = model.appliedForBackpropagation(to: x)
    let (loss, dL_dŷ) = valueWithGradient(at: logits) { logits in
        softmaxCrossEntropy(logits: logits, labels: y)
    }
    print("  Loss: \(loss)")
    print("  Running backpropagation...")
    let (dL_dθ, _) = backprop(dL_dŷ)

    opt.update(&model, along: dL_dθ)
}
Starting training step 1
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 2.6726463
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 2
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 2.3370266
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 3
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 2.0828948
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 4
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 1.8765408
  Running backpropagation...
    Applying Conv2D<Float> layer...
Starting training step 5
  Running original computation...
    Applying Conv2D<Float> layer...
  Loss: 1.701678
  Running backpropagation...
    Applying Conv2D<Float> layer...

Таким образом, очень легко определить общие дифференцируемые библиотеки программирования для разных областей.