TensorFlow.org에서 보기 | Google Colab에서 실행 | GitHub에서 소스 보기 |
이 튜토리얼에서는 단 5줄의 Swift로 사용자 정의 파생 항목을 정의하고, 파생 수술을 수행하고, 그라데이션 체크포인트 API를 구현하는 방법을 보여줍니다.
맞춤형 파생 상품 선언
미분 가능한 매개변수와 결과가 있는 Swift 함수에 대한 사용자 정의 파생물을 정의할 수 있습니다. 그렇게 하면 C 함수를 가져와서 미분 가능하게 만들 수도 있습니다.
import Glibc
func sillyExp(_ x: Float) -> Float {
let 𝑒 = Float(M_E)
print("Taking 𝑒(\(𝑒)) to the power of \(x)!")
return pow(𝑒, x)
}
@derivative(of: sillyExp)
func sillyDerivative(_ x: Float) -> (value: Float, pullback: (Float) -> Float) {
let y = sillyExp(x)
return (value: y, pullback: { v in v * y })
}
print("exp(3) =", sillyExp(3))
print("𝛁exp(3) =", gradient(of: sillyExp)(3))
Taking 𝑒(2.7182817) to the power of 3.0! exp(3) = 20.085535 Taking 𝑒(2.7182817) to the power of 3.0! 𝛁exp(3) = 20.085535
파생 상품의 전파를 중지하세요
기계 학습 사용 사례에서 일반적으로 "경사 중지"로 알려진 Derivative withoutDerivative(at:)
메서드는 파생 항목이 전파되는 것을 중지합니다.
게다가, withoutDerivative(at:)
는 때때로 Swift 컴파일러가 무엇을 구별하지 말아야 하는지 식별하고 보다 효율적인 파생 상품을 생성하는 데 도움이 될 수 있습니다. 함수의 파생값이 항상 0이라는 것이 감지되면 Swift 컴파일러는 경고를 생성합니다. withoutDerivative(at:)
명시적으로 사용하면 해당 경고가 무시됩니다.
let x: Float = 2.0
let y: Float = 3.0
let xyGradient = gradient(at: x, y) { x, y in
sin(sin(sin(x))) + withoutDerivative(at: cos(cos(cos(y))))
}
print(xyGradient)
(-0.18009877, 0.0)
파생수술
withDerivative(_:)
메서드는 둘러싸는 함수의 역전파 동안 값에서 그래디언트에 대해 임의의 작업(변이 포함)을 실행합니다.
이를 사용하여 역전파를 디버깅하거나 실험적으로 조정할 수 있습니다.
어디서나 작동합니다
표준 라이브러리에서 제공하는 모든 차별화 API는 Differentiable
프로토콜을 준수하는 모든 유형( Float
, Double
, Float80
, SIMD 벡터 및 사용자 고유 유형까지)에 대해 일반적으로 정의됩니다!
Differentiable
프로토콜에 대한 자세한 내용은 미분 가능 유형 기술 문서를 읽어보세요.
var x: Float = 30
let xGradient = gradient(at: x) { x -> Float in
// Print the partial derivative with respect to the result of `sin(x)`.
let a = sin(x).withDerivative { print("∂+/∂sin = \($0)") }
// Force the partial derivative with respect to `x` to be `0.5`.
let b = log(x.withDerivative { (dx: inout Float) in
print("∂log/∂x = \(dx), but rewritten to 0.5");
dx = 0.5
})
return a + b
}
print(xGradient)
∂log/∂x = 0.033333335, but rewritten to 0.5 ∂+/∂sin = 1.0 0.65425146
신경망 모듈에서 사용
간단한 Float
함수에서 사용한 방법과 마찬가지로 Swift for TensorFlow Deep Learning Library를 사용하여 구축된 다음 신경망과 같은 모든 수치 애플리케이션에서 사용할 수 있습니다.
import TensorFlow
struct MLP: Layer {
var layer1 = Dense<Float>(inputSize: 2, outputSize: 10, activation: relu)
var layer2 = Dense<Float>(inputSize: 10, outputSize: 1, activation: relu)
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
let h0 = layer1(input).withDerivative { print("∂L/∂layer1 =", $0) }
return layer2(h0)
}
}
var classifier = MLP()
let optimizer = SGD(for: classifier, learningRate: 0.02)
let x: Tensor<Float> = [[0, 0], [0, 1], [1, 0], [1, 1]]
let y: Tensor<Float> = [0, 1, 1, 0]
for _ in 0..<10 {
let 𝛁model = gradient(at: classifier) { classifier -> Tensor<Float> in
let ŷ = classifier(x).withDerivative { print("∂L/∂ŷ =", $0) }
let loss = (ŷ - y).squared().mean()
print("Loss: \(loss)")
return loss
}
optimizer.update(&classifier, along: 𝛁model)
}
Loss: 0.45304087 ∂L/∂ŷ = [[ -0.25], [ -0.25], [-0.2143442], [-0.1791575]] ∂L/∂layer1 = [[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.046330024, -0.07919147, -0.077494234, -0.07907715, 0.14447221, -0.07965051, 0.0873662, -0.016764779, 0.1293755, 0.027867926], [-0.038724493, -0.066191405, -0.0647728, -0.06609586, 0.12075568, -0.06657509, 0.07302418, -0.014012676, 0.108137235, 0.023293132]] Loss: 0.43502235 ∂L/∂ŷ = [[-0.24459878], [-0.24358931], [-0.19911093], [-0.16190395]] ∂L/∂layer1 = [[-0.053103957, -0.09203638, -0.0885385, -0.09065656, 0.16429774, -0.090893134, 0.09901551, -0.019131118, 0.14763679, 0.03180147], [-0.052884795, -0.09165655, -0.0881731, -0.09028242, 0.16361968, -0.09051801, 0.09860687, -0.019052165, 0.14702748, 0.031670224], [-0.043228254, -0.074920446, -0.072073065, -0.073797226, 0.13374342, -0.0739898, 0.08060167, -0.015573319, 0.12018088, 0.025887374], [-0.035150383, -0.060920395, -0.058605086, -0.06000707, 0.10875137, -0.060163658, 0.06553999, -0.012663202, 0.09772321, 0.021049915]] Loss: 0.40576553 ∂L/∂ŷ = [[-0.23289952], [-0.22639728], [-0.17728773], [-0.13724682]] ∂L/∂layer1 = [[-0.050774142, -0.08952092, -0.084402055, -0.086720824, 0.15596299, -0.086545676, 0.09358021, -0.01821607, 0.1403872, 0.030280393], [-0.049356595, -0.08702162, -0.08204567, -0.0842997, 0.1516087, -0.08412944, 0.09096757, -0.017707502, 0.13646778, 0.029435005], [ -0.03865028, -0.0681451, -0.06424852, -0.06601361, 0.11872211, -0.06588028, 0.071235105, -0.013866433, 0.106865525, 0.023050034], [-0.029921012, -0.052754343, -0.049737815, -0.05110426, 0.0919084, -0.051001046, 0.055146467, -0.010734662, 0.08272966, 0.017844122]] Loss: 0.38182113 ∂L/∂ŷ = [[ -0.22214013], [ -0.21068493], [ -0.15761846], [-0.115079075]] ∂L/∂layer1 = [[-0.048611242, -0.08700116, -0.08059354, -0.08307868, 0.14837542, -0.08254748, 0.08869235, -0.017374532, 0.13374089, 0.028881513], [ -0.04610448, -0.08251473, -0.07643753, -0.078794524, 0.14072408, -0.078290716, 0.08411872, -0.016478572, 0.1268442, 0.027392166], [ -0.03449187, -0.061731257, -0.05718476, -0.05894808, 0.105279066, -0.058571167, 0.06293123, -0.012328016, 0.0948952, 0.020492738], [-0.025182918, -0.045070708, -0.041751258, -0.04303868, 0.07686547, -0.04276349, 0.045946825, -0.009000828, 0.06928409, 0.014961987]] Loss: 0.36222494 ∂L/∂ŷ = [[ -0.2122466], [-0.19632757], [-0.13990551], [-0.09517485]] ∂L/∂layer1 = [[ -0.046605036, -0.08450727, -0.077087075, -0.07970615, 0.14145951, -0.078871034, 0.08428629, -0.016600717, 0.12764633, 0.027595207], [ -0.043109544, -0.07816901, -0.07130535, -0.07372799, 0.13084969, -0.072955504, 0.077964604, -0.0153556205, 0.11807254, 0.025525497], [ -0.030720405, -0.05570423, -0.050813094, -0.052539498, 0.09324514, -0.05198902, 0.055558562, -0.01094261, 0.08413999, 0.018189792], [ -0.020898461, -0.037894443, -0.034567107, -0.03574154, 0.06343276, -0.03536706, 0.03779535, -0.007444033, 0.057238705, 0.012374142]] Loss: 0.34618416 ∂L/∂ŷ = [[-0.20314947], [ -0.1832107], [-0.12396976], [-0.07732913]] ∂L/∂layer1 = [[ -0.04474547, -0.082062505, -0.07385858, -0.07658187, 0.13514856, -0.07549053, 0.08030583, -0.01588919, 0.122056164, 0.026412444], [ -0.04035378, -0.07400821, -0.06660949, -0.0690655, 0.121883966, -0.06808127, 0.07242396, -0.014329694, 0.11007657, 0.02382011], [ -0.02730544, -0.050077755, -0.0450714, -0.046733256, 0.08247295, -0.04606728, 0.049005765, -0.009696207, 0.074483454, 0.016117908], [ -0.017032426, -0.031237207, -0.028114373, -0.029150996, 0.05144449, -0.028735576, 0.030568527, -0.0060482426, 0.046460852, 0.0100539345]] Loss: 0.33304712 ∂L/∂ŷ = [[ -0.19478384], [ -0.1712287], [ -0.10964805], [-0.061354905]] ∂L/∂layer1 = [[ -0.04302273, -0.07968434, -0.07088566, -0.0736866, 0.12938349, -0.072381854, 0.076702625, -0.015234879, 0.11692673, 0.025324788], [ -0.03782001, -0.070048146, -0.062313486, -0.06477571, 0.11373719, -0.06362875, 0.067427, -0.013392531, 0.10278683, 0.022262271], [-0.024218429, -0.04485604, -0.039903075, -0.041479785, 0.07283277, -0.040745318, 0.04317757, -0.008576044, 0.0658206, 0.014255873], [-0.013551718, -0.025099747, -0.022328254, -0.023210522, 0.040754467, -0.02279954, 0.024160538, -0.00479883, 0.03683072, 0.007977048]] Loss: 0.32227832 ∂L/∂ŷ = [[ -0.187089], [-0.16028392], [-0.09679102], [-0.04708069]] ∂L/∂layer1 = [[ -0.041427277, -0.07738533, -0.06814741, -0.071002685, 0.124111414, -0.06952245, 0.07343468, -0.0146330325, 0.11221778, 0.024324344], [ -0.03549181, -0.066297986, -0.05838363, -0.060829815, 0.10632942, -0.059561655, 0.062913366, -0.012536493, 0.09613983, 0.020839289], [ -0.02143252, -0.04003552, -0.035256255, -0.036733437, 0.064209394, -0.035967633, 0.03799164, -0.007570441, 0.058056183, 0.012584269], [ -0.010425118, -0.01947391, -0.017149203, -0.017867727, 0.031232467, -0.017495228, 0.018479737, -0.0036823824, 0.028239448, 0.006121188]] Loss: 0.3134383 ∂L/∂ŷ = [[ -0.18000817], [ -0.15028599], [ -0.08526195], [-0.034349076]] ∂L/∂layer1 = [[ -0.039949864, -0.07517394, -0.065624304, -0.06851376, 0.119284846, -0.0668912, 0.07046529, -0.014079211, 0.1078921, 0.023403734], [ -0.033353515, -0.06276154, -0.054788698, -0.05720106, 0.09958904, -0.05584641, 0.05883036, -0.011754512, 0.090077415, 0.019539408], [ -0.018922493, -0.035606585, -0.031083344, -0.032451954, 0.056499984, -0.03168342, 0.033376306, -0.0066687027, 0.051103737, 0.011085318], [-0.0076232147, -0.014344656, -0.0125223985, -0.013073765, 0.02276188, -0.012764148, 0.013446154, -0.0026865886, 0.020587921, 0.0044658897]] Loss: 0.30616698 ∂L/∂ŷ = [[ -0.17348853], [ -0.14115131], [-0.074935496], [-0.023015507]] ∂L/∂layer1 = [[ -0.038581613, -0.07305531, -0.063298136, -0.06620461, 0.11486097, -0.064468496, 0.067762226, -0.013569281, 0.103915446, 0.022556083], [ -0.031390235, -0.059438244, -0.051499747, -0.053864464, 0.093451574, -0.052451957, 0.055131756, -0.011040049, 0.08454623, 0.018351763], [ -0.01666469, -0.031555034, -0.027340584, -0.028595984, 0.04961229, -0.0278461, 0.029268773, -0.0058610262, 0.044884555, 0.009742727], [-0.0051183524, -0.009691737, -0.00839732, -0.008782901, 0.015237799, -0.008552584, 0.00898954, -0.0018001414, 0.013785734, 0.0029923574]]
역전파 중에 활성화를 다시 계산하여 메모리 절약(체크포인트)
체크포인트는 메모리 절약을 위한 역방향 자동 차별화의 전통적인 기술입니다. 도함수를 계산하기 위해 원래 계산에 큰 중간 값을 저장하는 대신 역전파 중에 필요에 따라 중간 값을 다시 계산합니다.
이 기술은 최신 딥러닝 라이브러리에서도 구현되었습니다. Swift에서 withRecomputationInPullbacks(_:)
API를 사용하면 역전파 중에 무엇을 다시 계산할지 제어할 수 있으며 모든 Differentiable
유형에서 사용할 수 있습니다.
하지만 오늘은 단 몇 줄의 코드만으로 처음부터 자체 그래디언트 체크포인트 API를 정의하는 방법을 알아보겠습니다.
그래디언트 체크포인트 API
표준 라이브러리 함수 differentiableFunction(from:)
의 관점에서 자체 그래디언트 체크포인트 API인 makeRecomputedInGradient(_:)
정의할 수 있습니다. 이는 파생 함수에서 직접 미분 가능 함수를 생성하기 위한 약어입니다("벡터-야코비안 곱"이라고도 함). (VJP) 기능').
이전에 살펴본 것처럼 파생 함수는 원래 함수 결과의 튜플과 풀백 클로저를 반환합니다. value:
에서 original(x)
반환하고, original
에 대해 pullback(at:in:)
호출하여 원래 함수를 다시 평가하고 풀백을 얻습니다.
/// Given a differentiable function, returns the same differentiable function except when
/// derivatives of this function are being computed. In that case, values in the original function needed
/// for computing the derivatives will be recomputed, instead of being captured by the differential or pullback.
///
/// - Parameter body: The body of the differentiable function.
/// - Returns: The same differentiable function whose derivatives, when computed, will recompute
/// some values from the original function.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable>(
_ original: @escaping @differentiable (T) -> U
) -> @differentiable (T) -> U {
return differentiableFunction { x in
(value: original(x), pullback: { v in pullback(at: x, in: original)(v) })
}
}
작동하는지 확인하세요
let input: Float = 10.0
print("Running original computation...")
// Differentiable multiplication with checkpointing.
let square = makeRecomputedInGradient { (x: Float) -> Float in
print(" Computing square...")
return x * x
}
// Differentiate `f(x) = (cos(x))^2`.
let (output, backprop) = valueWithPullback(at: input) { input -> Float in
return square(cos(input))
}
print("Running backpropagation...")
let grad = backprop(1)
print("Gradient = \(grad)")
Running original computation... Computing square... Running backpropagation... Computing square... Gradient = -0.9129453
신경망 모듈로 확장
이 예에서는 간단한 컨볼루션 신경망을 정의합니다.
struct Model: Layer {
var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6))
var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
var flatten = Flatten<Float>()
var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)
@differentiable
func call(_ input: Tensor<Float>) -> Tensor<Float> {
return input.sequenced(through: conv, maxPool, flatten, dense)
}
}
우리는 역전파 중에 컨볼루션 계층( conv
)의 활성화를 다시 계산하려고 합니다. 그러나 makeRecomputedInGradient(_:)
사용하면 결과 코드가 복잡해 보일 수 있습니다. 특히 sequenced(in:through:_:_:_:_:)
사용하여 레이어를 순차적으로 적용하려는 경우 더욱 그렇습니다.
input.sequenced(in: context, through: conv, maxPool, flatten, dense)
그렇다면 레이어를 래핑하고 역전파 중에 해당 활성화를 다시 계산하는 특수 레이어 유형을 정의하는 것은 어떨까요? 해보자.
먼저, 이진 함수를 취하는 makeRecomputedInGradient(_:)
함수를 정의합니다.
// Same as the previous `makeRecomputedInGradient(_:)`, except it's for binary functions.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable, V: Differentiable>(
_ original: @escaping @differentiable (T, U) -> V
) -> @differentiable (T, U) -> V {
return differentiableFunction { x, y in
(value: original(x, y), pullback: { v in pullback(at: x, y, in: original)(v) })
}
}
그런 다음 일반 레이어 ActivationDiscarding<Wrapped>
를 정의합니다.
import TensorFlow
/// A layer wrapper that makes the underlying layer's activations be discarded during application
/// and recomputed during backpropagation.
struct ActivationDiscarding<Wrapped: Layer>: Layer {
/// The wrapped layer.
var wrapped: Wrapped
@differentiable
func callAsFunction(_ input: Wrapped.Input) -> Wrapped.Output {
let apply = makeRecomputedInGradient { (layer: Wrapped, input: Input) -> Wrapped.Output in
print(" Applying \(Wrapped.self) layer...")
return layer(input)
}
return apply(wrapped, input)
}
}
마지막으로 활성화가 적용 중에 삭제되고 역전파 중에 다시 계산된다는 점을 제외하고 동일한 레이어를 반환하는 모든 레이어에 메서드를 추가할 수 있습니다.
extension Layer {
func discardingActivations() -> ActivationDiscarding<Self> {
return ActivationDiscarding(wrapped: self)
}
}
모델로 돌아가서 우리가 변경해야 할 것은 컨볼루션 레이어를 활성화-재계산 레이어로 래핑하는 것뿐입니다.
var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()
이제 모델에서 간단히 사용해보세요!
struct Model: Layer {
var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()
var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
var flatten = Flatten<Float>()
var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return input.sequenced(through: conv, maxPool, flatten, dense)
}
}
훈련 루프를 실행하면 컨볼루션 레이어의 활성화가 레이어 적용 중에 한 번, 역전파 중에 한 번, 두 번 계산되는 것을 볼 수 있습니다.
// Use random training data.
let x = Tensor<Float>(randomNormal: [10, 16, 16, 3])
let y = Tensor<Int32>(rangeFrom: 0, to: 10, stride: 1)
var model = Model()
let opt = SGD(for: model)
for i in 1...5 {
print("Starting training step \(i)")
print(" Running original computation...")
let (logits, backprop) = model.appliedForBackpropagation(to: x)
let (loss, dL_dŷ) = valueWithGradient(at: logits) { logits in
softmaxCrossEntropy(logits: logits, labels: y)
}
print(" Loss: \(loss)")
print(" Running backpropagation...")
let (dL_dθ, _) = backprop(dL_dŷ)
opt.update(&model, along: dL_dθ)
}
Starting training step 1 Running original computation... Applying Conv2D<Float> layer... Loss: 2.6726463 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 2 Running original computation... Applying Conv2D<Float> layer... Loss: 2.3370266 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 3 Running original computation... Applying Conv2D<Float> layer... Loss: 2.0828948 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 4 Running original computation... Applying Conv2D<Float> layer... Loss: 1.8765408 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 5 Running original computation... Applying Conv2D<Float> layer... Loss: 1.701678 Running backpropagation... Applying Conv2D<Float> layer...
마찬가지로 다양한 도메인에 대해 일반 미분 가능 프로그래밍 라이브러리를 정의하는 것은 매우 쉽습니다.