مشاهده در TensorFlow.org | در Google Colab اجرا شود | مشاهده منبع در GitHub |
این آموزش به شما نشان می دهد که چگونه مشتقات سفارشی خود را تعریف کنید، جراحی مشتق را انجام دهید و API gradient checkpointing خود را تنها در 5 خط Swift پیاده سازی کنید.
اعلام مشتقات سفارشی
شما می توانید مشتقات سفارشی را برای هر تابع Swift که دارای پارامترها و نتایج قابل تمایز است تعریف کنید. با انجام این کار، حتی می توانید یک تابع C را وارد کرده و آن را قابل تفکیک کنید.
import Glibc
func sillyExp(_ x: Float) -> Float {
let 𝑒 = Float(M_E)
print("Taking 𝑒(\(𝑒)) to the power of \(x)!")
return pow(𝑒, x)
}
@derivative(of: sillyExp)
func sillyDerivative(_ x: Float) -> (value: Float, pullback: (Float) -> Float) {
let y = sillyExp(x)
return (value: y, pullback: { v in v * y })
}
print("exp(3) =", sillyExp(3))
print("𝛁exp(3) =", gradient(of: sillyExp)(3))
Taking 𝑒(2.7182817) to the power of 3.0! exp(3) = 20.085535 Taking 𝑒(2.7182817) to the power of 3.0! 𝛁exp(3) = 20.085535
از انتشار مشتقات جلوگیری کنید
روش withoutDerivative(at:)
که معمولاً در موارد استفاده از یادگیری ماشین به عنوان "شیب توقف" شناخته می شود، انتشار مشتقات را متوقف می کند.
بعلاوه، withoutDerivative(at:)
گاهی اوقات می تواند به کامپایلر Swift در شناسایی مواردی که نباید متمایز شود و تولید مشتقات کارآمدتر کمک کند. هنگامی که قابل تشخیص است که مشتق یک تابع همیشه صفر خواهد بود، کامپایلر سوئیفت یک هشدار تولید می کند. به صراحت از استفاده از withoutDerivative(at:)
این هشدار را خاموش می کند.
let x: Float = 2.0
let y: Float = 3.0
let xyGradient = gradient(at: x, y) { x, y in
sin(sin(sin(x))) + withoutDerivative(at: cos(cos(cos(y))))
}
print(xyGradient)
(-0.18009877, 0.0)
جراحی مشتق
متد withDerivative(_:)
باعث میشود عملیات دلخواه (از جمله جهش) روی گرادیان با مقداری در طول انتشار پسپخش تابع محصور کننده اجرا شود.
از این برای اشکال زدایی یا ایجاد ترفندهای آزمایشی در پس انتشار استفاده کنید.
در هر جایی کار می کند
همه APIهای تمایز ارائه شده توسط کتابخانه استاندارد به طور کلی بر روی همه انواعی که با پروتکل Differentiable
مطابقت دارند تعریف می شوند: Float
، Double
، Float80
، بردارهای SIMD و حتی انواع خود شما!
برای اطلاعات بیشتر در مورد پروتکل Differentiable
، سند فنی Differentiable Types را بخوانید.
var x: Float = 30
let xGradient = gradient(at: x) { x -> Float in
// Print the partial derivative with respect to the result of `sin(x)`.
let a = sin(x).withDerivative { print("∂+/∂sin = \($0)") }
// Force the partial derivative with respect to `x` to be `0.5`.
let b = log(x.withDerivative { (dx: inout Float) in
print("∂log/∂x = \(dx), but rewritten to 0.5");
dx = 0.5
})
return a + b
}
print(xGradient)
∂log/∂x = 0.033333335, but rewritten to 0.5 ∂+/∂sin = 1.0 0.65425146
از آن در یک ماژول شبکه عصبی استفاده کنید
درست مانند نحوه استفاده از آن در یک تابع ساده Float
، میتوانیم از آن در هر برنامه عددی استفاده کنیم، مانند شبکه عصبی زیر که با استفاده از Swift for TensorFlow Deep Learning Library ساخته شده است.
import TensorFlow
struct MLP: Layer {
var layer1 = Dense<Float>(inputSize: 2, outputSize: 10, activation: relu)
var layer2 = Dense<Float>(inputSize: 10, outputSize: 1, activation: relu)
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
let h0 = layer1(input).withDerivative { print("∂L/∂layer1 =", $0) }
return layer2(h0)
}
}
var classifier = MLP()
let optimizer = SGD(for: classifier, learningRate: 0.02)
let x: Tensor<Float> = [[0, 0], [0, 1], [1, 0], [1, 1]]
let y: Tensor<Float> = [0, 1, 1, 0]
for _ in 0..<10 {
let 𝛁model = gradient(at: classifier) { classifier -> Tensor<Float> in
let ŷ = classifier(x).withDerivative { print("∂L/∂ŷ =", $0) }
let loss = (ŷ - y).squared().mean()
print("Loss: \(loss)")
return loss
}
optimizer.update(&classifier, along: 𝛁model)
}
Loss: 0.45304087 ∂L/∂ŷ = [[ -0.25], [ -0.25], [-0.2143442], [-0.1791575]] ∂L/∂layer1 = [[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.046330024, -0.07919147, -0.077494234, -0.07907715, 0.14447221, -0.07965051, 0.0873662, -0.016764779, 0.1293755, 0.027867926], [-0.038724493, -0.066191405, -0.0647728, -0.06609586, 0.12075568, -0.06657509, 0.07302418, -0.014012676, 0.108137235, 0.023293132]] Loss: 0.43502235 ∂L/∂ŷ = [[-0.24459878], [-0.24358931], [-0.19911093], [-0.16190395]] ∂L/∂layer1 = [[-0.053103957, -0.09203638, -0.0885385, -0.09065656, 0.16429774, -0.090893134, 0.09901551, -0.019131118, 0.14763679, 0.03180147], [-0.052884795, -0.09165655, -0.0881731, -0.09028242, 0.16361968, -0.09051801, 0.09860687, -0.019052165, 0.14702748, 0.031670224], [-0.043228254, -0.074920446, -0.072073065, -0.073797226, 0.13374342, -0.0739898, 0.08060167, -0.015573319, 0.12018088, 0.025887374], [-0.035150383, -0.060920395, -0.058605086, -0.06000707, 0.10875137, -0.060163658, 0.06553999, -0.012663202, 0.09772321, 0.021049915]] Loss: 0.40576553 ∂L/∂ŷ = [[-0.23289952], [-0.22639728], [-0.17728773], [-0.13724682]] ∂L/∂layer1 = [[-0.050774142, -0.08952092, -0.084402055, -0.086720824, 0.15596299, -0.086545676, 0.09358021, -0.01821607, 0.1403872, 0.030280393], [-0.049356595, -0.08702162, -0.08204567, -0.0842997, 0.1516087, -0.08412944, 0.09096757, -0.017707502, 0.13646778, 0.029435005], [ -0.03865028, -0.0681451, -0.06424852, -0.06601361, 0.11872211, -0.06588028, 0.071235105, -0.013866433, 0.106865525, 0.023050034], [-0.029921012, -0.052754343, -0.049737815, -0.05110426, 0.0919084, -0.051001046, 0.055146467, -0.010734662, 0.08272966, 0.017844122]] Loss: 0.38182113 ∂L/∂ŷ = [[ -0.22214013], [ -0.21068493], [ -0.15761846], [-0.115079075]] ∂L/∂layer1 = [[-0.048611242, -0.08700116, -0.08059354, -0.08307868, 0.14837542, -0.08254748, 0.08869235, -0.017374532, 0.13374089, 0.028881513], [ -0.04610448, -0.08251473, -0.07643753, -0.078794524, 0.14072408, -0.078290716, 0.08411872, -0.016478572, 0.1268442, 0.027392166], [ -0.03449187, -0.061731257, -0.05718476, -0.05894808, 0.105279066, -0.058571167, 0.06293123, -0.012328016, 0.0948952, 0.020492738], [-0.025182918, -0.045070708, -0.041751258, -0.04303868, 0.07686547, -0.04276349, 0.045946825, -0.009000828, 0.06928409, 0.014961987]] Loss: 0.36222494 ∂L/∂ŷ = [[ -0.2122466], [-0.19632757], [-0.13990551], [-0.09517485]] ∂L/∂layer1 = [[ -0.046605036, -0.08450727, -0.077087075, -0.07970615, 0.14145951, -0.078871034, 0.08428629, -0.016600717, 0.12764633, 0.027595207], [ -0.043109544, -0.07816901, -0.07130535, -0.07372799, 0.13084969, -0.072955504, 0.077964604, -0.0153556205, 0.11807254, 0.025525497], [ -0.030720405, -0.05570423, -0.050813094, -0.052539498, 0.09324514, -0.05198902, 0.055558562, -0.01094261, 0.08413999, 0.018189792], [ -0.020898461, -0.037894443, -0.034567107, -0.03574154, 0.06343276, -0.03536706, 0.03779535, -0.007444033, 0.057238705, 0.012374142]] Loss: 0.34618416 ∂L/∂ŷ = [[-0.20314947], [ -0.1832107], [-0.12396976], [-0.07732913]] ∂L/∂layer1 = [[ -0.04474547, -0.082062505, -0.07385858, -0.07658187, 0.13514856, -0.07549053, 0.08030583, -0.01588919, 0.122056164, 0.026412444], [ -0.04035378, -0.07400821, -0.06660949, -0.0690655, 0.121883966, -0.06808127, 0.07242396, -0.014329694, 0.11007657, 0.02382011], [ -0.02730544, -0.050077755, -0.0450714, -0.046733256, 0.08247295, -0.04606728, 0.049005765, -0.009696207, 0.074483454, 0.016117908], [ -0.017032426, -0.031237207, -0.028114373, -0.029150996, 0.05144449, -0.028735576, 0.030568527, -0.0060482426, 0.046460852, 0.0100539345]] Loss: 0.33304712 ∂L/∂ŷ = [[ -0.19478384], [ -0.1712287], [ -0.10964805], [-0.061354905]] ∂L/∂layer1 = [[ -0.04302273, -0.07968434, -0.07088566, -0.0736866, 0.12938349, -0.072381854, 0.076702625, -0.015234879, 0.11692673, 0.025324788], [ -0.03782001, -0.070048146, -0.062313486, -0.06477571, 0.11373719, -0.06362875, 0.067427, -0.013392531, 0.10278683, 0.022262271], [-0.024218429, -0.04485604, -0.039903075, -0.041479785, 0.07283277, -0.040745318, 0.04317757, -0.008576044, 0.0658206, 0.014255873], [-0.013551718, -0.025099747, -0.022328254, -0.023210522, 0.040754467, -0.02279954, 0.024160538, -0.00479883, 0.03683072, 0.007977048]] Loss: 0.32227832 ∂L/∂ŷ = [[ -0.187089], [-0.16028392], [-0.09679102], [-0.04708069]] ∂L/∂layer1 = [[ -0.041427277, -0.07738533, -0.06814741, -0.071002685, 0.124111414, -0.06952245, 0.07343468, -0.0146330325, 0.11221778, 0.024324344], [ -0.03549181, -0.066297986, -0.05838363, -0.060829815, 0.10632942, -0.059561655, 0.062913366, -0.012536493, 0.09613983, 0.020839289], [ -0.02143252, -0.04003552, -0.035256255, -0.036733437, 0.064209394, -0.035967633, 0.03799164, -0.007570441, 0.058056183, 0.012584269], [ -0.010425118, -0.01947391, -0.017149203, -0.017867727, 0.031232467, -0.017495228, 0.018479737, -0.0036823824, 0.028239448, 0.006121188]] Loss: 0.3134383 ∂L/∂ŷ = [[ -0.18000817], [ -0.15028599], [ -0.08526195], [-0.034349076]] ∂L/∂layer1 = [[ -0.039949864, -0.07517394, -0.065624304, -0.06851376, 0.119284846, -0.0668912, 0.07046529, -0.014079211, 0.1078921, 0.023403734], [ -0.033353515, -0.06276154, -0.054788698, -0.05720106, 0.09958904, -0.05584641, 0.05883036, -0.011754512, 0.090077415, 0.019539408], [ -0.018922493, -0.035606585, -0.031083344, -0.032451954, 0.056499984, -0.03168342, 0.033376306, -0.0066687027, 0.051103737, 0.011085318], [-0.0076232147, -0.014344656, -0.0125223985, -0.013073765, 0.02276188, -0.012764148, 0.013446154, -0.0026865886, 0.020587921, 0.0044658897]] Loss: 0.30616698 ∂L/∂ŷ = [[ -0.17348853], [ -0.14115131], [-0.074935496], [-0.023015507]] ∂L/∂layer1 = [[ -0.038581613, -0.07305531, -0.063298136, -0.06620461, 0.11486097, -0.064468496, 0.067762226, -0.013569281, 0.103915446, 0.022556083], [ -0.031390235, -0.059438244, -0.051499747, -0.053864464, 0.093451574, -0.052451957, 0.055131756, -0.011040049, 0.08454623, 0.018351763], [ -0.01666469, -0.031555034, -0.027340584, -0.028595984, 0.04961229, -0.0278461, 0.029268773, -0.0058610262, 0.044884555, 0.009742727], [-0.0051183524, -0.009691737, -0.00839732, -0.008782901, 0.015237799, -0.008552584, 0.00898954, -0.0018001414, 0.013785734, 0.0029923574]]
محاسبه مجدد فعال سازی ها در حین انتشار پس زمینه برای ذخیره حافظه (چک پوینت)
چک پوینت یک تکنیک سنتی در تمایز خودکار حالت معکوس برای ذخیره حافظه است. به جای ذخیره مقادیر متوسط بزرگ در محاسبات اصلی برای مشتقات محاسباتی، مقادیر میانی در عوض در صورت لزوم در طول انتشار پسانداز مجدداً محاسبه میشوند.
این تکنیک در کتابخانه های مدرن یادگیری عمیق نیز تحقق یافته است. در Swift، API withRecomputationInPullbacks(_:)
شما را قادر می سازد تا کنترل کنید که چه چیزی در حین انتشار پس از آن دوباره محاسبه شود، و در همه انواع Differentiable
موجود است.
اما امروز، اجازه دهید یاد بگیریم که چگونه APIهای gradient checkpointing خود را از ابتدا، تنها در چند خط کد تعریف کنیم.
میانای برنامهسازی کاربردی gradient checkpointing ما
ما میتوانیم API gradient checkpointing خودمان، makeRecomputedInGradient(_:)
را بر اساس تابع کتابخانه استاندارد differentiableFunction(from:)
تعریف کنیم، که مخفف ایجاد یک تابع متمایز مستقیماً از یک تابع مشتق است (که به آن «محصولات برداری-ژاکوبین» نیز گفته میشود. تابع (VJP)").
همانطور که قبلاً دیدیم، تابع مشتق چند برابر از نتیجه تابع اصلی و بسته شدن pullback را برمیگرداند. ما original(x)
به value:
برمی گردانیم و pullback(at:in:)
روی original
فراخوانی می کنیم تا دوباره تابع اصلی را ارزیابی کنیم و یک pullback دریافت کنیم.
/// Given a differentiable function, returns the same differentiable function except when
/// derivatives of this function are being computed. In that case, values in the original function needed
/// for computing the derivatives will be recomputed, instead of being captured by the differential or pullback.
///
/// - Parameter body: The body of the differentiable function.
/// - Returns: The same differentiable function whose derivatives, when computed, will recompute
/// some values from the original function.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable>(
_ original: @escaping @differentiable (T) -> U
) -> @differentiable (T) -> U {
return differentiableFunction { x in
(value: original(x), pullback: { v in pullback(at: x, in: original)(v) })
}
}
بررسی کنید که کار می کند
let input: Float = 10.0
print("Running original computation...")
// Differentiable multiplication with checkpointing.
let square = makeRecomputedInGradient { (x: Float) -> Float in
print(" Computing square...")
return x * x
}
// Differentiate `f(x) = (cos(x))^2`.
let (output, backprop) = valueWithPullback(at: input) { input -> Float in
return square(cos(input))
}
print("Running backpropagation...")
let grad = backprop(1)
print("Gradient = \(grad)")
Running original computation... Computing square... Running backpropagation... Computing square... Gradient = -0.9129453
آن را به ماژول های شبکه عصبی گسترش دهید
در این مثال، ما یک شبکه عصبی کانولوشنال ساده را تعریف می کنیم.
struct Model: Layer {
var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6))
var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
var flatten = Flatten<Float>()
var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)
@differentiable
func call(_ input: Tensor<Float>) -> Tensor<Float> {
return input.sequenced(through: conv, maxPool, flatten, dense)
}
}
میخواهیم فعالسازیهای لایه کانولوشن ( conv
) را در حین انتشار پسانداز مجدداً محاسبه کنیم. با این حال، استفاده از makeRecomputedInGradient(_:)
میتواند کد بهدستآمده را دست و پا گیر کند، به خصوص زمانی که میخواهیم لایهها را بهطور متوالی با استفاده از sequenced(in:through:_:_:_:_:)
اعمال کنیم.
input.sequenced(in: context, through: conv, maxPool, flatten, dense)
بنابراین، چرا نوع لایه خاصی را تعریف نمی کنیم که یک لایه را بپیچد و باعث می شود که فعال سازی آن در حین انتشار مجدد محاسبه شود؟ بیایید آن را انجام دهیم.
ابتدا یک تابع makeRecomputedInGradient(_:)
تعریف می کنیم که تابع باینری می گیرد.
// Same as the previous `makeRecomputedInGradient(_:)`, except it's for binary functions.
func makeRecomputedInGradient<T: Differentiable, U: Differentiable, V: Differentiable>(
_ original: @escaping @differentiable (T, U) -> V
) -> @differentiable (T, U) -> V {
return differentiableFunction { x, y in
(value: original(x, y), pullback: { v in pullback(at: x, y, in: original)(v) })
}
}
سپس، یک لایه عمومی ActivationDiscarding<Wrapped>
تعریف می کنیم.
import TensorFlow
/// A layer wrapper that makes the underlying layer's activations be discarded during application
/// and recomputed during backpropagation.
struct ActivationDiscarding<Wrapped: Layer>: Layer {
/// The wrapped layer.
var wrapped: Wrapped
@differentiable
func callAsFunction(_ input: Wrapped.Input) -> Wrapped.Output {
let apply = makeRecomputedInGradient { (layer: Wrapped, input: Input) -> Wrapped.Output in
print(" Applying \(Wrapped.self) layer...")
return layer(input)
}
return apply(wrapped, input)
}
}
در نهایت، میتوانیم متدی را روی همه لایهها اضافه کنیم که همان لایه را برمیگرداند، به جز اینکه فعالسازیهای آن در طول برنامه حذف میشوند و در حین انتشار پسانداز دوباره محاسبه میشوند.
extension Layer {
func discardingActivations() -> ActivationDiscarding<Self> {
return ActivationDiscarding(wrapped: self)
}
}
در مدل، تنها چیزی که باید تغییر دهیم این است که لایه کانولوشن را در لایه فعالسازی-محاسبه مجدد بپیچیم.
var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()
حالا، به سادگی از آن در مدل استفاده کنید!
struct Model: Layer {
var conv = Conv2D<Float>(filterShape: (5, 5, 3, 6)).discardingActivations()
var maxPool = MaxPool2D<Float>(poolSize: (2, 2), strides: (2, 2))
var flatten = Flatten<Float>()
var dense = Dense<Float>(inputSize: 36 * 6, outputSize: 10)
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return input.sequenced(through: conv, maxPool, flatten, dense)
}
}
وقتی یک حلقه آموزشی را اجرا می کنیم، می بینیم که فعال سازی لایه کانولوشن دو بار محاسبه می شود: یک بار در طول اعمال لایه، و یک بار در طول انتشار پس زمینه.
// Use random training data.
let x = Tensor<Float>(randomNormal: [10, 16, 16, 3])
let y = Tensor<Int32>(rangeFrom: 0, to: 10, stride: 1)
var model = Model()
let opt = SGD(for: model)
for i in 1...5 {
print("Starting training step \(i)")
print(" Running original computation...")
let (logits, backprop) = model.appliedForBackpropagation(to: x)
let (loss, dL_dŷ) = valueWithGradient(at: logits) { logits in
softmaxCrossEntropy(logits: logits, labels: y)
}
print(" Loss: \(loss)")
print(" Running backpropagation...")
let (dL_dθ, _) = backprop(dL_dŷ)
opt.update(&model, along: dL_dθ)
}
Starting training step 1 Running original computation... Applying Conv2D<Float> layer... Loss: 2.6726463 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 2 Running original computation... Applying Conv2D<Float> layer... Loss: 2.3370266 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 3 Running original computation... Applying Conv2D<Float> layer... Loss: 2.0828948 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 4 Running original computation... Applying Conv2D<Float> layer... Loss: 1.8765408 Running backpropagation... Applying Conv2D<Float> layer... Starting training step 5 Running original computation... Applying Conv2D<Float> layer... Loss: 1.701678 Running backpropagation... Applying Conv2D<Float> layer...
درست مانند آن، تعریف کتابخانه های برنامه نویسی قابل تمایز عمومی برای دامنه های مختلف بسیار آسان است.