Ver en TensorFlow.org | Ejecutar en Google Colab | Ver fuente en GitHub | Descargar cuaderno |
Descripción general
En este laboratorio de código, entrenará un modelo de clasificación de imágenes simple en el conjunto de datos CIFAR10 y luego usará el "ataque de inferencia de membresía" contra este modelo para evaluar si el atacante puede "adivinar" si una muestra en particular estaba presente en el conjunto de entrenamiento. . Utilizará el Informe de privacidad de TF para visualizar los resultados de varios modelos y puntos de control de modelos.
Configuración
import numpy as np
from typing import Tuple
from scipy import special
from sklearn import metrics
import tensorflow as tf
import tensorflow_datasets as tfds
# Set verbosity.
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from sklearn.exceptions import ConvergenceWarning
import warnings
warnings.simplefilter(action="ignore", category=ConvergenceWarning)
warnings.simplefilter(action="ignore", category=FutureWarning)
Instale TensorFlow Privacy.
pip install tensorflow_privacy
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import membership_inference_attack as mia
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResultsCollection
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyMetric
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyReportMetadata
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import privacy_report
import tensorflow_privacy
Entrene dos modelos, con métricas de privacidad
En esta sección se entrena un par de keras.Model
clasificadores en la CIFAR-10
conjunto de datos. Durante el proceso de capacitación, recopila métricas de privacidad, que se utilizarán para generar informes en la sección bext.
El primer paso es definir algunos hiperparámetros:
dataset = 'cifar10'
num_classes = 10
activation = 'relu'
num_conv = 3
batch_size=50
epochs_per_report = 2
total_epochs = 50
lr = 0.001
A continuación, cargue el conjunto de datos. No hay nada específico de privacidad en este código.
print('Loading the dataset.')
train_ds = tfds.as_numpy(
tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1))
test_ds = tfds.as_numpy(
tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1))
x_train = train_ds['image'].astype('float32') / 255.
y_train_indices = train_ds['label'][:, np.newaxis]
x_test = test_ds['image'].astype('float32') / 255.
y_test_indices = test_ds['label'][:, np.newaxis]
# Convert class vectors to binary class matrices.
y_train = tf.keras.utils.to_categorical(y_train_indices, num_classes)
y_test = tf.keras.utils.to_categorical(y_test_indices, num_classes)
input_shape = x_train.shape[1:]
assert x_train.shape[0] % batch_size == 0, "The tensorflow_privacy optimizer doesn't handle partial batches"
Loading the dataset.
A continuación, defina una función para construir los modelos.
def small_cnn(input_shape: Tuple[int],
num_classes: int,
num_conv: int,
activation: str = 'relu') -> tf.keras.models.Sequential:
"""Setup a small CNN for image classification.
Args:
input_shape: Integer tuple for the shape of the images.
num_classes: Number of prediction classes.
num_conv: Number of convolutional layers.
activation: The activation function to use for conv and dense layers.
Returns:
The Keras model.
"""
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Input(shape=input_shape))
# Conv layers
for _ in range(num_conv):
model.add(tf.keras.layers.Conv2D(32, (3, 3), activation=activation))
model.add(tf.keras.layers.MaxPooling2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation=activation))
model.add(tf.keras.layers.Dense(num_classes))
model.compile(
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(learning_rate=lr),
metrics=['accuracy'])
return model
Construya dos modelos CNN de tres capas usando esa función.
Configurar el primero en utilizar un optimizador básica SGD, un segundo para utilizar un optimizador de forma diferencial privada ( tf_privacy.DPKerasAdamOptimizer
), para que pueda comparar los resultados.
model_2layers = small_cnn(
input_shape, num_classes, num_conv=2, activation=activation)
model_3layers = small_cnn(
input_shape, num_classes, num_conv=3, activation=activation)
Definir una devolución de llamada para recopilar métricas de privacidad
A continuación, defina una keras.callbacks.Callback
para funcionar periorically algunos ataques contra la privacidad del modelo, y registra los resultados.
Los Keras fit
método llamará al on_epoch_end
método después de cada época de entrenamiento. El n
argumento es el número época (basado en 0).
Se podría aplicar este procedimiento al escribir un bucle que se llama repetidamente Model.fit(..., epochs=epochs_per_report)
y se ejecuta el código de ataque. La devolución de llamada se utiliza aquí solo porque proporciona una clara separación entre la lógica de entrenamiento y la lógica de evaluación de la privacidad.
class PrivacyMetrics(tf.keras.callbacks.Callback):
def __init__(self, epochs_per_report, model_name):
self.epochs_per_report = epochs_per_report
self.model_name = model_name
self.attack_results = []
def on_epoch_end(self, epoch, logs=None):
epoch = epoch+1
if epoch % self.epochs_per_report != 0:
return
print(f'\nRunning privacy report for epoch: {epoch}\n')
logits_train = self.model.predict(x_train, batch_size=batch_size)
logits_test = self.model.predict(x_test, batch_size=batch_size)
prob_train = special.softmax(logits_train, axis=1)
prob_test = special.softmax(logits_test, axis=1)
# Add metadata to generate a privacy report.
privacy_report_metadata = PrivacyReportMetadata(
# Show the validation accuracy on the plot
# It's what you send to train_accuracy that gets plotted.
accuracy_train=logs['val_accuracy'],
accuracy_test=logs['val_accuracy'],
epoch_num=epoch,
model_variant_label=self.model_name)
attack_results = mia.run_attacks(
AttackInputData(
labels_train=y_train_indices[:, 0],
labels_test=y_test_indices[:, 0],
probs_train=prob_train,
probs_test=prob_test),
SlicingSpec(entire_dataset=True, by_class=True),
attack_types=(AttackType.THRESHOLD_ATTACK,
AttackType.LOGISTIC_REGRESSION),
privacy_report_metadata=privacy_report_metadata)
self.attack_results.append(attack_results)
Entrena a los modelos
El siguiente bloque de código entrena los dos modelos. El all_reports
lista se utiliza para recoger todos los resultados de todas las carreras de entrenamiento de los modelos. Los informes individuales etiquetados comunicaba con el model_name
, así que no hay confusión acerca de cuál es el modelo genera la cual informe.
all_reports = []
callback = PrivacyMetrics(epochs_per_report, "2 Layers")
history = model_2layers.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=total_epochs,
validation_data=(x_test, y_test),
callbacks=[callback],
shuffle=True)
all_reports.extend(callback.attack_results)
Epoch 1/50 1000/1000 [==============================] - 13s 4ms/step - loss: 1.5146 - accuracy: 0.4573 - val_loss: 1.2374 - val_accuracy: 0.5660 Epoch 2/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1933 - accuracy: 0.5811 - val_loss: 1.1873 - val_accuracy: 0.5851 Running privacy report for epoch: 2 Epoch 3/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0694 - accuracy: 0.6246 - val_loss: 1.0526 - val_accuracy: 0.6310 Epoch 4/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9911 - accuracy: 0.6548 - val_loss: 0.9906 - val_accuracy: 0.6549 Running privacy report for epoch: 4 Epoch 5/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9348 - accuracy: 0.6743 - val_loss: 0.9712 - val_accuracy: 0.6617 Epoch 6/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8881 - accuracy: 0.6912 - val_loss: 0.9595 - val_accuracy: 0.6671 Running privacy report for epoch: 6 Epoch 7/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7024 - val_loss: 0.9574 - val_accuracy: 0.6684 Epoch 8/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8147 - accuracy: 0.7161 - val_loss: 0.9397 - val_accuracy: 0.6740 Running privacy report for epoch: 8 Epoch 9/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7820 - accuracy: 0.7263 - val_loss: 0.9325 - val_accuracy: 0.6837 Epoch 10/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7533 - accuracy: 0.7362 - val_loss: 0.9431 - val_accuracy: 0.6843 Running privacy report for epoch: 10 Epoch 11/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7169 - accuracy: 0.7477 - val_loss: 0.9310 - val_accuracy: 0.6795 Epoch 12/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6892 - accuracy: 0.7569 - val_loss: 0.9043 - val_accuracy: 0.6975 Running privacy report for epoch: 12 Epoch 13/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6677 - accuracy: 0.7663 - val_loss: 0.9401 - val_accuracy: 0.6796 Epoch 14/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6401 - accuracy: 0.7741 - val_loss: 0.9464 - val_accuracy: 0.6880 Running privacy report for epoch: 14 Epoch 15/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6177 - accuracy: 0.7821 - val_loss: 0.9359 - val_accuracy: 0.6930 Epoch 16/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5978 - accuracy: 0.7913 - val_loss: 0.9634 - val_accuracy: 0.6896 Running privacy report for epoch: 16 Epoch 17/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5745 - accuracy: 0.7973 - val_loss: 0.9941 - val_accuracy: 0.6932 Epoch 18/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5553 - accuracy: 0.8036 - val_loss: 0.9790 - val_accuracy: 0.6974 Running privacy report for epoch: 18 Epoch 19/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5376 - accuracy: 0.8103 - val_loss: 0.9989 - val_accuracy: 0.6907 Epoch 20/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5152 - accuracy: 0.8192 - val_loss: 1.0245 - val_accuracy: 0.6878 Running privacy report for epoch: 20 Epoch 21/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5048 - accuracy: 0.8208 - val_loss: 1.0223 - val_accuracy: 0.6852 Epoch 22/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4847 - accuracy: 0.8284 - val_loss: 1.0498 - val_accuracy: 0.6866 Running privacy report for epoch: 22 Epoch 23/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4722 - accuracy: 0.8325 - val_loss: 1.0610 - val_accuracy: 0.6899 Epoch 24/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4562 - accuracy: 0.8387 - val_loss: 1.0973 - val_accuracy: 0.6771 Running privacy report for epoch: 24 Epoch 25/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4392 - accuracy: 0.8447 - val_loss: 1.1141 - val_accuracy: 0.6865 Epoch 26/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4269 - accuracy: 0.8485 - val_loss: 1.1928 - val_accuracy: 0.6771 Running privacy report for epoch: 26 Epoch 27/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4135 - accuracy: 0.8533 - val_loss: 1.1945 - val_accuracy: 0.6758 Epoch 28/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4053 - accuracy: 0.8569 - val_loss: 1.2244 - val_accuracy: 0.6716 Running privacy report for epoch: 28 Epoch 29/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3880 - accuracy: 0.8611 - val_loss: 1.2362 - val_accuracy: 0.6789 Epoch 30/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3805 - accuracy: 0.8630 - val_loss: 1.2815 - val_accuracy: 0.6805 Running privacy report for epoch: 30 Epoch 31/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3756 - accuracy: 0.8656 - val_loss: 1.2973 - val_accuracy: 0.6762 Epoch 32/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3565 - accuracy: 0.8719 - val_loss: 1.3022 - val_accuracy: 0.6810 Running privacy report for epoch: 32 Epoch 33/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3494 - accuracy: 0.8749 - val_loss: 1.3248 - val_accuracy: 0.6756 Epoch 34/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3371 - accuracy: 0.8790 - val_loss: 1.3941 - val_accuracy: 0.6806 Running privacy report for epoch: 34 Epoch 35/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3248 - accuracy: 0.8839 - val_loss: 1.4391 - val_accuracy: 0.6666 Epoch 36/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3233 - accuracy: 0.8833 - val_loss: 1.5060 - val_accuracy: 0.6692 Running privacy report for epoch: 36 Epoch 37/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3109 - accuracy: 0.8882 - val_loss: 1.4624 - val_accuracy: 0.6724 Epoch 38/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3057 - accuracy: 0.8900 - val_loss: 1.5133 - val_accuracy: 0.6644 Running privacy report for epoch: 38 Epoch 39/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2929 - accuracy: 0.8949 - val_loss: 1.5465 - val_accuracy: 0.6618 Epoch 40/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2868 - accuracy: 0.8970 - val_loss: 1.5882 - val_accuracy: 0.6696 Running privacy report for epoch: 40 Epoch 41/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2778 - accuracy: 0.8982 - val_loss: 1.6317 - val_accuracy: 0.6713 Epoch 42/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2782 - accuracy: 0.8999 - val_loss: 1.6993 - val_accuracy: 0.6630 Running privacy report for epoch: 42 Epoch 43/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2675 - accuracy: 0.9039 - val_loss: 1.7294 - val_accuracy: 0.6645 Epoch 44/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2587 - accuracy: 0.9068 - val_loss: 1.7614 - val_accuracy: 0.6561 Running privacy report for epoch: 44 Epoch 45/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2528 - accuracy: 0.9076 - val_loss: 1.7835 - val_accuracy: 0.6564 Epoch 46/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2410 - accuracy: 0.9129 - val_loss: 1.8550 - val_accuracy: 0.6648 Running privacy report for epoch: 46 Epoch 47/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2409 - accuracy: 0.9106 - val_loss: 1.8705 - val_accuracy: 0.6572 Epoch 48/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2328 - accuracy: 0.9146 - val_loss: 1.9110 - val_accuracy: 0.6593 Running privacy report for epoch: 48 Epoch 49/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2299 - accuracy: 0.9164 - val_loss: 1.9468 - val_accuracy: 0.6634 Epoch 50/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2250 - accuracy: 0.9178 - val_loss: 2.0154 - val_accuracy: 0.6610 Running privacy report for epoch: 50
callback = PrivacyMetrics(epochs_per_report, "3 Layers")
history = model_3layers.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=total_epochs,
validation_data=(x_test, y_test),
callbacks=[callback],
shuffle=True)
all_reports.extend(callback.attack_results)
Epoch 1/50 1000/1000 [==============================] - 4s 4ms/step - loss: 1.6838 - accuracy: 0.3772 - val_loss: 1.4805 - val_accuracy: 0.4552 Epoch 2/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.3938 - accuracy: 0.4969 - val_loss: 1.3291 - val_accuracy: 0.5276 Running privacy report for epoch: 2 Epoch 3/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.2564 - accuracy: 0.5510 - val_loss: 1.2313 - val_accuracy: 0.5627 Epoch 4/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1610 - accuracy: 0.5884 - val_loss: 1.1251 - val_accuracy: 0.6039 Running privacy report for epoch: 4 Epoch 5/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1034 - accuracy: 0.6105 - val_loss: 1.1168 - val_accuracy: 0.6063 Epoch 6/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0476 - accuracy: 0.6319 - val_loss: 1.0716 - val_accuracy: 0.6248 Running privacy report for epoch: 6 Epoch 7/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0107 - accuracy: 0.6461 - val_loss: 1.0264 - val_accuracy: 0.6407 Epoch 8/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9731 - accuracy: 0.6597 - val_loss: 1.0216 - val_accuracy: 0.6447 Running privacy report for epoch: 8 Epoch 9/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9437 - accuracy: 0.6712 - val_loss: 1.0016 - val_accuracy: 0.6467 Epoch 10/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9191 - accuracy: 0.6790 - val_loss: 0.9845 - val_accuracy: 0.6553 Running privacy report for epoch: 10 Epoch 11/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8923 - accuracy: 0.6877 - val_loss: 0.9560 - val_accuracy: 0.6670 Epoch 12/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8722 - accuracy: 0.6959 - val_loss: 0.9518 - val_accuracy: 0.6686 Running privacy report for epoch: 12 Epoch 13/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7029 - val_loss: 0.9427 - val_accuracy: 0.6787 Epoch 14/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8305 - accuracy: 0.7116 - val_loss: 0.9247 - val_accuracy: 0.6814 Running privacy report for epoch: 14 Epoch 15/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8164 - accuracy: 0.7157 - val_loss: 0.9263 - val_accuracy: 0.6797 Epoch 16/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7973 - accuracy: 0.7220 - val_loss: 0.9151 - val_accuracy: 0.6850 Running privacy report for epoch: 16 Epoch 17/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7830 - accuracy: 0.7277 - val_loss: 0.9139 - val_accuracy: 0.6842 Epoch 18/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7704 - accuracy: 0.7294 - val_loss: 0.9384 - val_accuracy: 0.6774 Running privacy report for epoch: 18 Epoch 19/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7539 - accuracy: 0.7366 - val_loss: 0.9508 - val_accuracy: 0.6761 Epoch 20/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7445 - accuracy: 0.7412 - val_loss: 0.9108 - val_accuracy: 0.6908 Running privacy report for epoch: 20 Epoch 21/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7343 - accuracy: 0.7418 - val_loss: 0.9161 - val_accuracy: 0.6855 Epoch 22/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7213 - accuracy: 0.7458 - val_loss: 0.9754 - val_accuracy: 0.6724 Running privacy report for epoch: 22 Epoch 23/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7133 - accuracy: 0.7487 - val_loss: 0.8936 - val_accuracy: 0.6984 Epoch 24/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7072 - accuracy: 0.7504 - val_loss: 0.8872 - val_accuracy: 0.7002 Running privacy report for epoch: 24 Epoch 25/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6932 - accuracy: 0.7570 - val_loss: 0.9732 - val_accuracy: 0.6769 Epoch 26/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6883 - accuracy: 0.7578 - val_loss: 0.9332 - val_accuracy: 0.6798 Running privacy report for epoch: 26 Epoch 27/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6766 - accuracy: 0.7614 - val_loss: 0.9069 - val_accuracy: 0.6998 Epoch 28/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6656 - accuracy: 0.7662 - val_loss: 0.8879 - val_accuracy: 0.7011 Running privacy report for epoch: 28 Epoch 29/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6594 - accuracy: 0.7674 - val_loss: 0.8988 - val_accuracy: 0.7037 Epoch 30/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6499 - accuracy: 0.7700 - val_loss: 0.9086 - val_accuracy: 0.7001 Running privacy report for epoch: 30 Epoch 31/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6420 - accuracy: 0.7746 - val_loss: 0.8985 - val_accuracy: 0.7034 Epoch 32/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6354 - accuracy: 0.7742 - val_loss: 0.9089 - val_accuracy: 0.7018 Running privacy report for epoch: 32 Epoch 33/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6293 - accuracy: 0.7759 - val_loss: 0.9258 - val_accuracy: 0.6947 Epoch 34/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6192 - accuracy: 0.7851 - val_loss: 0.9326 - val_accuracy: 0.6976 Running privacy report for epoch: 34 Epoch 35/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6157 - accuracy: 0.7831 - val_loss: 0.9240 - val_accuracy: 0.6973 Epoch 36/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6063 - accuracy: 0.7853 - val_loss: 0.9504 - val_accuracy: 0.6971 Running privacy report for epoch: 36 Epoch 37/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6036 - accuracy: 0.7867 - val_loss: 0.9025 - val_accuracy: 0.7094 Epoch 38/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5958 - accuracy: 0.7877 - val_loss: 0.9290 - val_accuracy: 0.6976 Running privacy report for epoch: 38 Epoch 39/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5900 - accuracy: 0.7919 - val_loss: 0.9379 - val_accuracy: 0.6963 Epoch 40/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5856 - accuracy: 0.7928 - val_loss: 0.9911 - val_accuracy: 0.6896 Running privacy report for epoch: 40 Epoch 41/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5772 - accuracy: 0.7944 - val_loss: 0.9093 - val_accuracy: 0.7059 Epoch 42/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5752 - accuracy: 0.7940 - val_loss: 0.9275 - val_accuracy: 0.7061 Running privacy report for epoch: 42 Epoch 43/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5645 - accuracy: 0.7998 - val_loss: 0.9208 - val_accuracy: 0.7025 Epoch 44/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5632 - accuracy: 0.8000 - val_loss: 0.9746 - val_accuracy: 0.6976 Running privacy report for epoch: 44 Epoch 45/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5557 - accuracy: 0.8045 - val_loss: 0.9211 - val_accuracy: 0.7098 Epoch 46/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5469 - accuracy: 0.8073 - val_loss: 0.9357 - val_accuracy: 0.7055 Running privacy report for epoch: 46 Epoch 47/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5438 - accuracy: 0.8062 - val_loss: 0.9495 - val_accuracy: 0.7025 Epoch 48/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5437 - accuracy: 0.8069 - val_loss: 0.9509 - val_accuracy: 0.6994 Running privacy report for epoch: 48 Epoch 49/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5414 - accuracy: 0.8066 - val_loss: 0.9780 - val_accuracy: 0.6939 Epoch 50/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5321 - accuracy: 0.8108 - val_loss: 1.0109 - val_accuracy: 0.6846 Running privacy report for epoch: 50
Parcelas de época
Puede visualizar cómo ocurren los riesgos de privacidad a medida que entrena modelos probando el modelo periódicamente (por ejemplo, cada 5 épocas), puede elegir el punto en el tiempo con la mejor compensación de rendimiento / privacidad.
Utilizar el TF Privacidad módulo de afiliación Inferencia de ataque para generar AttackResults
. Estos AttackResults
consiguen combinarse en una AttackResultsCollection
. El Informe TF privacidad está diseñada para analizar la proporcionada AttackResultsCollection
.
results = AttackResultsCollection(all_reports)
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
epoch_plot = privacy_report.plot_by_epochs(
results, privacy_metrics=privacy_metrics)
Vea que, como regla, la vulnerabilidad de la privacidad tiende a aumentar a medida que aumenta el número de épocas. Esto es cierto en las variantes del modelo, así como en los diferentes tipos de atacantes.
Los modelos de dos capas (con menos capas convolucionales) son generalmente más vulnerables que sus contrapartes del modelo de tres capas.
Ahora veamos cómo cambia el rendimiento del modelo con respecto al riesgo de privacidad.
Privacidad vs utilidad
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
utility_privacy_plot = privacy_report.plot_privacy_vs_accuracy(
results, privacy_metrics=privacy_metrics)
for axis in utility_privacy_plot.axes:
axis.set_xlabel('Validation accuracy')
Los modelos de tres capas (quizás debido a demasiados parámetros) solo logran una precisión de tren de 0,85. Los modelos de dos capas logran un rendimiento aproximadamente igual para ese nivel de riesgo de privacidad, pero continúan obteniendo una mejor precisión.
También puede ver cómo la línea para los modelos de dos capas se vuelve más pronunciada. Esto significa que las ganancias marginales adicionales en la precisión del tren se producen a expensas de grandes vulnerabilidades de privacidad.
Este es el final del tutorial. No dude en analizar sus propios resultados.