Đánh giá rủi ro về quyền riêng tư với Báo cáo quyền riêng tư của TensorFlow

Xem trên TensorFlow.org Chạy trong Google Colab Xem nguồn trên GitHub Tải xuống sổ ghi chép

Tổng quat

Trong bảng mã này, bạn sẽ đào tạo một mô hình phân loại hình ảnh đơn giản trên tập dữ liệu CIFAR10 và sau đó sử dụng "cuộc tấn công suy luận thành viên" đối với mô hình này để đánh giá xem kẻ tấn công có thể "đoán" xem một mẫu cụ thể có trong tập hợp đào tạo hay không . Bạn sẽ sử dụng Báo cáo bảo mật TF để trực quan hóa kết quả từ nhiều mô hình và điểm kiểm tra mô hình.

Thành lập

import numpy as np
from typing import Tuple
from scipy import special
from sklearn import metrics

import tensorflow as tf

import tensorflow_datasets as tfds

# Set verbosity.
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from sklearn.exceptions import ConvergenceWarning

import warnings
warnings.simplefilter(action="ignore", category=ConvergenceWarning)
warnings.simplefilter(action="ignore", category=FutureWarning)

Cài đặt TensorFlow Privacy.

pip install tensorflow_privacy
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import membership_inference_attack as mia
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResultsCollection
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyMetric
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyReportMetadata
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import privacy_report
import tensorflow_privacy

Đào tạo hai mô hình, với các chỉ số về quyền riêng tư

Phần này huấn luyện một cặp keras.Model phân loại trên CIFAR-10 tập dữ liệu. Trong quá trình đào tạo, nó thu thập các số liệu về quyền riêng tư, số liệu này sẽ được sử dụng để tạo các báo cáo trong phần văn bản.

Bước đầu tiên là xác định một số siêu tham số:

dataset = 'cifar10'
num_classes = 10
activation = 'relu'
num_conv = 3

batch_size=50
epochs_per_report = 2
total_epochs = 50

lr = 0.001

Tiếp theo, tải tập dữ liệu. Không có gì cụ thể về quyền riêng tư trong mã này.

Loading the dataset.

Tiếp theo xác định một chức năng để xây dựng các mô hình.

Xây dựng hai mô hình CNN ba lớp bằng cách sử dụng chức năng đó.

Cấu hình đầu tiên sử dụng tối ưu hóa SGD cơ bản, một lần thứ hai để sử dụng tối ưu hóa theo kiểu khác tin ( tf_privacy.DPKerasAdamOptimizer ), do đó bạn có thể so sánh kết quả.

model_2layers = small_cnn(
    input_shape, num_classes, num_conv=2, activation=activation)
model_3layers = small_cnn(
    input_shape, num_classes, num_conv=3, activation=activation)

Xác định lệnh gọi lại để thu thập các chỉ số về quyền riêng tư

Tiếp theo xác định một keras.callbacks.Callback để periorically chạy một số cuộc tấn công chống lại sự riêng tư của các mô hình, và ghi lại các kết quả.

Các keras fit phương pháp sẽ gọi on_epoch_end phương pháp sau mỗi thời đại đào tạo. Các n tranh luận là (dựa trên 0) số kỷ nguyên.

Bạn có thể thực hiện thủ tục này bằng cách viết một vòng lặp mà liên tục gọi Model.fit(..., epochs=epochs_per_report) và chạy mã tấn công. Lệnh gọi lại được sử dụng ở đây chỉ vì nó phân tách rõ ràng giữa logic đào tạo và logic đánh giá quyền riêng tư.

class PrivacyMetrics(tf.keras.callbacks.Callback):
  def __init__(self, epochs_per_report, model_name):
    self.epochs_per_report = epochs_per_report
    self.model_name = model_name
    self.attack_results = []

  def on_epoch_end(self, epoch, logs=None):
    epoch = epoch+1

    if epoch % self.epochs_per_report != 0:
      return

    print(f'\nRunning privacy report for epoch: {epoch}\n')

    logits_train = self.model.predict(x_train, batch_size=batch_size)
    logits_test = self.model.predict(x_test, batch_size=batch_size)

    prob_train = special.softmax(logits_train, axis=1)
    prob_test = special.softmax(logits_test, axis=1)

    # Add metadata to generate a privacy report.
    privacy_report_metadata = PrivacyReportMetadata(
        # Show the validation accuracy on the plot
        # It's what you send to train_accuracy that gets plotted.
        accuracy_train=logs['val_accuracy'], 
        accuracy_test=logs['val_accuracy'],
        epoch_num=epoch,
        model_variant_label=self.model_name)

    attack_results = mia.run_attacks(
        AttackInputData(
            labels_train=y_train_indices[:, 0],
            labels_test=y_test_indices[:, 0],
            probs_train=prob_train,
            probs_test=prob_test),
        SlicingSpec(entire_dataset=True, by_class=True),
        attack_types=(AttackType.THRESHOLD_ATTACK,
                      AttackType.LOGISTIC_REGRESSION),
        privacy_report_metadata=privacy_report_metadata)

    self.attack_results.append(attack_results)

Đào tạo các mô hình

Khối mã tiếp theo đào tạo hai mô hình. Các all_reports danh sách được sử dụng để thu thập tất cả các kết quả từ tất cả các huấn luyện chạy của mô hình. Các báo cáo riêng lẻ được gắn thẻ witht các model_name , vì vậy không có sự nhầm lẫn về những mô hình được tạo ra mà báo cáo.

all_reports = []
callback = PrivacyMetrics(epochs_per_report, "2 Layers")
history = model_2layers.fit(
      x_train,
      y_train,
      batch_size=batch_size,
      epochs=total_epochs,
      validation_data=(x_test, y_test),
      callbacks=[callback],
      shuffle=True)

all_reports.extend(callback.attack_results)
Epoch 1/50
1000/1000 [==============================] - 13s 4ms/step - loss: 1.5146 - accuracy: 0.4573 - val_loss: 1.2374 - val_accuracy: 0.5660
Epoch 2/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.1933 - accuracy: 0.5811 - val_loss: 1.1873 - val_accuracy: 0.5851

Running privacy report for epoch: 2

Epoch 3/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.0694 - accuracy: 0.6246 - val_loss: 1.0526 - val_accuracy: 0.6310
Epoch 4/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9911 - accuracy: 0.6548 - val_loss: 0.9906 - val_accuracy: 0.6549

Running privacy report for epoch: 4

Epoch 5/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9348 - accuracy: 0.6743 - val_loss: 0.9712 - val_accuracy: 0.6617
Epoch 6/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8881 - accuracy: 0.6912 - val_loss: 0.9595 - val_accuracy: 0.6671

Running privacy report for epoch: 6

Epoch 7/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7024 - val_loss: 0.9574 - val_accuracy: 0.6684
Epoch 8/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8147 - accuracy: 0.7161 - val_loss: 0.9397 - val_accuracy: 0.6740

Running privacy report for epoch: 8

Epoch 9/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7820 - accuracy: 0.7263 - val_loss: 0.9325 - val_accuracy: 0.6837
Epoch 10/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7533 - accuracy: 0.7362 - val_loss: 0.9431 - val_accuracy: 0.6843

Running privacy report for epoch: 10

Epoch 11/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7169 - accuracy: 0.7477 - val_loss: 0.9310 - val_accuracy: 0.6795
Epoch 12/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6892 - accuracy: 0.7569 - val_loss: 0.9043 - val_accuracy: 0.6975

Running privacy report for epoch: 12

Epoch 13/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6677 - accuracy: 0.7663 - val_loss: 0.9401 - val_accuracy: 0.6796
Epoch 14/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6401 - accuracy: 0.7741 - val_loss: 0.9464 - val_accuracy: 0.6880

Running privacy report for epoch: 14

Epoch 15/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6177 - accuracy: 0.7821 - val_loss: 0.9359 - val_accuracy: 0.6930
Epoch 16/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5978 - accuracy: 0.7913 - val_loss: 0.9634 - val_accuracy: 0.6896

Running privacy report for epoch: 16

Epoch 17/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5745 - accuracy: 0.7973 - val_loss: 0.9941 - val_accuracy: 0.6932
Epoch 18/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5553 - accuracy: 0.8036 - val_loss: 0.9790 - val_accuracy: 0.6974

Running privacy report for epoch: 18

Epoch 19/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5376 - accuracy: 0.8103 - val_loss: 0.9989 - val_accuracy: 0.6907
Epoch 20/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5152 - accuracy: 0.8192 - val_loss: 1.0245 - val_accuracy: 0.6878

Running privacy report for epoch: 20

Epoch 21/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5048 - accuracy: 0.8208 - val_loss: 1.0223 - val_accuracy: 0.6852
Epoch 22/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4847 - accuracy: 0.8284 - val_loss: 1.0498 - val_accuracy: 0.6866

Running privacy report for epoch: 22

Epoch 23/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4722 - accuracy: 0.8325 - val_loss: 1.0610 - val_accuracy: 0.6899
Epoch 24/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4562 - accuracy: 0.8387 - val_loss: 1.0973 - val_accuracy: 0.6771

Running privacy report for epoch: 24

Epoch 25/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4392 - accuracy: 0.8447 - val_loss: 1.1141 - val_accuracy: 0.6865
Epoch 26/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4269 - accuracy: 0.8485 - val_loss: 1.1928 - val_accuracy: 0.6771

Running privacy report for epoch: 26

Epoch 27/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4135 - accuracy: 0.8533 - val_loss: 1.1945 - val_accuracy: 0.6758
Epoch 28/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.4053 - accuracy: 0.8569 - val_loss: 1.2244 - val_accuracy: 0.6716

Running privacy report for epoch: 28

Epoch 29/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3880 - accuracy: 0.8611 - val_loss: 1.2362 - val_accuracy: 0.6789
Epoch 30/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3805 - accuracy: 0.8630 - val_loss: 1.2815 - val_accuracy: 0.6805

Running privacy report for epoch: 30

Epoch 31/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3756 - accuracy: 0.8656 - val_loss: 1.2973 - val_accuracy: 0.6762
Epoch 32/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3565 - accuracy: 0.8719 - val_loss: 1.3022 - val_accuracy: 0.6810

Running privacy report for epoch: 32

Epoch 33/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3494 - accuracy: 0.8749 - val_loss: 1.3248 - val_accuracy: 0.6756
Epoch 34/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3371 - accuracy: 0.8790 - val_loss: 1.3941 - val_accuracy: 0.6806

Running privacy report for epoch: 34

Epoch 35/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3248 - accuracy: 0.8839 - val_loss: 1.4391 - val_accuracy: 0.6666
Epoch 36/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3233 - accuracy: 0.8833 - val_loss: 1.5060 - val_accuracy: 0.6692

Running privacy report for epoch: 36

Epoch 37/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3109 - accuracy: 0.8882 - val_loss: 1.4624 - val_accuracy: 0.6724
Epoch 38/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.3057 - accuracy: 0.8900 - val_loss: 1.5133 - val_accuracy: 0.6644

Running privacy report for epoch: 38

Epoch 39/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2929 - accuracy: 0.8949 - val_loss: 1.5465 - val_accuracy: 0.6618
Epoch 40/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2868 - accuracy: 0.8970 - val_loss: 1.5882 - val_accuracy: 0.6696

Running privacy report for epoch: 40

Epoch 41/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2778 - accuracy: 0.8982 - val_loss: 1.6317 - val_accuracy: 0.6713
Epoch 42/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2782 - accuracy: 0.8999 - val_loss: 1.6993 - val_accuracy: 0.6630

Running privacy report for epoch: 42

Epoch 43/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2675 - accuracy: 0.9039 - val_loss: 1.7294 - val_accuracy: 0.6645
Epoch 44/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2587 - accuracy: 0.9068 - val_loss: 1.7614 - val_accuracy: 0.6561

Running privacy report for epoch: 44

Epoch 45/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2528 - accuracy: 0.9076 - val_loss: 1.7835 - val_accuracy: 0.6564
Epoch 46/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2410 - accuracy: 0.9129 - val_loss: 1.8550 - val_accuracy: 0.6648

Running privacy report for epoch: 46

Epoch 47/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2409 - accuracy: 0.9106 - val_loss: 1.8705 - val_accuracy: 0.6572
Epoch 48/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2328 - accuracy: 0.9146 - val_loss: 1.9110 - val_accuracy: 0.6593

Running privacy report for epoch: 48

Epoch 49/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2299 - accuracy: 0.9164 - val_loss: 1.9468 - val_accuracy: 0.6634
Epoch 50/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.2250 - accuracy: 0.9178 - val_loss: 2.0154 - val_accuracy: 0.6610

Running privacy report for epoch: 50
callback = PrivacyMetrics(epochs_per_report, "3 Layers")
history = model_3layers.fit(
      x_train,
      y_train,
      batch_size=batch_size,
      epochs=total_epochs,
      validation_data=(x_test, y_test),
      callbacks=[callback],
      shuffle=True)

all_reports.extend(callback.attack_results)
Epoch 1/50
1000/1000 [==============================] - 4s 4ms/step - loss: 1.6838 - accuracy: 0.3772 - val_loss: 1.4805 - val_accuracy: 0.4552
Epoch 2/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.3938 - accuracy: 0.4969 - val_loss: 1.3291 - val_accuracy: 0.5276

Running privacy report for epoch: 2

Epoch 3/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.2564 - accuracy: 0.5510 - val_loss: 1.2313 - val_accuracy: 0.5627
Epoch 4/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.1610 - accuracy: 0.5884 - val_loss: 1.1251 - val_accuracy: 0.6039

Running privacy report for epoch: 4

Epoch 5/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.1034 - accuracy: 0.6105 - val_loss: 1.1168 - val_accuracy: 0.6063
Epoch 6/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.0476 - accuracy: 0.6319 - val_loss: 1.0716 - val_accuracy: 0.6248

Running privacy report for epoch: 6

Epoch 7/50
1000/1000 [==============================] - 3s 3ms/step - loss: 1.0107 - accuracy: 0.6461 - val_loss: 1.0264 - val_accuracy: 0.6407
Epoch 8/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9731 - accuracy: 0.6597 - val_loss: 1.0216 - val_accuracy: 0.6447

Running privacy report for epoch: 8

Epoch 9/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9437 - accuracy: 0.6712 - val_loss: 1.0016 - val_accuracy: 0.6467
Epoch 10/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.9191 - accuracy: 0.6790 - val_loss: 0.9845 - val_accuracy: 0.6553

Running privacy report for epoch: 10

Epoch 11/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8923 - accuracy: 0.6877 - val_loss: 0.9560 - val_accuracy: 0.6670
Epoch 12/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8722 - accuracy: 0.6959 - val_loss: 0.9518 - val_accuracy: 0.6686

Running privacy report for epoch: 12

Epoch 13/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7029 - val_loss: 0.9427 - val_accuracy: 0.6787
Epoch 14/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8305 - accuracy: 0.7116 - val_loss: 0.9247 - val_accuracy: 0.6814

Running privacy report for epoch: 14

Epoch 15/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.8164 - accuracy: 0.7157 - val_loss: 0.9263 - val_accuracy: 0.6797
Epoch 16/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7973 - accuracy: 0.7220 - val_loss: 0.9151 - val_accuracy: 0.6850

Running privacy report for epoch: 16

Epoch 17/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7830 - accuracy: 0.7277 - val_loss: 0.9139 - val_accuracy: 0.6842
Epoch 18/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7704 - accuracy: 0.7294 - val_loss: 0.9384 - val_accuracy: 0.6774

Running privacy report for epoch: 18

Epoch 19/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7539 - accuracy: 0.7366 - val_loss: 0.9508 - val_accuracy: 0.6761
Epoch 20/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7445 - accuracy: 0.7412 - val_loss: 0.9108 - val_accuracy: 0.6908

Running privacy report for epoch: 20

Epoch 21/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7343 - accuracy: 0.7418 - val_loss: 0.9161 - val_accuracy: 0.6855
Epoch 22/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7213 - accuracy: 0.7458 - val_loss: 0.9754 - val_accuracy: 0.6724

Running privacy report for epoch: 22

Epoch 23/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7133 - accuracy: 0.7487 - val_loss: 0.8936 - val_accuracy: 0.6984
Epoch 24/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.7072 - accuracy: 0.7504 - val_loss: 0.8872 - val_accuracy: 0.7002

Running privacy report for epoch: 24

Epoch 25/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6932 - accuracy: 0.7570 - val_loss: 0.9732 - val_accuracy: 0.6769
Epoch 26/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6883 - accuracy: 0.7578 - val_loss: 0.9332 - val_accuracy: 0.6798

Running privacy report for epoch: 26

Epoch 27/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6766 - accuracy: 0.7614 - val_loss: 0.9069 - val_accuracy: 0.6998
Epoch 28/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6656 - accuracy: 0.7662 - val_loss: 0.8879 - val_accuracy: 0.7011

Running privacy report for epoch: 28

Epoch 29/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6594 - accuracy: 0.7674 - val_loss: 0.8988 - val_accuracy: 0.7037
Epoch 30/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6499 - accuracy: 0.7700 - val_loss: 0.9086 - val_accuracy: 0.7001

Running privacy report for epoch: 30

Epoch 31/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6420 - accuracy: 0.7746 - val_loss: 0.8985 - val_accuracy: 0.7034
Epoch 32/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6354 - accuracy: 0.7742 - val_loss: 0.9089 - val_accuracy: 0.7018

Running privacy report for epoch: 32

Epoch 33/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6293 - accuracy: 0.7759 - val_loss: 0.9258 - val_accuracy: 0.6947
Epoch 34/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6192 - accuracy: 0.7851 - val_loss: 0.9326 - val_accuracy: 0.6976

Running privacy report for epoch: 34

Epoch 35/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6157 - accuracy: 0.7831 - val_loss: 0.9240 - val_accuracy: 0.6973
Epoch 36/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6063 - accuracy: 0.7853 - val_loss: 0.9504 - val_accuracy: 0.6971

Running privacy report for epoch: 36

Epoch 37/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.6036 - accuracy: 0.7867 - val_loss: 0.9025 - val_accuracy: 0.7094
Epoch 38/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5958 - accuracy: 0.7877 - val_loss: 0.9290 - val_accuracy: 0.6976

Running privacy report for epoch: 38

Epoch 39/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5900 - accuracy: 0.7919 - val_loss: 0.9379 - val_accuracy: 0.6963
Epoch 40/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5856 - accuracy: 0.7928 - val_loss: 0.9911 - val_accuracy: 0.6896

Running privacy report for epoch: 40

Epoch 41/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5772 - accuracy: 0.7944 - val_loss: 0.9093 - val_accuracy: 0.7059
Epoch 42/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5752 - accuracy: 0.7940 - val_loss: 0.9275 - val_accuracy: 0.7061

Running privacy report for epoch: 42

Epoch 43/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5645 - accuracy: 0.7998 - val_loss: 0.9208 - val_accuracy: 0.7025
Epoch 44/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5632 - accuracy: 0.8000 - val_loss: 0.9746 - val_accuracy: 0.6976

Running privacy report for epoch: 44

Epoch 45/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5557 - accuracy: 0.8045 - val_loss: 0.9211 - val_accuracy: 0.7098
Epoch 46/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5469 - accuracy: 0.8073 - val_loss: 0.9357 - val_accuracy: 0.7055

Running privacy report for epoch: 46

Epoch 47/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5438 - accuracy: 0.8062 - val_loss: 0.9495 - val_accuracy: 0.7025
Epoch 48/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5437 - accuracy: 0.8069 - val_loss: 0.9509 - val_accuracy: 0.6994

Running privacy report for epoch: 48

Epoch 49/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5414 - accuracy: 0.8066 - val_loss: 0.9780 - val_accuracy: 0.6939
Epoch 50/50
1000/1000 [==============================] - 3s 3ms/step - loss: 0.5321 - accuracy: 0.8108 - val_loss: 1.0109 - val_accuracy: 0.6846

Running privacy report for epoch: 50

Kỉ nguyên

Bạn có thể hình dung các rủi ro về quyền riêng tư xảy ra như thế nào khi bạn đào tạo mô hình bằng cách thăm dò mô hình định kỳ (ví dụ: cứ sau 5 kỷ nguyên), bạn có thể chọn đúng thời điểm với hiệu suất tốt nhất / đánh đổi quyền riêng tư.

Sử dụng các TF Privacy Membership Suy luận Tấn module để tạo AttackResults . Những AttackResults được kết hợp thành một AttackResultsCollection . Báo cáo TF bảo mật được thiết kế để phân tích cung cấp AttackResultsCollection .

results = AttackResultsCollection(all_reports)
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
epoch_plot = privacy_report.plot_by_epochs(
    results, privacy_metrics=privacy_metrics)

png

Như một quy luật, lỗ hổng bảo mật có xu hướng tăng lên khi số lượng kỷ nguyên tăng lên. Điều này đúng với các biến thể mô hình cũng như các loại kẻ tấn công khác nhau.

Các mô hình hai lớp (với ít lớp phức hợp hơn) thường dễ bị tổn thương hơn các mô hình ba lớp đối ứng của chúng.

Bây giờ chúng ta hãy xem hiệu suất của mô hình thay đổi như thế nào đối với rủi ro về quyền riêng tư.

Quyền riêng tư và Tiện ích

privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
utility_privacy_plot = privacy_report.plot_privacy_vs_accuracy(
    results, privacy_metrics=privacy_metrics)

for axis in utility_privacy_plot.axes:
  axis.set_xlabel('Validation accuracy')

png

Mô hình ba lớp (có lẽ do quá nhiều tham số) chỉ đạt độ chính xác của đoàn tàu là 0,85. Mô hình hai lớp đạt được hiệu suất gần như ngang nhau đối với mức độ rủi ro về quyền riêng tư đó nhưng chúng tiếp tục có độ chính xác cao hơn.

Bạn cũng có thể thấy đường cho các mô hình hai lớp trở nên dốc hơn như thế nào. Điều này có nghĩa là lợi ích biên bổ sung về độ chính xác của chuyến tàu phải trả giá bằng các lỗ hổng bảo mật rộng lớn.

Đây là phần cuối của hướng dẫn. Hãy tự do phân tích kết quả của riêng bạn.