הצג באתר TensorFlow.org | הפעל בגוגל קולאב | צפה במקור ב-GitHub | הורד מחברת |
סקירה כללית
במעבדת קוד זה תאמן מודל סיווג תמונה פשוט על מערך הנתונים של CIFAR10, ולאחר מכן תשתמש ב"התקפת מסקנות חברות" כנגד מודל זה כדי להעריך אם התוקף מסוגל "לנחש" אם דוגמה מסוימת הייתה קיימת בערכת האימונים . אתה תשתמש בדוח הפרטיות של TF כדי להמחיש תוצאות ממספר דגמים ונקודות ביקורת מודל.
להכין
import numpy as np
from typing import Tuple
from scipy import special
from sklearn import metrics
import tensorflow as tf
import tensorflow_datasets as tfds
# Set verbosity.
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from sklearn.exceptions import ConvergenceWarning
import warnings
warnings.simplefilter(action="ignore", category=ConvergenceWarning)
warnings.simplefilter(action="ignore", category=FutureWarning)
התקן את TensorFlow Privacy.
pip install tensorflow_privacy
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import membership_inference_attack as mia
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResultsCollection
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyMetric
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyReportMetadata
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import privacy_report
import tensorflow_privacy
הרכבת שני דגמים, עם מדדי פרטיות
סעיף זה רכבות זוג keras.Model
מסווג על CIFAR-10
במערך. במהלך תהליך ההכשרה הוא אוסף מדדי פרטיות, שישמשו להפקת דוחות בקטע בקסט.
הצעד הראשון הוא להגדיר כמה הפרמטרים:
dataset = 'cifar10'
num_classes = 10
activation = 'relu'
num_conv = 3
batch_size=50
epochs_per_report = 2
total_epochs = 50
lr = 0.001
לאחר מכן, טען את מערך הנתונים. אין שום דבר ספציפי לפרטיות בקוד הזה.
print('Loading the dataset.')
train_ds = tfds.as_numpy(
tfds.load(dataset, split=tfds.Split.TRAIN, batch_size=-1))
test_ds = tfds.as_numpy(
tfds.load(dataset, split=tfds.Split.TEST, batch_size=-1))
x_train = train_ds['image'].astype('float32') / 255.
y_train_indices = train_ds['label'][:, np.newaxis]
x_test = test_ds['image'].astype('float32') / 255.
y_test_indices = test_ds['label'][:, np.newaxis]
# Convert class vectors to binary class matrices.
y_train = tf.keras.utils.to_categorical(y_train_indices, num_classes)
y_test = tf.keras.utils.to_categorical(y_test_indices, num_classes)
input_shape = x_train.shape[1:]
assert x_train.shape[0] % batch_size == 0, "The tensorflow_privacy optimizer doesn't handle partial batches"
Loading the dataset.
לאחר מכן הגדר פונקציה לבניית המודלים.
def small_cnn(input_shape: Tuple[int],
num_classes: int,
num_conv: int,
activation: str = 'relu') -> tf.keras.models.Sequential:
"""Setup a small CNN for image classification.
Args:
input_shape: Integer tuple for the shape of the images.
num_classes: Number of prediction classes.
num_conv: Number of convolutional layers.
activation: The activation function to use for conv and dense layers.
Returns:
The Keras model.
"""
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Input(shape=input_shape))
# Conv layers
for _ in range(num_conv):
model.add(tf.keras.layers.Conv2D(32, (3, 3), activation=activation))
model.add(tf.keras.layers.MaxPooling2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation=activation))
model.add(tf.keras.layers.Dense(num_classes))
model.compile(
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
optimizer=tf.keras.optimizers.Adam(learning_rate=lr),
metrics=['accuracy'])
return model
בנה שני מודלים תלת-שכבתיים של CNN באמצעות הפונקציה הזו.
הגדר את הראשון להשתמש האופטימיזציה SGD בסיסית, והשני להשתמש האופטימיזציה פרטית דיפרנציאלי ( tf_privacy.DPKerasAdamOptimizer
), כך שתוכל להשוות את התוצאות.
model_2layers = small_cnn(
input_shape, num_classes, num_conv=2, activation=activation)
model_3layers = small_cnn(
input_shape, num_classes, num_conv=3, activation=activation)
הגדר התקשרות חוזרת כדי לאסוף מדדי פרטיות
הבא להגדיר keras.callbacks.Callback
כדי periorically לרוץ כמה התקפות פרטיות נגד המודל, והיכנס התוצאות.
Keras fit
שיטה תתקשר on_epoch_end
השיטה לאחר שכול עידן אימונים. n
הטיעון הוא מספר העידן (0 המבוסס).
אתה יכול ליישם הליך זה על ידי כתיבת לולאה כי שוב ושוב קוראת Model.fit(..., epochs=epochs_per_report)
ומפעיל את קוד ההתקפה. ההתקשרות חוזרת משמשת כאן רק בגלל שהיא נותנת הפרדה ברורה בין היגיון האימון, והלוגיקת הערכת הפרטיות.
class PrivacyMetrics(tf.keras.callbacks.Callback):
def __init__(self, epochs_per_report, model_name):
self.epochs_per_report = epochs_per_report
self.model_name = model_name
self.attack_results = []
def on_epoch_end(self, epoch, logs=None):
epoch = epoch+1
if epoch % self.epochs_per_report != 0:
return
print(f'\nRunning privacy report for epoch: {epoch}\n')
logits_train = self.model.predict(x_train, batch_size=batch_size)
logits_test = self.model.predict(x_test, batch_size=batch_size)
prob_train = special.softmax(logits_train, axis=1)
prob_test = special.softmax(logits_test, axis=1)
# Add metadata to generate a privacy report.
privacy_report_metadata = PrivacyReportMetadata(
# Show the validation accuracy on the plot
# It's what you send to train_accuracy that gets plotted.
accuracy_train=logs['val_accuracy'],
accuracy_test=logs['val_accuracy'],
epoch_num=epoch,
model_variant_label=self.model_name)
attack_results = mia.run_attacks(
AttackInputData(
labels_train=y_train_indices[:, 0],
labels_test=y_test_indices[:, 0],
probs_train=prob_train,
probs_test=prob_test),
SlicingSpec(entire_dataset=True, by_class=True),
attack_types=(AttackType.THRESHOLD_ATTACK,
AttackType.LOGISTIC_REGRESSION),
privacy_report_metadata=privacy_report_metadata)
self.attack_results.append(attack_results)
לאמן את הדגמים
בלוק הקוד הבא מאמן את שני הדגמים. all_reports
הרשימה משמשת לאיסוף כול תוצאות מכול ריצות האימון המודלים. דיווחי הפרט מתויגים witht model_name
, כך שאין בלבול לגבי איזה דגם שנוצר אשר דו"ח.
all_reports = []
callback = PrivacyMetrics(epochs_per_report, "2 Layers")
history = model_2layers.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=total_epochs,
validation_data=(x_test, y_test),
callbacks=[callback],
shuffle=True)
all_reports.extend(callback.attack_results)
Epoch 1/50 1000/1000 [==============================] - 13s 4ms/step - loss: 1.5146 - accuracy: 0.4573 - val_loss: 1.2374 - val_accuracy: 0.5660 Epoch 2/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1933 - accuracy: 0.5811 - val_loss: 1.1873 - val_accuracy: 0.5851 Running privacy report for epoch: 2 Epoch 3/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0694 - accuracy: 0.6246 - val_loss: 1.0526 - val_accuracy: 0.6310 Epoch 4/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9911 - accuracy: 0.6548 - val_loss: 0.9906 - val_accuracy: 0.6549 Running privacy report for epoch: 4 Epoch 5/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9348 - accuracy: 0.6743 - val_loss: 0.9712 - val_accuracy: 0.6617 Epoch 6/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8881 - accuracy: 0.6912 - val_loss: 0.9595 - val_accuracy: 0.6671 Running privacy report for epoch: 6 Epoch 7/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7024 - val_loss: 0.9574 - val_accuracy: 0.6684 Epoch 8/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8147 - accuracy: 0.7161 - val_loss: 0.9397 - val_accuracy: 0.6740 Running privacy report for epoch: 8 Epoch 9/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7820 - accuracy: 0.7263 - val_loss: 0.9325 - val_accuracy: 0.6837 Epoch 10/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7533 - accuracy: 0.7362 - val_loss: 0.9431 - val_accuracy: 0.6843 Running privacy report for epoch: 10 Epoch 11/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7169 - accuracy: 0.7477 - val_loss: 0.9310 - val_accuracy: 0.6795 Epoch 12/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6892 - accuracy: 0.7569 - val_loss: 0.9043 - val_accuracy: 0.6975 Running privacy report for epoch: 12 Epoch 13/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6677 - accuracy: 0.7663 - val_loss: 0.9401 - val_accuracy: 0.6796 Epoch 14/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6401 - accuracy: 0.7741 - val_loss: 0.9464 - val_accuracy: 0.6880 Running privacy report for epoch: 14 Epoch 15/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6177 - accuracy: 0.7821 - val_loss: 0.9359 - val_accuracy: 0.6930 Epoch 16/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5978 - accuracy: 0.7913 - val_loss: 0.9634 - val_accuracy: 0.6896 Running privacy report for epoch: 16 Epoch 17/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5745 - accuracy: 0.7973 - val_loss: 0.9941 - val_accuracy: 0.6932 Epoch 18/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5553 - accuracy: 0.8036 - val_loss: 0.9790 - val_accuracy: 0.6974 Running privacy report for epoch: 18 Epoch 19/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5376 - accuracy: 0.8103 - val_loss: 0.9989 - val_accuracy: 0.6907 Epoch 20/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5152 - accuracy: 0.8192 - val_loss: 1.0245 - val_accuracy: 0.6878 Running privacy report for epoch: 20 Epoch 21/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5048 - accuracy: 0.8208 - val_loss: 1.0223 - val_accuracy: 0.6852 Epoch 22/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4847 - accuracy: 0.8284 - val_loss: 1.0498 - val_accuracy: 0.6866 Running privacy report for epoch: 22 Epoch 23/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4722 - accuracy: 0.8325 - val_loss: 1.0610 - val_accuracy: 0.6899 Epoch 24/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4562 - accuracy: 0.8387 - val_loss: 1.0973 - val_accuracy: 0.6771 Running privacy report for epoch: 24 Epoch 25/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4392 - accuracy: 0.8447 - val_loss: 1.1141 - val_accuracy: 0.6865 Epoch 26/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4269 - accuracy: 0.8485 - val_loss: 1.1928 - val_accuracy: 0.6771 Running privacy report for epoch: 26 Epoch 27/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4135 - accuracy: 0.8533 - val_loss: 1.1945 - val_accuracy: 0.6758 Epoch 28/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.4053 - accuracy: 0.8569 - val_loss: 1.2244 - val_accuracy: 0.6716 Running privacy report for epoch: 28 Epoch 29/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3880 - accuracy: 0.8611 - val_loss: 1.2362 - val_accuracy: 0.6789 Epoch 30/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3805 - accuracy: 0.8630 - val_loss: 1.2815 - val_accuracy: 0.6805 Running privacy report for epoch: 30 Epoch 31/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3756 - accuracy: 0.8656 - val_loss: 1.2973 - val_accuracy: 0.6762 Epoch 32/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3565 - accuracy: 0.8719 - val_loss: 1.3022 - val_accuracy: 0.6810 Running privacy report for epoch: 32 Epoch 33/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3494 - accuracy: 0.8749 - val_loss: 1.3248 - val_accuracy: 0.6756 Epoch 34/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3371 - accuracy: 0.8790 - val_loss: 1.3941 - val_accuracy: 0.6806 Running privacy report for epoch: 34 Epoch 35/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3248 - accuracy: 0.8839 - val_loss: 1.4391 - val_accuracy: 0.6666 Epoch 36/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3233 - accuracy: 0.8833 - val_loss: 1.5060 - val_accuracy: 0.6692 Running privacy report for epoch: 36 Epoch 37/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3109 - accuracy: 0.8882 - val_loss: 1.4624 - val_accuracy: 0.6724 Epoch 38/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.3057 - accuracy: 0.8900 - val_loss: 1.5133 - val_accuracy: 0.6644 Running privacy report for epoch: 38 Epoch 39/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2929 - accuracy: 0.8949 - val_loss: 1.5465 - val_accuracy: 0.6618 Epoch 40/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2868 - accuracy: 0.8970 - val_loss: 1.5882 - val_accuracy: 0.6696 Running privacy report for epoch: 40 Epoch 41/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2778 - accuracy: 0.8982 - val_loss: 1.6317 - val_accuracy: 0.6713 Epoch 42/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2782 - accuracy: 0.8999 - val_loss: 1.6993 - val_accuracy: 0.6630 Running privacy report for epoch: 42 Epoch 43/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2675 - accuracy: 0.9039 - val_loss: 1.7294 - val_accuracy: 0.6645 Epoch 44/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2587 - accuracy: 0.9068 - val_loss: 1.7614 - val_accuracy: 0.6561 Running privacy report for epoch: 44 Epoch 45/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2528 - accuracy: 0.9076 - val_loss: 1.7835 - val_accuracy: 0.6564 Epoch 46/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2410 - accuracy: 0.9129 - val_loss: 1.8550 - val_accuracy: 0.6648 Running privacy report for epoch: 46 Epoch 47/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2409 - accuracy: 0.9106 - val_loss: 1.8705 - val_accuracy: 0.6572 Epoch 48/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2328 - accuracy: 0.9146 - val_loss: 1.9110 - val_accuracy: 0.6593 Running privacy report for epoch: 48 Epoch 49/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2299 - accuracy: 0.9164 - val_loss: 1.9468 - val_accuracy: 0.6634 Epoch 50/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.2250 - accuracy: 0.9178 - val_loss: 2.0154 - val_accuracy: 0.6610 Running privacy report for epoch: 50
callback = PrivacyMetrics(epochs_per_report, "3 Layers")
history = model_3layers.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=total_epochs,
validation_data=(x_test, y_test),
callbacks=[callback],
shuffle=True)
all_reports.extend(callback.attack_results)
Epoch 1/50 1000/1000 [==============================] - 4s 4ms/step - loss: 1.6838 - accuracy: 0.3772 - val_loss: 1.4805 - val_accuracy: 0.4552 Epoch 2/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.3938 - accuracy: 0.4969 - val_loss: 1.3291 - val_accuracy: 0.5276 Running privacy report for epoch: 2 Epoch 3/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.2564 - accuracy: 0.5510 - val_loss: 1.2313 - val_accuracy: 0.5627 Epoch 4/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1610 - accuracy: 0.5884 - val_loss: 1.1251 - val_accuracy: 0.6039 Running privacy report for epoch: 4 Epoch 5/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.1034 - accuracy: 0.6105 - val_loss: 1.1168 - val_accuracy: 0.6063 Epoch 6/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0476 - accuracy: 0.6319 - val_loss: 1.0716 - val_accuracy: 0.6248 Running privacy report for epoch: 6 Epoch 7/50 1000/1000 [==============================] - 3s 3ms/step - loss: 1.0107 - accuracy: 0.6461 - val_loss: 1.0264 - val_accuracy: 0.6407 Epoch 8/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9731 - accuracy: 0.6597 - val_loss: 1.0216 - val_accuracy: 0.6447 Running privacy report for epoch: 8 Epoch 9/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9437 - accuracy: 0.6712 - val_loss: 1.0016 - val_accuracy: 0.6467 Epoch 10/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.9191 - accuracy: 0.6790 - val_loss: 0.9845 - val_accuracy: 0.6553 Running privacy report for epoch: 10 Epoch 11/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8923 - accuracy: 0.6877 - val_loss: 0.9560 - val_accuracy: 0.6670 Epoch 12/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8722 - accuracy: 0.6959 - val_loss: 0.9518 - val_accuracy: 0.6686 Running privacy report for epoch: 12 Epoch 13/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8495 - accuracy: 0.7029 - val_loss: 0.9427 - val_accuracy: 0.6787 Epoch 14/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8305 - accuracy: 0.7116 - val_loss: 0.9247 - val_accuracy: 0.6814 Running privacy report for epoch: 14 Epoch 15/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.8164 - accuracy: 0.7157 - val_loss: 0.9263 - val_accuracy: 0.6797 Epoch 16/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7973 - accuracy: 0.7220 - val_loss: 0.9151 - val_accuracy: 0.6850 Running privacy report for epoch: 16 Epoch 17/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7830 - accuracy: 0.7277 - val_loss: 0.9139 - val_accuracy: 0.6842 Epoch 18/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7704 - accuracy: 0.7294 - val_loss: 0.9384 - val_accuracy: 0.6774 Running privacy report for epoch: 18 Epoch 19/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7539 - accuracy: 0.7366 - val_loss: 0.9508 - val_accuracy: 0.6761 Epoch 20/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7445 - accuracy: 0.7412 - val_loss: 0.9108 - val_accuracy: 0.6908 Running privacy report for epoch: 20 Epoch 21/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7343 - accuracy: 0.7418 - val_loss: 0.9161 - val_accuracy: 0.6855 Epoch 22/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7213 - accuracy: 0.7458 - val_loss: 0.9754 - val_accuracy: 0.6724 Running privacy report for epoch: 22 Epoch 23/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7133 - accuracy: 0.7487 - val_loss: 0.8936 - val_accuracy: 0.6984 Epoch 24/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.7072 - accuracy: 0.7504 - val_loss: 0.8872 - val_accuracy: 0.7002 Running privacy report for epoch: 24 Epoch 25/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6932 - accuracy: 0.7570 - val_loss: 0.9732 - val_accuracy: 0.6769 Epoch 26/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6883 - accuracy: 0.7578 - val_loss: 0.9332 - val_accuracy: 0.6798 Running privacy report for epoch: 26 Epoch 27/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6766 - accuracy: 0.7614 - val_loss: 0.9069 - val_accuracy: 0.6998 Epoch 28/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6656 - accuracy: 0.7662 - val_loss: 0.8879 - val_accuracy: 0.7011 Running privacy report for epoch: 28 Epoch 29/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6594 - accuracy: 0.7674 - val_loss: 0.8988 - val_accuracy: 0.7037 Epoch 30/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6499 - accuracy: 0.7700 - val_loss: 0.9086 - val_accuracy: 0.7001 Running privacy report for epoch: 30 Epoch 31/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6420 - accuracy: 0.7746 - val_loss: 0.8985 - val_accuracy: 0.7034 Epoch 32/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6354 - accuracy: 0.7742 - val_loss: 0.9089 - val_accuracy: 0.7018 Running privacy report for epoch: 32 Epoch 33/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6293 - accuracy: 0.7759 - val_loss: 0.9258 - val_accuracy: 0.6947 Epoch 34/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6192 - accuracy: 0.7851 - val_loss: 0.9326 - val_accuracy: 0.6976 Running privacy report for epoch: 34 Epoch 35/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6157 - accuracy: 0.7831 - val_loss: 0.9240 - val_accuracy: 0.6973 Epoch 36/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6063 - accuracy: 0.7853 - val_loss: 0.9504 - val_accuracy: 0.6971 Running privacy report for epoch: 36 Epoch 37/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.6036 - accuracy: 0.7867 - val_loss: 0.9025 - val_accuracy: 0.7094 Epoch 38/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5958 - accuracy: 0.7877 - val_loss: 0.9290 - val_accuracy: 0.6976 Running privacy report for epoch: 38 Epoch 39/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5900 - accuracy: 0.7919 - val_loss: 0.9379 - val_accuracy: 0.6963 Epoch 40/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5856 - accuracy: 0.7928 - val_loss: 0.9911 - val_accuracy: 0.6896 Running privacy report for epoch: 40 Epoch 41/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5772 - accuracy: 0.7944 - val_loss: 0.9093 - val_accuracy: 0.7059 Epoch 42/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5752 - accuracy: 0.7940 - val_loss: 0.9275 - val_accuracy: 0.7061 Running privacy report for epoch: 42 Epoch 43/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5645 - accuracy: 0.7998 - val_loss: 0.9208 - val_accuracy: 0.7025 Epoch 44/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5632 - accuracy: 0.8000 - val_loss: 0.9746 - val_accuracy: 0.6976 Running privacy report for epoch: 44 Epoch 45/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5557 - accuracy: 0.8045 - val_loss: 0.9211 - val_accuracy: 0.7098 Epoch 46/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5469 - accuracy: 0.8073 - val_loss: 0.9357 - val_accuracy: 0.7055 Running privacy report for epoch: 46 Epoch 47/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5438 - accuracy: 0.8062 - val_loss: 0.9495 - val_accuracy: 0.7025 Epoch 48/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5437 - accuracy: 0.8069 - val_loss: 0.9509 - val_accuracy: 0.6994 Running privacy report for epoch: 48 Epoch 49/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5414 - accuracy: 0.8066 - val_loss: 0.9780 - val_accuracy: 0.6939 Epoch 50/50 1000/1000 [==============================] - 3s 3ms/step - loss: 0.5321 - accuracy: 0.8108 - val_loss: 1.0109 - val_accuracy: 0.6846 Running privacy report for epoch: 50
עלילות אפוק
אתה יכול לדמיין כיצד מתרחשים סיכוני פרטיות בזמן שאתה מאמן מודלים על ידי בדיקה של המודל מעת לעת (למשל כל 5 עידנים), אתה יכול לבחור את נקודת הזמן עם הביצועים הטובים ביותר / הפשרה על פרטיות.
השתמש במודול הסקת חברות TF הפרטיות תקפה ליצור AttackResults
. אלה AttackResults
לקבל בשילוב לתוך AttackResultsCollection
. דו"ח פרטיות TF נועד לנתח את מסופק AttackResultsCollection
.
results = AttackResultsCollection(all_reports)
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
epoch_plot = privacy_report.plot_by_epochs(
results, privacy_metrics=privacy_metrics)
ראה שככלל, פגיעות הפרטיות נוטה לעלות ככל שמספר העידנים עולה. זה נכון לגבי גרסאות דגמים כמו גם סוגי תוקפים שונים.
מודלים דו-שכבתיים (עם פחות שכבות קונבולוציוניות) הם בדרך כלל פגיעים יותר מאשר עמיתיהם לדגמי שלוש השכבות.
כעת נראה כיצד ביצועי המודל משתנים ביחס לסיכון הפרטיות.
פרטיות לעומת שירות
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
utility_privacy_plot = privacy_report.plot_privacy_vs_accuracy(
results, privacy_metrics=privacy_metrics)
for axis in utility_privacy_plot.axes:
axis.set_xlabel('Validation accuracy')
דגמי שלוש שכבות (אולי בגלל יותר מדי פרמטרים) משיגים דיוק רכבת של 0.85 בלבד. שני דגמי השכבות משיגים ביצועים שווים בערך לרמה זו של סיכון פרטיות, אך הם ממשיכים לקבל דיוק טוב יותר.
אתה יכול גם לראות כיצד הקו עבור דגמי שתי שכבות נעשה תלול יותר. המשמעות היא שרווחים שוליים נוספים בדייקנות הרכבת באים על חשבון נקודות תורפה עצומות של הפרטיות.
זהו סוף המדריך. אתה מוזמן לנתח את התוצאות שלך.