Lihat di TensorFlow.org | Jalankan di Google Colab | Lihat di GitHub | Unduh buku catatan | Lihat model TF Hub |
Ringkasan
Keadilan Indikator adalah seperangkat alat yang dibangun di atas Analisis Model TensorFlow (TFMA) yang memungkinkan evaluasi secara berkala metrik keadilan dalam pipa produk. TFMA adalah library untuk mengevaluasi model machine learning TensorFlow dan non-TensorFlow. Ini memungkinkan Anda untuk mengevaluasi model Anda pada sejumlah besar data secara terdistribusi, menghitung dalam grafik dan metrik lainnya pada potongan data yang berbeda, dan memvisualisasikannya di buku catatan.
Keadilan Indikator dikemas dengan TensorFlow Validasi Data (TFDV) dan Alat apa-Jika . Menggunakan Indikator Kewajaran memungkinkan Anda untuk:
- Evaluasi kinerja model, diiris di seluruh kelompok pengguna yang ditentukan
- Dapatkan kepercayaan diri tentang hasil dengan interval kepercayaan dan evaluasi di berbagai ambang batas
- Evaluasi distribusi kumpulan data
- Menyelam jauh ke dalam irisan individu untuk mengeksplorasi akar penyebab dan peluang untuk perbaikan
Dalam notebook ini, Anda akan menggunakan Keadilan Indikator untuk memperbaiki masalah keadilan dalam model Anda melatih menggunakan Sipil Komentar dataset . Menonton ini video yang lebih detail dan konteks pada skenario dunia nyata ini didasarkan pada yang juga merupakan salah satu motivasi utama untuk menciptakan Keadilan Indikator.
Himpunan data
Dalam notebook ini, Anda akan bekerja dengan Sipil Komentar dataset , sekitar 2 juta komentar publik dipublikasikan oleh Sipil Komentar platform yang pada tahun 2017 untuk penelitian yang sedang berlangsung. Upaya ini disponsori oleh Jigsaw , yang telah menjadi tuan rumah kompetisi di Kaggle untuk membantu mengklasifikasikan komentar beracun serta meminimalkan yang tidak diinginkan Model Bias.
Setiap komentar teks individu dalam kumpulan data memiliki label toksisitas, dengan label 1 jika komentar beracun dan 0 jika komentar tidak beracun. Di dalam data, sebagian komentar diberi label dengan berbagai atribut identitas, termasuk kategori untuk jenis kelamin, orientasi seksual, agama, dan ras atau etnis.
Mempersiapkan
Instal fairness-indicators
dan witwidget
.
pip install -q -U pip==20.2
pip install -q fairness-indicators
pip install -q witwidget
Anda harus memulai ulang runtime Colab setelah menginstal. Pilih Runtime> Restart runtime dari menu CoLab.
Jangan lanjutkan dengan sisa tutorial ini tanpa terlebih dahulu memulai ulang runtime.
Impor semua perpustakaan lain yang diperlukan.
import os
import tempfile
import apache_beam as beam
import numpy as np
import pandas as pd
from datetime import datetime
import pprint
from google.protobuf import text_format
import tensorflow_hub as hub
import tensorflow as tf
import tensorflow_model_analysis as tfma
import tensorflow_data_validation as tfdv
from tfx_bsl.tfxio import tensor_adapter
from tfx_bsl.tfxio import tf_example_record
from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators
from tensorflow_model_analysis.addons.fairness.view import widget_view
from fairness_indicators.tutorial_utils import util
from witwidget.notebook.visualization import WitConfigBuilder
from witwidget.notebook.visualization import WitWidget
from tensorflow_metadata.proto.v0 import schema_pb2
Unduh dan analisis datanya
Secara default, notebook ini mengunduh versi praproses dari kumpulan data ini, tetapi Anda dapat menggunakan kumpulan data asli dan menjalankan kembali langkah-langkah pemrosesan jika diinginkan. Dalam kumpulan data asli, setiap komentar diberi label dengan persentase penilai yang percaya bahwa komentar sesuai dengan identitas tertentu. Misalnya, komentar mungkin diberi label sebagai berikut: { pria: 0,3, wanita: 1,0, transgender: 0,0, heteroseksual: 0,8, homoseksual_gay_atau_lesbian: 1,0 } Langkah pemrosesan mengelompokkan identitas berdasarkan kategori (gender, orientasi_seksual, dll.) dan menghapus identitas dengan skor kurang dari 0,5. Jadi contoh di atas akan dikonversi menjadi berikut: penilai yang percaya bahwa komentar sesuai dengan identitas tertentu. Misalnya, komentar akan diberi label sebagai berikut: { gender: [perempuan], orientasi_seksual: [heteroseksual, homoseksual_gay_atau_lesbian] }
download_original_data = False
if download_original_data:
train_tf_file = tf.keras.utils.get_file('train_tf.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/train_tf.tfrecord')
validate_tf_file = tf.keras.utils.get_file('validate_tf.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/validate_tf.tfrecord')
# The identity terms list will be grouped together by their categories
# (see 'IDENTITY_COLUMNS') on threshould 0.5. Only the identity term column,
# text column and label column will be kept after processing.
train_tf_file = util.convert_comments_data(train_tf_file)
validate_tf_file = util.convert_comments_data(validate_tf_file)
else:
train_tf_file = tf.keras.utils.get_file('train_tf_processed.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/train_tf_processed.tfrecord')
validate_tf_file = tf.keras.utils.get_file('validate_tf_processed.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/validate_tf_processed.tfrecord')
Gunakan TFDV untuk menganalisis data dan menemukan potensi masalah di dalamnya, seperti nilai yang hilang dan ketidakseimbangan data, yang dapat menyebabkan disparitas keadilan.
stats = tfdv.generate_statistics_from_tfrecord(data_location=train_tf_file)
tfdv.visualize_statistics(stats)
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_data_validation/utils/stats_util.py:247: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_data_validation/utils/stats_util.py:247: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)`
TFDV menunjukkan bahwa ada beberapa ketidakseimbangan yang signifikan dalam data yang dapat menyebabkan hasil model yang bias.
Label toksisitas (nilai yang diprediksi oleh model) tidak seimbang. Hanya 8% contoh dalam set pelatihan yang beracun, yang berarti bahwa pengklasifikasi bisa mendapatkan akurasi 92% dengan memprediksi bahwa semua komentar tidak beracun.
Di bidang yang berkaitan dengan istilah identitas, hanya 6,6 ribu dari 1,08 juta (0,61%) contoh pelatihan yang berhubungan dengan homoseksualitas, dan yang terkait dengan biseksualitas bahkan lebih jarang. Ini menunjukkan bahwa kinerja pada irisan ini mungkin terganggu karena kurangnya data pelatihan.
Siapkan datanya
Tentukan peta fitur untuk mengurai data. Setiap contoh akan memiliki label, teks komentar, dan identitas fitur sexual orientation
, gender
, religion
, race
, dan disability
yang berkaitan dengan teks.
BASE_DIR = tempfile.gettempdir()
TEXT_FEATURE = 'comment_text'
LABEL = 'toxicity'
FEATURE_MAP = {
# Label:
LABEL: tf.io.FixedLenFeature([], tf.float32),
# Text:
TEXT_FEATURE: tf.io.FixedLenFeature([], tf.string),
# Identities:
'sexual_orientation':tf.io.VarLenFeature(tf.string),
'gender':tf.io.VarLenFeature(tf.string),
'religion':tf.io.VarLenFeature(tf.string),
'race':tf.io.VarLenFeature(tf.string),
'disability':tf.io.VarLenFeature(tf.string),
}
Selanjutnya, atur fungsi input untuk memasukkan data ke dalam model. Tambahkan kolom bobot untuk setiap contoh dan tingkatkan contoh beracun untuk memperhitungkan ketidakseimbangan kelas yang diidentifikasi oleh TFDV. Gunakan hanya fitur identitas selama fase evaluasi, karena hanya komentar yang dimasukkan ke dalam model selama pelatihan.
def train_input_fn():
def parse_function(serialized):
parsed_example = tf.io.parse_single_example(
serialized=serialized, features=FEATURE_MAP)
# Adds a weight column to deal with unbalanced classes.
parsed_example['weight'] = tf.add(parsed_example[LABEL], 0.1)
return (parsed_example,
parsed_example[LABEL])
train_dataset = tf.data.TFRecordDataset(
filenames=[train_tf_file]).map(parse_function).batch(512)
return train_dataset
Latih modelnya
Buat dan latih model deep learning pada data.
model_dir = os.path.join(BASE_DIR, 'train', datetime.now().strftime(
"%Y%m%d-%H%M%S"))
embedded_text_feature_column = hub.text_embedding_column(
key=TEXT_FEATURE,
module_spec='https://tfhub.dev/google/nnlm-en-dim128/1')
classifier = tf.estimator.DNNClassifier(
hidden_units=[500, 100],
weight_column='weight',
feature_columns=[embedded_text_feature_column],
optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.003),
loss_reduction=tf.losses.Reduction.SUM,
n_classes=2,
model_dir=model_dir)
classifier.train(input_fn=train_input_fn, steps=1000)
INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20210923-205025', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20210923-205025', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-09-23 20:50:26.540914: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 808. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/head/base_head.py:512: NumericColumn._get_dense_tensor (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/head/base_head.py:512: NumericColumn._get_dense_tensor (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/feature_column/feature_column.py:2192: NumericColumn._transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/feature_column/feature_column.py:2192: NumericColumn._transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/adagrad.py:84: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/adagrad.py:84: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20210923-205025/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20210923-205025/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 59.34932, step = 0 INFO:tensorflow:loss = 59.34932, step = 0 INFO:tensorflow:global_step/sec: 108.435 INFO:tensorflow:global_step/sec: 108.435 INFO:tensorflow:loss = 56.416668, step = 100 (0.924 sec) INFO:tensorflow:loss = 56.416668, step = 100 (0.924 sec) INFO:tensorflow:global_step/sec: 116.367 INFO:tensorflow:global_step/sec: 116.367 INFO:tensorflow:loss = 47.250374, step = 200 (0.859 sec) INFO:tensorflow:loss = 47.250374, step = 200 (0.859 sec) INFO:tensorflow:global_step/sec: 116.333 INFO:tensorflow:global_step/sec: 116.333 INFO:tensorflow:loss = 55.81682, step = 300 (0.860 sec) INFO:tensorflow:loss = 55.81682, step = 300 (0.860 sec) INFO:tensorflow:global_step/sec: 116.844 INFO:tensorflow:global_step/sec: 116.844 INFO:tensorflow:loss = 55.814293, step = 400 (0.856 sec) INFO:tensorflow:loss = 55.814293, step = 400 (0.856 sec) INFO:tensorflow:global_step/sec: 114.434 INFO:tensorflow:global_step/sec: 114.434 INFO:tensorflow:loss = 41.805046, step = 500 (0.874 sec) INFO:tensorflow:loss = 41.805046, step = 500 (0.874 sec) INFO:tensorflow:global_step/sec: 115.693 INFO:tensorflow:global_step/sec: 115.693 INFO:tensorflow:loss = 45.53726, step = 600 (0.864 sec) INFO:tensorflow:loss = 45.53726, step = 600 (0.864 sec) INFO:tensorflow:global_step/sec: 115.772 INFO:tensorflow:global_step/sec: 115.772 INFO:tensorflow:loss = 51.17028, step = 700 (0.864 sec) INFO:tensorflow:loss = 51.17028, step = 700 (0.864 sec) INFO:tensorflow:global_step/sec: 116.131 INFO:tensorflow:global_step/sec: 116.131 INFO:tensorflow:loss = 47.696205, step = 800 (0.861 sec) INFO:tensorflow:loss = 47.696205, step = 800 (0.861 sec) INFO:tensorflow:global_step/sec: 115.609 INFO:tensorflow:global_step/sec: 115.609 INFO:tensorflow:loss = 47.800926, step = 900 (0.865 sec) INFO:tensorflow:loss = 47.800926, step = 900 (0.865 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20210923-205025/model.ckpt. INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20210923-205025/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Loss for final step: 50.67367. INFO:tensorflow:Loss for final step: 50.67367. <tensorflow_estimator.python.estimator.canned.dnn.DNNClassifierV2 at 0x7f113351ebd0>
Analisis modelnya
Setelah mendapatkan model yang terlatih, analisislah untuk menghitung metrik keadilan menggunakan TFMA dan Indikator Kewajaran. Mulailah dengan mengekspor model sebagai SavedModel .
Ekspor Model Tersimpan
def eval_input_receiver_fn():
serialized_tf_example = tf.compat.v1.placeholder(
dtype=tf.string, shape=[None], name='input_example_placeholder')
# This *must* be a dictionary containing a single key 'examples', which
# points to the input placeholder.
receiver_tensors = {'examples': serialized_tf_example}
features = tf.io.parse_example(serialized_tf_example, FEATURE_MAP)
features['weight'] = tf.ones_like(features[LABEL])
return tfma.export.EvalInputReceiver(
features=features,
receiver_tensors=receiver_tensors,
labels=features[LABEL])
tfma_export_dir = tfma.export.export_eval_savedmodel(
estimator=classifier,
export_dir_base=os.path.join(BASE_DIR, 'tfma_eval_model'),
eval_input_receiver_fn=eval_input_receiver_fn)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/encoding.py:141: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/encoding.py:141: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-09-23 20:50:39.359797: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 808. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] WARNING:tensorflow:Export includes no default signature! WARNING:tensorflow:Export includes no default signature! INFO:tensorflow:Restoring parameters from /tmp/train/20210923-205025/model.ckpt-1000 INFO:tensorflow:Restoring parameters from /tmp/train/20210923-205025/model.ckpt-1000 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1632430239/assets INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1632430239/assets INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1632430239/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1632430239/saved_model.pb
Hitung Metrik Keadilan
Pilih identitas untuk menghitung metrik dan apakah akan dijalankan dengan interval keyakinan menggunakan tarik-turun di panel di sebelah kanan.
Opsi Perhitungan Indikator Kewajaran
tfma_eval_result_path = os.path.join(BASE_DIR, 'tfma_eval_result')
slice_selection = 'sexual_orientation'
print(f'Slice selection: {slice_selection}')
compute_confidence_intervals = False
print(f'Compute confidence intervals: {compute_confidence_intervals}')
# Define slices that you want the evaluation to run on.
eval_config_pbtxt = """
model_specs {
label_key: "%s"
}
metrics_specs {
metrics {
class_name: "FairnessIndicators"
config: '{ "thresholds": [0.1, 0.3, 0.5, 0.7, 0.9] }'
}
}
slicing_specs {} # overall slice
slicing_specs {
feature_keys: ["%s"]
}
options {
compute_confidence_intervals { value: %s }
disabled_outputs { values: "analysis" }
}
""" % (LABEL, slice_selection, compute_confidence_intervals)
eval_config = text_format.Parse(eval_config_pbtxt, tfma.EvalConfig())
eval_shared_model = tfma.default_eval_shared_model(
eval_saved_model_path=tfma_export_dir)
schema = text_format.Parse(
"""
tensor_representation_group {
key: ""
value {
tensor_representation {
key: "comment_text"
value {
dense_tensor {
column_name: "comment_text"
shape {}
}
}
}
}
}
feature {
name: "comment_text"
type: BYTES
}
feature {
name: "toxicity"
type: FLOAT
}
feature {
name: "sexual_orientation"
type: BYTES
}
feature {
name: "gender"
type: BYTES
}
feature {
name: "religion"
type: BYTES
}
feature {
name: "race"
type: BYTES
}
feature {
name: "disability"
type: BYTES
}
""", schema_pb2.Schema())
tfxio = tf_example_record.TFExampleRecord(
file_pattern=validate_tf_file,
schema=schema,
raw_record_column_name=tfma.ARROW_INPUT_COLUMN)
tensor_adapter_config = tensor_adapter.TensorAdapterConfig(
arrow_schema=tfxio.ArrowSchema(),
tensor_representations=tfxio.TensorRepresentations())
with beam.Pipeline() as pipeline:
(pipeline
| 'ReadFromTFRecordToArrow' >> tfxio.BeamSource()
| 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults(
eval_config=eval_config,
eval_shared_model=eval_shared_model,
output_path=tfma_eval_result_path,
tensor_adapter_config=tensor_adapter_config))
eval_result = tfma.load_eval_result(output_path=tfma_eval_result_path)
Slice selection: sexual_orientation Compute confidence intervals: False WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:169: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:169: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0. INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1632430239/variables/variables INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1632430239/variables/variables WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:189: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:189: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info. WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching: WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching: WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching:
Visualisasikan data menggunakan Alat Bagaimana-jika
Di bagian ini, Anda akan menggunakan antarmuka visual interaktif Alat Bagaimana-Jika untuk menjelajahi dan memanipulasi data pada tingkat mikro.
Setiap titik pada plot pencar di panel sebelah kanan mewakili salah satu contoh dalam subset yang dimuat ke dalam alat. Klik salah satu poin untuk melihat detail tentang contoh khusus ini di panel sebelah kiri. Teks komentar, toksisitas kebenaran dasar, dan identitas yang berlaku ditampilkan. Di bagian bawah panel sebelah kiri ini, Anda melihat hasil inferensi dari model yang baru saja Anda latih.
Mengubah teks dari contoh dan kemudian klik tombol Run inferensi pandangan bagaimana perubahan Anda disebabkan toksisitas prediksi dirasakan perubahan.
DEFAULT_MAX_EXAMPLES = 1000
# Load 100000 examples in memory. When first rendered,
# What-If Tool should only display 1000 of these due to browser constraints.
def wit_dataset(file, num_examples=100000):
dataset = tf.data.TFRecordDataset(
filenames=[file]).take(num_examples)
return [tf.train.Example.FromString(d.numpy()) for d in dataset]
wit_data = wit_dataset(train_tf_file)
config_builder = WitConfigBuilder(wit_data[:DEFAULT_MAX_EXAMPLES]).set_estimator_and_feature_spec(
classifier, FEATURE_MAP).set_label_vocab(['non-toxicity', LABEL]).set_target_feature(LABEL)
wit = WitWidget(config_builder)
Render Indikator Kewajaran
Render widget Indikator Kewajaran dengan hasil evaluasi yang diekspor.
Di bawah ini Anda akan melihat diagram batang yang menampilkan kinerja setiap potongan data pada metrik yang dipilih. Anda dapat menyesuaikan irisan perbandingan dasar serta ambang yang ditampilkan menggunakan menu tarik-turun di bagian atas visualisasi.
Widget Indikator Kewajaran terintegrasi dengan Alat Bagaimana-Jika yang diberikan di atas. Jika Anda memilih satu irisan data di bagan batang, Alat Bagaimana-Jika akan diperbarui untuk menunjukkan kepada Anda contoh dari irisan yang dipilih. Ketika ulang data dalam Alat Apa-Jika di atas, coba memodifikasi Warna Dengan toksisitas. Ini dapat memberi Anda pemahaman visual tentang keseimbangan toksisitas contoh per irisan.
event_handlers={'slice-selected':
wit.create_selection_callback(wit_data, DEFAULT_MAX_EXAMPLES)}
widget_view.render_fairness_indicator(eval_result=eval_result,
slicing_column=slice_selection,
event_handlers=event_handlers
)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'prediction/…
Dengan kumpulan data dan tugas khusus ini, tingkat positif palsu dan negatif palsu yang lebih tinggi secara sistematis untuk identitas tertentu dapat menyebabkan konsekuensi negatif. Misalnya, dalam sistem moderasi konten, tingkat positif palsu yang lebih tinggi dari keseluruhan untuk grup tertentu dapat menyebabkan suara-suara tersebut dibungkam. Oleh karena itu, penting untuk secara teratur mengevaluasi jenis kriteria ini saat Anda mengembangkan dan meningkatkan model, dan menggunakan alat seperti Indikator Kewajaran, TFDV, dan WIT untuk membantu menjelaskan potensi masalah. Setelah Anda mengidentifikasi masalah keadilan, Anda dapat bereksperimen dengan sumber data baru, penyeimbangan data, atau teknik lain untuk meningkatkan kinerja pada grup yang berkinerja buruk.
Lihat di sini untuk informasi lebih lanjut dan bimbingan tentang cara menggunakan Keadilan Indikator.
Gunakan hasil evaluasi keadilan
The eval_result
objek, diberikan atas dalam render_fairness_indicator()
, memiliki API sendiri bahwa Anda dapat memanfaatkan untuk membaca hasil TFMA ke dalam program Anda.
Dapatkan irisan dan metrik yang dievaluasi
Gunakan get_slice_names()
dan get_metric_names()
untuk mendapatkan irisan dievaluasi dan metrik, masing-masing.
pp = pprint.PrettyPrinter()
print("Slices:")
pp.pprint(eval_result.get_slice_names())
print("\nMetrics:")
pp.pprint(eval_result.get_metric_names())
Slices: [(), (('sexual_orientation', 'homosexual_gay_or_lesbian'),), (('sexual_orientation', 'heterosexual'),), (('sexual_orientation', 'bisexual'),), (('sexual_orientation', 'other_sexual_orientation'),)] Metrics: ['fairness_indicators_metrics/negative_rate@0.1', 'fairness_indicators_metrics/positive_rate@0.7', 'fairness_indicators_metrics/false_discovery_rate@0.9', 'fairness_indicators_metrics/false_negative_rate@0.3', 'fairness_indicators_metrics/false_omission_rate@0.1', 'accuracy', 'fairness_indicators_metrics/false_discovery_rate@0.7', 'fairness_indicators_metrics/false_negative_rate@0.7', 'label/mean', 'fairness_indicators_metrics/true_positive_rate@0.5', 'fairness_indicators_metrics/false_positive_rate@0.1', 'recall', 'fairness_indicators_metrics/false_omission_rate@0.7', 'fairness_indicators_metrics/false_positive_rate@0.7', 'auc_precision_recall', 'fairness_indicators_metrics/negative_rate@0.7', 'fairness_indicators_metrics/negative_rate@0.3', 'fairness_indicators_metrics/false_discovery_rate@0.3', 'fairness_indicators_metrics/true_negative_rate@0.9', 'fairness_indicators_metrics/false_omission_rate@0.3', 'fairness_indicators_metrics/false_negative_rate@0.1', 'fairness_indicators_metrics/true_negative_rate@0.3', 'fairness_indicators_metrics/true_positive_rate@0.7', 'fairness_indicators_metrics/false_positive_rate@0.3', 'fairness_indicators_metrics/true_positive_rate@0.1', 'fairness_indicators_metrics/true_positive_rate@0.9', 'fairness_indicators_metrics/false_negative_rate@0.9', 'fairness_indicators_metrics/positive_rate@0.5', 'fairness_indicators_metrics/positive_rate@0.9', 'fairness_indicators_metrics/negative_rate@0.9', 'fairness_indicators_metrics/true_negative_rate@0.1', 'fairness_indicators_metrics/false_omission_rate@0.5', 'post_export_metrics/example_count', 'fairness_indicators_metrics/false_omission_rate@0.9', 'fairness_indicators_metrics/negative_rate@0.5', 'fairness_indicators_metrics/false_positive_rate@0.5', 'fairness_indicators_metrics/positive_rate@0.3', 'prediction/mean', 'accuracy_baseline', 'fairness_indicators_metrics/true_negative_rate@0.5', 'fairness_indicators_metrics/false_discovery_rate@0.5', 'fairness_indicators_metrics/false_discovery_rate@0.1', 'precision', 'fairness_indicators_metrics/false_positive_rate@0.9', 'fairness_indicators_metrics/true_positive_rate@0.3', 'auc', 'average_loss', 'fairness_indicators_metrics/positive_rate@0.1', 'fairness_indicators_metrics/false_negative_rate@0.5', 'fairness_indicators_metrics/true_negative_rate@0.7']
Gunakan get_metrics_for_slice()
untuk mendapatkan metrik untuk sepotong tertentu sebagai pemetaan kamus metrik nama ke nilai-nilai metrik .
baseline_slice = ()
heterosexual_slice = (('sexual_orientation', 'heterosexual'),)
print("Baseline metric values:")
pp.pprint(eval_result.get_metrics_for_slice(baseline_slice))
print("\nHeterosexual metric values:")
pp.pprint(eval_result.get_metrics_for_slice(heterosexual_slice))
Baseline metric values: {'accuracy': {'doubleValue': 0.7174859642982483}, 'accuracy_baseline': {'doubleValue': 0.9198060631752014}, 'auc': {'doubleValue': 0.796409547328949}, 'auc_precision_recall': {'doubleValue': 0.3000231087207794}, 'average_loss': {'doubleValue': 0.5615971088409424}, 'fairness_indicators_metrics/false_discovery_rate@0.1': {'doubleValue': 0.9139404145348933}, 'fairness_indicators_metrics/false_discovery_rate@0.3': {'doubleValue': 0.8796606156634021}, 'fairness_indicators_metrics/false_discovery_rate@0.5': {'doubleValue': 0.816806708107944}, 'fairness_indicators_metrics/false_discovery_rate@0.7': {'doubleValue': 0.7090802784427505}, 'fairness_indicators_metrics/false_discovery_rate@0.9': {'doubleValue': 0.4814937210839392}, 'fairness_indicators_metrics/false_negative_rate@0.1': {'doubleValue': 0.006079867348348763}, 'fairness_indicators_metrics/false_negative_rate@0.3': {'doubleValue': 0.08696628437197734}, 'fairness_indicators_metrics/false_negative_rate@0.5': {'doubleValue': 0.2705713693519414}, 'fairness_indicators_metrics/false_negative_rate@0.7': {'doubleValue': 0.5445108470360647}, 'fairness_indicators_metrics/false_negative_rate@0.9': {'doubleValue': 0.891598728755009}, 'fairness_indicators_metrics/false_omission_rate@0.1': {'doubleValue': 0.006604499315158452}, 'fairness_indicators_metrics/false_omission_rate@0.3': {'doubleValue': 0.017811407791031682}, 'fairness_indicators_metrics/false_omission_rate@0.5': {'doubleValue': 0.03187681488249431}, 'fairness_indicators_metrics/false_omission_rate@0.7': {'doubleValue': 0.04993640137936933}, 'fairness_indicators_metrics/false_omission_rate@0.9': {'doubleValue': 0.07271999842219298}, 'fairness_indicators_metrics/false_positive_rate@0.1': {'doubleValue': 0.9202700382800194}, 'fairness_indicators_metrics/false_positive_rate@0.3': {'doubleValue': 0.5818879187535954}, 'fairness_indicators_metrics/false_positive_rate@0.5': {'doubleValue': 0.28355525303665063}, 'fairness_indicators_metrics/false_positive_rate@0.7': {'doubleValue': 0.09679333307231039}, 'fairness_indicators_metrics/false_positive_rate@0.9': {'doubleValue': 0.00877639469079322}, 'fairness_indicators_metrics/negative_rate@0.1': {'doubleValue': 0.07382367199944595}, 'fairness_indicators_metrics/negative_rate@0.3': {'doubleValue': 0.39155620195304386}, 'fairness_indicators_metrics/negative_rate@0.5': {'doubleValue': 0.6806884133250225}, 'fairness_indicators_metrics/negative_rate@0.7': {'doubleValue': 0.8744414433132488}, 'fairness_indicators_metrics/negative_rate@0.9': {'doubleValue': 0.9832342960038783}, 'fairness_indicators_metrics/positive_rate@0.1': {'doubleValue': 0.926176328000554}, 'fairness_indicators_metrics/positive_rate@0.3': {'doubleValue': 0.6084437980469561}, 'fairness_indicators_metrics/positive_rate@0.5': {'doubleValue': 0.3193115866749775}, 'fairness_indicators_metrics/positive_rate@0.7': {'doubleValue': 0.12555855668675117}, 'fairness_indicators_metrics/positive_rate@0.9': {'doubleValue': 0.016765703996121616}, 'fairness_indicators_metrics/true_negative_rate@0.1': {'doubleValue': 0.0797299617199806}, 'fairness_indicators_metrics/true_negative_rate@0.3': {'doubleValue': 0.41811208124640464}, 'fairness_indicators_metrics/true_negative_rate@0.5': {'doubleValue': 0.7164447469633494}, 'fairness_indicators_metrics/true_negative_rate@0.7': {'doubleValue': 0.9032066669276896}, 'fairness_indicators_metrics/true_negative_rate@0.9': {'doubleValue': 0.9912236053092068}, 'fairness_indicators_metrics/true_positive_rate@0.1': {'doubleValue': 0.9939201326516512}, 'fairness_indicators_metrics/true_positive_rate@0.3': {'doubleValue': 0.9130337156280227}, 'fairness_indicators_metrics/true_positive_rate@0.5': {'doubleValue': 0.7294286306480586}, 'fairness_indicators_metrics/true_positive_rate@0.7': {'doubleValue': 0.45548915296393533}, 'fairness_indicators_metrics/true_positive_rate@0.9': {'doubleValue': 0.10840127124499102}, 'label/mean': {'doubleValue': 0.08019392192363739}, 'post_export_metrics/example_count': {'doubleValue': 721950.0}, 'precision': {'doubleValue': 0.18319329619407654}, 'prediction/mean': {'doubleValue': 0.3998037576675415}, 'recall': {'doubleValue': 0.7294286489486694} } Heterosexual metric values: {'accuracy': {'doubleValue': 0.5203251838684082}, 'accuracy_baseline': {'doubleValue': 0.7601625919342041}, 'auc': {'doubleValue': 0.6672822833061218}, 'auc_precision_recall': {'doubleValue': 0.4065391719341278}, 'average_loss': {'doubleValue': 0.8273133039474487}, 'fairness_indicators_metrics/false_discovery_rate@0.1': {'doubleValue': 0.7541666666666667}, 'fairness_indicators_metrics/false_discovery_rate@0.3': {'doubleValue': 0.7272727272727273}, 'fairness_indicators_metrics/false_discovery_rate@0.5': {'doubleValue': 0.7062937062937062}, 'fairness_indicators_metrics/false_discovery_rate@0.7': {'doubleValue': 0.655367231638418}, 'fairness_indicators_metrics/false_discovery_rate@0.9': {'doubleValue': 0.4473684210526316}, 'fairness_indicators_metrics/false_negative_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.3': {'doubleValue': 0.0847457627118644}, 'fairness_indicators_metrics/false_negative_rate@0.5': {'doubleValue': 0.288135593220339}, 'fairness_indicators_metrics/false_negative_rate@0.7': {'doubleValue': 0.4830508474576271}, 'fairness_indicators_metrics/false_negative_rate@0.9': {'doubleValue': 0.8220338983050848}, 'fairness_indicators_metrics/false_omission_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_omission_rate@0.3': {'doubleValue': 0.10416666666666667}, 'fairness_indicators_metrics/false_omission_rate@0.5': {'doubleValue': 0.1650485436893204}, 'fairness_indicators_metrics/false_omission_rate@0.7': {'doubleValue': 0.18095238095238095}, 'fairness_indicators_metrics/false_omission_rate@0.9': {'doubleValue': 0.21365638766519823}, 'fairness_indicators_metrics/false_positive_rate@0.1': {'doubleValue': 0.9679144385026738}, 'fairness_indicators_metrics/false_positive_rate@0.3': {'doubleValue': 0.7700534759358288}, 'fairness_indicators_metrics/false_positive_rate@0.5': {'doubleValue': 0.5401069518716578}, 'fairness_indicators_metrics/false_positive_rate@0.7': {'doubleValue': 0.31016042780748665}, 'fairness_indicators_metrics/false_positive_rate@0.9': {'doubleValue': 0.045454545454545456}, 'fairness_indicators_metrics/negative_rate@0.1': {'doubleValue': 0.024390243902439025}, 'fairness_indicators_metrics/negative_rate@0.3': {'doubleValue': 0.1951219512195122}, 'fairness_indicators_metrics/negative_rate@0.5': {'doubleValue': 0.4186991869918699}, 'fairness_indicators_metrics/negative_rate@0.7': {'doubleValue': 0.6402439024390244}, 'fairness_indicators_metrics/negative_rate@0.9': {'doubleValue': 0.9227642276422764}, 'fairness_indicators_metrics/positive_rate@0.1': {'doubleValue': 0.975609756097561}, 'fairness_indicators_metrics/positive_rate@0.3': {'doubleValue': 0.8048780487804879}, 'fairness_indicators_metrics/positive_rate@0.5': {'doubleValue': 0.5813008130081301}, 'fairness_indicators_metrics/positive_rate@0.7': {'doubleValue': 0.3597560975609756}, 'fairness_indicators_metrics/positive_rate@0.9': {'doubleValue': 0.07723577235772358}, 'fairness_indicators_metrics/true_negative_rate@0.1': {'doubleValue': 0.03208556149732621}, 'fairness_indicators_metrics/true_negative_rate@0.3': {'doubleValue': 0.22994652406417113}, 'fairness_indicators_metrics/true_negative_rate@0.5': {'doubleValue': 0.45989304812834225}, 'fairness_indicators_metrics/true_negative_rate@0.7': {'doubleValue': 0.6898395721925134}, 'fairness_indicators_metrics/true_negative_rate@0.9': {'doubleValue': 0.9545454545454546}, 'fairness_indicators_metrics/true_positive_rate@0.1': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.3': {'doubleValue': 0.9152542372881356}, 'fairness_indicators_metrics/true_positive_rate@0.5': {'doubleValue': 0.711864406779661}, 'fairness_indicators_metrics/true_positive_rate@0.7': {'doubleValue': 0.5169491525423728}, 'fairness_indicators_metrics/true_positive_rate@0.9': {'doubleValue': 0.17796610169491525}, 'label/mean': {'doubleValue': 0.2398373931646347}, 'post_export_metrics/example_count': {'doubleValue': 492.0}, 'precision': {'doubleValue': 0.2937062978744507}, 'prediction/mean': {'doubleValue': 0.5578703880310059}, 'recall': {'doubleValue': 0.7118644118309021} }
Gunakan get_metrics_for_all_slices()
untuk mendapatkan metrik untuk semua irisan sebagai pemetaan kamus setiap irisan untuk metrik yang sesuai kamus Anda peroleh dari menjalankan get_metrics_for_slice()
di atasnya.
pp.pprint(eval_result.get_metrics_for_all_slices())
{(): {'accuracy': {'doubleValue': 0.7174859642982483}, 'accuracy_baseline': {'doubleValue': 0.9198060631752014}, 'auc': {'doubleValue': 0.796409547328949}, 'auc_precision_recall': {'doubleValue': 0.3000231087207794}, 'average_loss': {'doubleValue': 0.5615971088409424}, 'fairness_indicators_metrics/false_discovery_rate@0.1': {'doubleValue': 0.9139404145348933}, 'fairness_indicators_metrics/false_discovery_rate@0.3': {'doubleValue': 0.8796606156634021}, 'fairness_indicators_metrics/false_discovery_rate@0.5': {'doubleValue': 0.816806708107944}, 'fairness_indicators_metrics/false_discovery_rate@0.7': {'doubleValue': 0.7090802784427505}, 'fairness_indicators_metrics/false_discovery_rate@0.9': {'doubleValue': 0.4814937210839392}, 'fairness_indicators_metrics/false_negative_rate@0.1': {'doubleValue': 0.006079867348348763}, 'fairness_indicators_metrics/false_negative_rate@0.3': {'doubleValue': 0.08696628437197734}, 'fairness_indicators_metrics/false_negative_rate@0.5': {'doubleValue': 0.2705713693519414}, 'fairness_indicators_metrics/false_negative_rate@0.7': {'doubleValue': 0.5445108470360647}, 'fairness_indicators_metrics/false_negative_rate@0.9': {'doubleValue': 0.891598728755009}, 'fairness_indicators_metrics/false_omission_rate@0.1': {'doubleValue': 0.006604499315158452}, 'fairness_indicators_metrics/false_omission_rate@0.3': {'doubleValue': 0.017811407791031682}, 'fairness_indicators_metrics/false_omission_rate@0.5': {'doubleValue': 0.03187681488249431}, 'fairness_indicators_metrics/false_omission_rate@0.7': {'doubleValue': 0.04993640137936933}, 'fairness_indicators_metrics/false_omission_rate@0.9': {'doubleValue': 0.07271999842219298}, 'fairness_indicators_metrics/false_positive_rate@0.1': {'doubleValue': 0.9202700382800194}, 'fairness_indicators_metrics/false_positive_rate@0.3': {'doubleValue': 0.5818879187535954}, 'fairness_indicators_metrics/false_positive_rate@0.5': {'doubleValue': 0.28355525303665063}, 'fairness_indicators_metrics/false_positive_rate@0.7': {'doubleValue': 0.09679333307231039}, 'fairness_indicators_metrics/false_positive_rate@0.9': {'doubleValue': 0.00877639469079322}, 'fairness_indicators_metrics/negative_rate@0.1': {'doubleValue': 0.07382367199944595}, 'fairness_indicators_metrics/negative_rate@0.3': {'doubleValue': 0.39155620195304386}, 'fairness_indicators_metrics/negative_rate@0.5': {'doubleValue': 0.6806884133250225}, 'fairness_indicators_metrics/negative_rate@0.7': {'doubleValue': 0.8744414433132488}, 'fairness_indicators_metrics/negative_rate@0.9': {'doubleValue': 0.9832342960038783}, 'fairness_indicators_metrics/positive_rate@0.1': {'doubleValue': 0.926176328000554}, 'fairness_indicators_metrics/positive_rate@0.3': {'doubleValue': 0.6084437980469561}, 'fairness_indicators_metrics/positive_rate@0.5': {'doubleValue': 0.3193115866749775}, 'fairness_indicators_metrics/positive_rate@0.7': {'doubleValue': 0.12555855668675117}, 'fairness_indicators_metrics/positive_rate@0.9': {'doubleValue': 0.016765703996121616}, 'fairness_indicators_metrics/true_negative_rate@0.1': {'doubleValue': 0.0797299617199806}, 'fairness_indicators_metrics/true_negative_rate@0.3': {'doubleValue': 0.41811208124640464}, 'fairness_indicators_metrics/true_negative_rate@0.5': {'doubleValue': 0.7164447469633494}, 'fairness_indicators_metrics/true_negative_rate@0.7': {'doubleValue': 0.9032066669276896}, 'fairness_indicators_metrics/true_negative_rate@0.9': {'doubleValue': 0.9912236053092068}, 'fairness_indicators_metrics/true_positive_rate@0.1': {'doubleValue': 0.9939201326516512}, 'fairness_indicators_metrics/true_positive_rate@0.3': {'doubleValue': 0.9130337156280227}, 'fairness_indicators_metrics/true_positive_rate@0.5': {'doubleValue': 0.7294286306480586}, 'fairness_indicators_metrics/true_positive_rate@0.7': {'doubleValue': 0.45548915296393533}, 'fairness_indicators_metrics/true_positive_rate@0.9': {'doubleValue': 0.10840127124499102}, 'label/mean': {'doubleValue': 0.08019392192363739}, 'post_export_metrics/example_count': {'doubleValue': 721950.0}, 'precision': {'doubleValue': 0.18319329619407654}, 'prediction/mean': {'doubleValue': 0.3998037576675415}, 'recall': {'doubleValue': 0.7294286489486694} }, (('sexual_orientation', 'bisexual'),): {'accuracy': {'doubleValue': 0.5258620977401733}, 'accuracy_baseline': {'doubleValue': 0.8017241358757019}, 'auc': {'doubleValue': 0.6252922415733337}, 'auc_precision_recall': {'doubleValue': 0.3546649217605591}, 'average_loss': {'doubleValue': 0.7461641430854797}, 'fairness_indicators_metrics/false_discovery_rate@0.1': {'doubleValue': 0.7870370370370371}, 'fairness_indicators_metrics/false_discovery_rate@0.3': {'doubleValue': 0.7816091954022989}, 'fairness_indicators_metrics/false_discovery_rate@0.5': {'doubleValue': 0.7666666666666667}, 'fairness_indicators_metrics/false_discovery_rate@0.7': {'doubleValue': 0.7037037037037037}, 'fairness_indicators_metrics/false_discovery_rate@0.9': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.3': {'doubleValue': 0.17391304347826086}, 'fairness_indicators_metrics/false_negative_rate@0.5': {'doubleValue': 0.391304347826087}, 'fairness_indicators_metrics/false_negative_rate@0.7': {'doubleValue': 0.6521739130434783}, 'fairness_indicators_metrics/false_negative_rate@0.9': {'doubleValue': 0.9130434782608695}, 'fairness_indicators_metrics/false_omission_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_omission_rate@0.3': {'doubleValue': 0.13793103448275862}, 'fairness_indicators_metrics/false_omission_rate@0.5': {'doubleValue': 0.16071428571428573}, 'fairness_indicators_metrics/false_omission_rate@0.7': {'doubleValue': 0.16853932584269662}, 'fairness_indicators_metrics/false_omission_rate@0.9': {'doubleValue': 0.18421052631578946}, 'fairness_indicators_metrics/false_positive_rate@0.1': {'doubleValue': 0.9139784946236559}, 'fairness_indicators_metrics/false_positive_rate@0.3': {'doubleValue': 0.7311827956989247}, 'fairness_indicators_metrics/false_positive_rate@0.5': {'doubleValue': 0.4946236559139785}, 'fairness_indicators_metrics/false_positive_rate@0.7': {'doubleValue': 0.20430107526881722}, 'fairness_indicators_metrics/false_positive_rate@0.9': {'doubleValue': 0.0}, 'fairness_indicators_metrics/negative_rate@0.1': {'doubleValue': 0.06896551724137931}, 'fairness_indicators_metrics/negative_rate@0.3': {'doubleValue': 0.25}, 'fairness_indicators_metrics/negative_rate@0.5': {'doubleValue': 0.4827586206896552}, 'fairness_indicators_metrics/negative_rate@0.7': {'doubleValue': 0.7672413793103449}, 'fairness_indicators_metrics/negative_rate@0.9': {'doubleValue': 0.9827586206896551}, 'fairness_indicators_metrics/positive_rate@0.1': {'doubleValue': 0.9310344827586207}, 'fairness_indicators_metrics/positive_rate@0.3': {'doubleValue': 0.75}, 'fairness_indicators_metrics/positive_rate@0.5': {'doubleValue': 0.5172413793103449}, 'fairness_indicators_metrics/positive_rate@0.7': {'doubleValue': 0.23275862068965517}, 'fairness_indicators_metrics/positive_rate@0.9': {'doubleValue': 0.017241379310344827}, 'fairness_indicators_metrics/true_negative_rate@0.1': {'doubleValue': 0.08602150537634409}, 'fairness_indicators_metrics/true_negative_rate@0.3': {'doubleValue': 0.26881720430107525}, 'fairness_indicators_metrics/true_negative_rate@0.5': {'doubleValue': 0.5053763440860215}, 'fairness_indicators_metrics/true_negative_rate@0.7': {'doubleValue': 0.7956989247311828}, 'fairness_indicators_metrics/true_negative_rate@0.9': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.1': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.3': {'doubleValue': 0.8260869565217391}, 'fairness_indicators_metrics/true_positive_rate@0.5': {'doubleValue': 0.6086956521739131}, 'fairness_indicators_metrics/true_positive_rate@0.7': {'doubleValue': 0.34782608695652173}, 'fairness_indicators_metrics/true_positive_rate@0.9': {'doubleValue': 0.08695652173913043}, 'label/mean': {'doubleValue': 0.1982758641242981}, 'post_export_metrics/example_count': {'doubleValue': 116.0}, 'precision': {'doubleValue': 0.23333333432674408}, 'prediction/mean': {'doubleValue': 0.4908219575881958}, 'recall': {'doubleValue': 0.6086956262588501} }, (('sexual_orientation', 'heterosexual'),): {'accuracy': {'doubleValue': 0.5203251838684082}, 'accuracy_baseline': {'doubleValue': 0.7601625919342041}, 'auc': {'doubleValue': 0.6672822833061218}, 'auc_precision_recall': {'doubleValue': 0.4065391719341278}, 'average_loss': {'doubleValue': 0.8273133039474487}, 'fairness_indicators_metrics/false_discovery_rate@0.1': {'doubleValue': 0.7541666666666667}, 'fairness_indicators_metrics/false_discovery_rate@0.3': {'doubleValue': 0.7272727272727273}, 'fairness_indicators_metrics/false_discovery_rate@0.5': {'doubleValue': 0.7062937062937062}, 'fairness_indicators_metrics/false_discovery_rate@0.7': {'doubleValue': 0.655367231638418}, 'fairness_indicators_metrics/false_discovery_rate@0.9': {'doubleValue': 0.4473684210526316}, 'fairness_indicators_metrics/false_negative_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.3': {'doubleValue': 0.0847457627118644}, 'fairness_indicators_metrics/false_negative_rate@0.5': {'doubleValue': 0.288135593220339}, 'fairness_indicators_metrics/false_negative_rate@0.7': {'doubleValue': 0.4830508474576271}, 'fairness_indicators_metrics/false_negative_rate@0.9': {'doubleValue': 0.8220338983050848}, 'fairness_indicators_metrics/false_omission_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_omission_rate@0.3': {'doubleValue': 0.10416666666666667}, 'fairness_indicators_metrics/false_omission_rate@0.5': {'doubleValue': 0.1650485436893204}, 'fairness_indicators_metrics/false_omission_rate@0.7': {'doubleValue': 0.18095238095238095}, 'fairness_indicators_metrics/false_omission_rate@0.9': {'doubleValue': 0.21365638766519823}, 'fairness_indicators_metrics/false_positive_rate@0.1': {'doubleValue': 0.9679144385026738}, 'fairness_indicators_metrics/false_positive_rate@0.3': {'doubleValue': 0.7700534759358288}, 'fairness_indicators_metrics/false_positive_rate@0.5': {'doubleValue': 0.5401069518716578}, 'fairness_indicators_metrics/false_positive_rate@0.7': {'doubleValue': 0.31016042780748665}, 'fairness_indicators_metrics/false_positive_rate@0.9': {'doubleValue': 0.045454545454545456}, 'fairness_indicators_metrics/negative_rate@0.1': {'doubleValue': 0.024390243902439025}, 'fairness_indicators_metrics/negative_rate@0.3': {'doubleValue': 0.1951219512195122}, 'fairness_indicators_metrics/negative_rate@0.5': {'doubleValue': 0.4186991869918699}, 'fairness_indicators_metrics/negative_rate@0.7': {'doubleValue': 0.6402439024390244}, 'fairness_indicators_metrics/negative_rate@0.9': {'doubleValue': 0.9227642276422764}, 'fairness_indicators_metrics/positive_rate@0.1': {'doubleValue': 0.975609756097561}, 'fairness_indicators_metrics/positive_rate@0.3': {'doubleValue': 0.8048780487804879}, 'fairness_indicators_metrics/positive_rate@0.5': {'doubleValue': 0.5813008130081301}, 'fairness_indicators_metrics/positive_rate@0.7': {'doubleValue': 0.3597560975609756}, 'fairness_indicators_metrics/positive_rate@0.9': {'doubleValue': 0.07723577235772358}, 'fairness_indicators_metrics/true_negative_rate@0.1': {'doubleValue': 0.03208556149732621}, 'fairness_indicators_metrics/true_negative_rate@0.3': {'doubleValue': 0.22994652406417113}, 'fairness_indicators_metrics/true_negative_rate@0.5': {'doubleValue': 0.45989304812834225}, 'fairness_indicators_metrics/true_negative_rate@0.7': {'doubleValue': 0.6898395721925134}, 'fairness_indicators_metrics/true_negative_rate@0.9': {'doubleValue': 0.9545454545454546}, 'fairness_indicators_metrics/true_positive_rate@0.1': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.3': {'doubleValue': 0.9152542372881356}, 'fairness_indicators_metrics/true_positive_rate@0.5': {'doubleValue': 0.711864406779661}, 'fairness_indicators_metrics/true_positive_rate@0.7': {'doubleValue': 0.5169491525423728}, 'fairness_indicators_metrics/true_positive_rate@0.9': {'doubleValue': 0.17796610169491525}, 'label/mean': {'doubleValue': 0.2398373931646347}, 'post_export_metrics/example_count': {'doubleValue': 492.0}, 'precision': {'doubleValue': 0.2937062978744507}, 'prediction/mean': {'doubleValue': 0.5578703880310059}, 'recall': {'doubleValue': 0.7118644118309021} }, (('sexual_orientation', 'homosexual_gay_or_lesbian'),): {'accuracy': {'doubleValue': 0.5851936340332031}, 'accuracy_baseline': {'doubleValue': 0.7182232141494751}, 'auc': {'doubleValue': 0.7057511806488037}, 'auc_precision_recall': {'doubleValue': 0.469566285610199}, 'average_loss': {'doubleValue': 0.7369641661643982}, 'fairness_indicators_metrics/false_discovery_rate@0.1': {'doubleValue': 0.7107050831576481}, 'fairness_indicators_metrics/false_discovery_rate@0.3': {'doubleValue': 0.6717557251908397}, 'fairness_indicators_metrics/false_discovery_rate@0.5': {'doubleValue': 0.6172690763052209}, 'fairness_indicators_metrics/false_discovery_rate@0.7': {'doubleValue': 0.5427319211102994}, 'fairness_indicators_metrics/false_discovery_rate@0.9': {'doubleValue': 0.4092664092664093}, 'fairness_indicators_metrics/false_negative_rate@0.1': {'doubleValue': 0.0016168148746968471}, 'fairness_indicators_metrics/false_negative_rate@0.3': {'doubleValue': 0.06143896523848019}, 'fairness_indicators_metrics/false_negative_rate@0.5': {'doubleValue': 0.22958771220695232}, 'fairness_indicators_metrics/false_negative_rate@0.7': {'doubleValue': 0.4939369442198868}, 'fairness_indicators_metrics/false_negative_rate@0.9': {'doubleValue': 0.8763136620856912}, 'fairness_indicators_metrics/false_omission_rate@0.1': {'doubleValue': 0.01652892561983471}, 'fairness_indicators_metrics/false_omission_rate@0.3': {'doubleValue': 0.08909730363423213}, 'fairness_indicators_metrics/false_omission_rate@0.5': {'doubleValue': 0.14947368421052631}, 'fairness_indicators_metrics/false_omission_rate@0.7': {'doubleValue': 0.20225091029460443}, 'fairness_indicators_metrics/false_omission_rate@0.9': {'doubleValue': 0.2624061970467199}, 'fairness_indicators_metrics/false_positive_rate@0.1': {'doubleValue': 0.9622581668252458}, 'fairness_indicators_metrics/false_positive_rate@0.3': {'doubleValue': 0.7535680304471931}, 'fairness_indicators_metrics/false_positive_rate@0.5': {'doubleValue': 0.4874722486520774}, 'fairness_indicators_metrics/false_positive_rate@0.7': {'doubleValue': 0.2356485886457342}, 'fairness_indicators_metrics/false_positive_rate@0.9': {'doubleValue': 0.03361877576910879}, 'fairness_indicators_metrics/negative_rate@0.1': {'doubleValue': 0.0275626423690205}, 'fairness_indicators_metrics/negative_rate@0.3': {'doubleValue': 0.19430523917995443}, 'fairness_indicators_metrics/negative_rate@0.5': {'doubleValue': 0.4328018223234624}, 'fairness_indicators_metrics/negative_rate@0.7': {'doubleValue': 0.6881548974943053}, 'fairness_indicators_metrics/negative_rate@0.9': {'doubleValue': 0.941002277904328}, 'fairness_indicators_metrics/positive_rate@0.1': {'doubleValue': 0.9724373576309795}, 'fairness_indicators_metrics/positive_rate@0.3': {'doubleValue': 0.8056947608200455}, 'fairness_indicators_metrics/positive_rate@0.5': {'doubleValue': 0.5671981776765376}, 'fairness_indicators_metrics/positive_rate@0.7': {'doubleValue': 0.31184510250569475}, 'fairness_indicators_metrics/positive_rate@0.9': {'doubleValue': 0.05899772209567198}, 'fairness_indicators_metrics/true_negative_rate@0.1': {'doubleValue': 0.0377418331747542}, 'fairness_indicators_metrics/true_negative_rate@0.3': {'doubleValue': 0.24643196955280686}, 'fairness_indicators_metrics/true_negative_rate@0.5': {'doubleValue': 0.5125277513479226}, 'fairness_indicators_metrics/true_negative_rate@0.7': {'doubleValue': 0.7643514113542658}, 'fairness_indicators_metrics/true_negative_rate@0.9': {'doubleValue': 0.9663812242308912}, 'fairness_indicators_metrics/true_positive_rate@0.1': {'doubleValue': 0.9983831851253031}, 'fairness_indicators_metrics/true_positive_rate@0.3': {'doubleValue': 0.9385610347615198}, 'fairness_indicators_metrics/true_positive_rate@0.5': {'doubleValue': 0.7704122877930477}, 'fairness_indicators_metrics/true_positive_rate@0.7': {'doubleValue': 0.5060630557801131}, 'fairness_indicators_metrics/true_positive_rate@0.9': {'doubleValue': 0.12368633791430882}, 'label/mean': {'doubleValue': 0.2817767560482025}, 'post_export_metrics/example_count': {'doubleValue': 4390.0}, 'precision': {'doubleValue': 0.3827309310436249}, 'prediction/mean': {'doubleValue': 0.5428739786148071}, 'recall': {'doubleValue': 0.770412266254425} }, (('sexual_orientation', 'other_sexual_orientation'),): {'accuracy': {'doubleValue': 0.6000000238418579}, 'accuracy_baseline': {'doubleValue': 0.800000011920929}, 'auc': {'doubleValue': 1.0}, 'auc_precision_recall': {'doubleValue': 1.0}, 'average_loss': {'doubleValue': 0.7521011829376221}, 'fairness_indicators_metrics/false_discovery_rate@0.1': {'doubleValue': 0.8}, 'fairness_indicators_metrics/false_discovery_rate@0.3': {'doubleValue': 0.75}, 'fairness_indicators_metrics/false_discovery_rate@0.5': {'doubleValue': 0.6666666666666666}, 'fairness_indicators_metrics/false_discovery_rate@0.7': {'doubleValue': 0.5}, 'fairness_indicators_metrics/false_discovery_rate@0.9': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.3': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.5': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.7': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_negative_rate@0.9': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_omission_rate@0.1': {'doubleValue': 'NaN'}, 'fairness_indicators_metrics/false_omission_rate@0.3': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_omission_rate@0.5': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_omission_rate@0.7': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_omission_rate@0.9': {'doubleValue': 0.0}, 'fairness_indicators_metrics/false_positive_rate@0.1': {'doubleValue': 1.0}, 'fairness_indicators_metrics/false_positive_rate@0.3': {'doubleValue': 0.75}, 'fairness_indicators_metrics/false_positive_rate@0.5': {'doubleValue': 0.5}, 'fairness_indicators_metrics/false_positive_rate@0.7': {'doubleValue': 0.25}, 'fairness_indicators_metrics/false_positive_rate@0.9': {'doubleValue': 0.0}, 'fairness_indicators_metrics/negative_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/negative_rate@0.3': {'doubleValue': 0.2}, 'fairness_indicators_metrics/negative_rate@0.5': {'doubleValue': 0.4}, 'fairness_indicators_metrics/negative_rate@0.7': {'doubleValue': 0.6}, 'fairness_indicators_metrics/negative_rate@0.9': {'doubleValue': 0.8}, 'fairness_indicators_metrics/positive_rate@0.1': {'doubleValue': 1.0}, 'fairness_indicators_metrics/positive_rate@0.3': {'doubleValue': 0.8}, 'fairness_indicators_metrics/positive_rate@0.5': {'doubleValue': 0.6}, 'fairness_indicators_metrics/positive_rate@0.7': {'doubleValue': 0.4}, 'fairness_indicators_metrics/positive_rate@0.9': {'doubleValue': 0.2}, 'fairness_indicators_metrics/true_negative_rate@0.1': {'doubleValue': 0.0}, 'fairness_indicators_metrics/true_negative_rate@0.3': {'doubleValue': 0.25}, 'fairness_indicators_metrics/true_negative_rate@0.5': {'doubleValue': 0.5}, 'fairness_indicators_metrics/true_negative_rate@0.7': {'doubleValue': 0.75}, 'fairness_indicators_metrics/true_negative_rate@0.9': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.1': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.3': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.5': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.7': {'doubleValue': 1.0}, 'fairness_indicators_metrics/true_positive_rate@0.9': {'doubleValue': 1.0}, 'label/mean': {'doubleValue': 0.20000000298023224}, 'post_export_metrics/example_count': {'doubleValue': 5.0}, 'precision': {'doubleValue': 0.3333333432674408}, 'prediction/mean': {'doubleValue': 0.6101843118667603}, 'recall': {'doubleValue': 1.0} } }