TensorFlow para desenvolvimento JavaScript
Antes de começar a usar os materiais de aprendizado abaixo, você precisa atender aos seguintes requisitos:
-
Saber programar navegadores com HTML, CSS e JavaScript
-
Saber usar a linha de comando para executar scripts Node.js
Este currículo é destinado a pessoas que buscam:
-
Criar modelos de ML em JavaScript
-
Executar modelos existentes em qualquer local em que JavaScript possa ser usado
-
Implantar modelos de ML em navegadores da Web
Com o TensorFlow.js, é possível desenvolver ou executar modelos de ML em JavaScript e usar ML diretamente no lado do cliente do navegador, no servidor com o Node.js, nativo para dispositivos móveis com o React Native, nativo para desktop com o Electron e até mesmo em dispositivos de IoT com o Node.js no Raspberry Pi. Para saber mais sobre o TensorFlow.js e o que pode ser feito com a tecnologia, confira esta palestra no Google I/O.
Etapa 1: introdução ao machine learning no navegador
Para conferir uma introdução rápida com noções básicas de ML em JavaScript, faça o curso no seu ritmo em Edx ou assista os vídeos abaixo que abrangem desde os princípios básicos e o uso de modelos predefinidos até a criação de uma rede neural própria para classificação. Acesse também o codelab Make a smart webcam in JavaScript (em inglês) para um tutorial interativo sobre esses conceitos.
Esta introdução de alto nível ao machine learning em JavaScript é destinada a desenvolvedores da Web que querem dar os primeiros passos com o TensorFlow.js.
Aprenda de tudo com o Web ML usando o TensorFlow.js. Saiba como criar apps da Web de última geração que podem ser executados no lado do cliente e usados em quase todos os dispositivos.
Saiba como carregar um dos modelos pré-treinados do TensorFlow.js (COCO-SSD) e usá-lo para reconhecer objetos comuns em que ele foi treinado.
Etapa 2: saiba mais sobre o aprendizado profundo
Disponibilizamos dois livros para ajudar você a entender ainda mais o funcionamento das redes neurais e saber como aplicá-las a diferentes problemas.
Learning TensorFlow.js é um ótimo ponto de partida para iniciantes em tensores e machine learning em geral, mas com bons conhecimentos de JavaScript. Este livro abrange princípios básicos, como a manipulação de dados em tensores, para que você possa avançar rapidamente para apps do mundo real. Após a leitura, você saberá como carregar modelos existentes, transmitir dados para eles e interpretar os dados resultantes.
O livro Deep Learning with JavaScript é outro excelente ponto de partida. Ainda há um grande número de exemplos do GitHub para você praticar com machine learning em JavaScript.
Este livro traz demonstrações de como usar uma ampla variedade de arquiteturas de rede neural, incluindo as redes neurais convolucionais, as redes neurais recorrentes e os paradigmas de treinamento avançado, como o aprendizado por reforço. A publicação também mostra explicações claras sobre o que realmente acontece com a rede neural no processo de treinamento.
Uma abordagem prática de ponta a ponta aos princípios básicos do TensorFlow.js para um público técnico amplo. Ao terminar este livro, você saberá como criar e implantar sistemas de aprendizado profundo prontos para produção com o TensorFlow.js.
Escrito pelos principais autores da biblioteca do TensorFlow, este livro mostra casos de uso fascinantes e instruções detalhadas para apps de aprendizado profundo em JavaScript no navegador ou no Node.
Etapa 3: pratique com exemplos usando o TensorFlow.js
A prática leva à perfeição. Por isso, fazer exercícios práticos é a melhor maneira de reter os conceitos. Confira os codelabs do TensorFlow.js para expandir seus conhecimentos com estes guias passo a passo para casos de uso comuns:
-
Reconhecimento de dígitos manuscritos com redes neurais convolucionais
-
Converta um SavedModel Python para o formato do TensorFlow.js
-
Use o Firebase para implantar e hospedar um modelo do TensorFlow.js
-
Reconhecimento de áudio usando o aprendizado por transferência
Com conhecimento de redes neurais, é mais fácil estudar os exemplos de código aberto criados pela equipe do TensorFlow. Esse conteúdo está disponível no GitHub (em inglês) para você analisar o código e ver como os exemplos funcionam.
Repositório do GitHub com exemplos implementados no TensorFlow.js. Os exemplos de diretório são independentes e podem ser copiados para outro projeto.
Os tutoriais do TensorFlow são escritos como notebooks do Jupyter e executados diretamente no Google Colab, um ambiente de notebook hospedado que não precisa de configuração. Clique no botão "Executar no Google Colab".
Etapa 4: faça algo novo
Após testar seus conhecimentos e praticar com alguns exemplos do TensorFlow.js, estará tudo pronto para você começar a desenvolver seus próprios projetos. Confira nossos modelos pré-treinados e comece a criar um app em minutos. Outra opção é treinar seu próprio modelo usando dados coletados ou conjuntos de dados públicos. O Kaggle e o Google Pesquisa de Datasets são ótimos locais para treinar um modelo.
Caso esteja procurando inspiração, confira os episódios do Made With TensorFlow.js de pessoas do mundo todo que usaram o TensorFlow.js em apps.
Você também pode ver as contribuições mais recentes da comunidade pesquisando pela hashtag #MadeWithTFJS nas mídias sociais.