Film consigliati: recupero utilizzando un modello sequenziale

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza la fonte su GitHub Scarica taccuino

In questo tutorial, costruiremo un modello di recupero sequenziale. La raccomandazione sequenziale è un modello popolare che esamina una sequenza di elementi con cui gli utenti hanno interagito in precedenza e quindi prevede l'elemento successivo. Qui l'ordine degli elementi all'interno di ciascuna sequenza è importante, quindi utilizzeremo una rete neurale ricorrente per modellare la relazione sequenziale. Per ulteriori informazioni, si prega di fare riferimento a questo documento GRU4Rec .

Importazioni

Per prima cosa eliminiamo le nostre dipendenze e importazioni.

pip install -q tensorflow-recommenders
pip install -q --upgrade tensorflow-datasets
import os
import pprint
import tempfile

from typing import Dict, Text

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

Preparazione del set di dati

Successivamente, dobbiamo preparare il nostro set di dati. Stiamo andando a sfruttare il programma di utilità di generazione di dati in questo on-dispositivo di riferimento Consiglia applicazione tensorflow Lite .

Dati MovieLens 1M contiene ratings.dat (colonne: UserID, MovieID, Valutazione, timestamp), e movies.dat (colonne: MovieID, Titolo, Generi). Lo script di generazione di esempio scarica il set di dati 1M, prende entrambi i file, mantiene solo le valutazioni superiori a 2, forma timeline di interazione del filmato dell'utente, attività di esempio come etichette e 10 attività dell'utente precedenti come contesto per la previsione.

wget -nc https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/recommendation/ml/data/example_generation_movielens.py
python -m example_generation_movielens  --data_dir=data/raw  --output_dir=data/examples  --min_timeline_length=3  --max_context_length=10  --max_context_movie_genre_length=10  --min_rating=2  --train_data_fraction=0.9  --build_vocabs=False
--2021-12-02 12:10:29--  https://raw.githubusercontent.com/tensorflow/examples/master/lite/examples/recommendation/ml/data/example_generation_movielens.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.110.133, 185.199.111.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 18040 (18K) [text/plain]
Saving to: ‘example_generation_movielens.py’

example_generation_ 100%[===================>]  17.62K  --.-KB/s    in 0s      

2021-12-02 12:10:29 (107 MB/s) - ‘example_generation_movielens.py’ saved [18040/18040]

I1202 12:10:32.036267 140629273970496 example_generation_movielens.py:460] Downloading and extracting data.
Downloading data from http://files.grouplens.org/datasets/movielens/ml-1m.zip
5922816/5917549 [==============================] - 1s 0us/step
5931008/5917549 [==============================] - 1s 0us/step
I1202 12:10:33.549675 140629273970496 example_generation_movielens.py:406] Reading data to dataframes.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/pandas/util/_decorators.py:311: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
  return func(*args, **kwargs)
I1202 12:10:37.734699 140629273970496 example_generation_movielens.py:408] Generating movie rating user timelines.
I1202 12:10:40.836473 140629273970496 example_generation_movielens.py:410] Generating train and test examples.
6040/6040 [==============================] - 76s 13ms/step
I1202 12:11:57.162662 140629273970496 example_generation_movielens.py:421] Writing generated training examples.
844195/844195 [==============================] - 14s 17us/step
I1202 12:12:11.266682 140629273970496 example_generation_movielens.py:424] Writing generated testing examples.
93799/93799 [==============================] - 2s 17us/step
I1202 12:12:22.758407 140629273970496 example_generation_movielens.py:473] Generated dataset: {'train_size': 844195, 'test_size': 93799, 'train_file': 'data/examples/train_movielens_1m.tfrecord', 'test_file': 'data/examples/test_movielens_1m.tfrecord'}

Ecco un esempio del set di dati generato.

0 : {
  features: {
    feature: {
      key  : "context_movie_id"
      value: { int64_list: { value: [ 1124, 2240, 3251, ..., 1268 ] } }
    }
    feature: {
      key  : "context_movie_rating"
      value: { float_list: {value: [ 3.0, 3.0, 4.0, ..., 3.0 ] } }
    }
    feature: {
      key  : "context_movie_year"
      value: { int64_list: { value: [ 1981, 1980, 1985, ..., 1990 ] } }
    }
    feature: {
      key  : "context_movie_genre"
      value: { bytes_list: { value: [ "Drama", "Drama", "Mystery", ..., "UNK" ] } }
    }
    feature: {
      key  : "label_movie_id"
      value: { int64_list: { value: [ 3252 ] }  }
    }
  }
}

Puoi vedere che include una sequenza di ID film contestuali e un ID film etichetta (film successivo), oltre a caratteristiche contestuali come anno, valutazione e genere del film.

Nel nostro caso utilizzeremo solo la sequenza di ID film contestuali e l'ID film etichetta. È possibile fare riferimento al contesto Sfruttando dispone di esercitazione per conoscere meglio l'aggiunta di funzionalità aggiuntive di contesto.

train_filename = "./data/examples/train_movielens_1m.tfrecord"
train = tf.data.TFRecordDataset(train_filename)

test_filename = "./data/examples/test_movielens_1m.tfrecord"
test = tf.data.TFRecordDataset(test_filename)

feature_description = {
    'context_movie_id': tf.io.FixedLenFeature([10], tf.int64, default_value=np.repeat(0, 10)),
    'context_movie_rating': tf.io.FixedLenFeature([10], tf.float32, default_value=np.repeat(0, 10)),
    'context_movie_year': tf.io.FixedLenFeature([10], tf.int64, default_value=np.repeat(1980, 10)),
    'context_movie_genre': tf.io.FixedLenFeature([10], tf.string, default_value=np.repeat("Drama", 10)),
    'label_movie_id': tf.io.FixedLenFeature([1], tf.int64, default_value=0),
}

def _parse_function(example_proto):
  return tf.io.parse_single_example(example_proto, feature_description)

train_ds = train.map(_parse_function).map(lambda x: {
    "context_movie_id": tf.strings.as_string(x["context_movie_id"]),
    "label_movie_id": tf.strings.as_string(x["label_movie_id"])
})

test_ds = test.map(_parse_function).map(lambda x: {
    "context_movie_id": tf.strings.as_string(x["context_movie_id"]),
    "label_movie_id": tf.strings.as_string(x["label_movie_id"])
})

for x in train_ds.take(1).as_numpy_iterator():
  pprint.pprint(x)
{'context_movie_id': array([b'2589', b'202', b'1038', b'1767', b'951', b'129', b'1256', b'955',
       b'3097', b'3462'], dtype=object),
 'label_movie_id': array([b'3629'], dtype=object)}

Ora i nostri set di dati di addestramento/test includono solo una sequenza di ID film storici e un'etichetta dell'ID film successivo. Si noti che usiamo [10] come la forma delle caratteristiche durante tf.Example parsing perché specificare 10 come lunghezza del contesto presenta nella fase di esempio generateion.

Abbiamo bisogno di un'altra cosa prima di poter iniziare a costruire il modello: il vocabolario per i nostri ID film.

movies = tfds.load("movielens/1m-movies", split='train')
movies = movies.map(lambda x: x["movie_id"])
movie_ids = movies.batch(1_000)
unique_movie_ids = np.unique(np.concatenate(list(movie_ids)))

Implementazione di un modello sequenziale

Nel nostro tutorial di base di recupero , usiamo una torre query per l'utente, e il traino candidato per quel film candidato. Tuttavia, l'architettura a due torri è generalizzabile e non limitata a coppia. È inoltre possibile utilizzarlo per fare raccomandazione punto-a-punto, come si nota nel tutorial di recupero di base .

Qui useremo ancora l'architettura a due torri. Specificially, usiamo la torre query con uno strato di Gated ricorrente Unit (GRU) per codificare la sequenza di film storici, e mantenere la stessa torre candidato per quel film candidato.

embedding_dimension = 32

query_model = tf.keras.Sequential([
    tf.keras.layers.StringLookup(
      vocabulary=unique_movie_ids, mask_token=None),
    tf.keras.layers.Embedding(len(unique_movie_ids) + 1, embedding_dimension), 
    tf.keras.layers.GRU(embedding_dimension),
])

candidate_model = tf.keras.Sequential([
  tf.keras.layers.StringLookup(
      vocabulary=unique_movie_ids, mask_token=None),
  tf.keras.layers.Embedding(len(unique_movie_ids) + 1, embedding_dimension)
])

Le metriche, l'attività e il modello completo sono definiti in modo simile al modello di recupero di base.

metrics = tfrs.metrics.FactorizedTopK(
  candidates=movies.batch(128).map(candidate_model)
)

task = tfrs.tasks.Retrieval(
  metrics=metrics
)

class Model(tfrs.Model):

    def __init__(self, query_model, candidate_model):
        super().__init__()
        self._query_model = query_model
        self._candidate_model = candidate_model

        self._task = task

    def compute_loss(self, features, training=False):
        watch_history = features["context_movie_id"]
        watch_next_label = features["label_movie_id"]

        query_embedding = self._query_model(watch_history)       
        candidate_embedding = self._candidate_model(watch_next_label)

        return self._task(query_embedding, candidate_embedding, compute_metrics=not training)

Adattamento e valutazione

Ora possiamo compilare, addestrare e valutare il nostro modello di recupero sequenziale.

model = Model(query_model, candidate_model)
model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.1))
cached_train = train_ds.shuffle(10_000).batch(12800).cache()
cached_test = test_ds.batch(2560).cache()
model.fit(cached_train, epochs=3)
Epoch 1/3
67/67 [==============================] - 25s 291ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_5_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_10_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_50_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_100_categorical_accuracy: 0.0000e+00 - loss: 107448.4467 - regularization_loss: 0.0000e+00 - total_loss: 107448.4467
Epoch 2/3
67/67 [==============================] - 2s 25ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_5_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_10_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_50_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_100_categorical_accuracy: 0.0000e+00 - loss: 100932.0125 - regularization_loss: 0.0000e+00 - total_loss: 100932.0125
Epoch 3/3
67/67 [==============================] - 2s 25ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_5_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_10_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_50_categorical_accuracy: 0.0000e+00 - factorized_top_k/top_100_categorical_accuracy: 0.0000e+00 - loss: 99336.2015 - regularization_loss: 0.0000e+00 - total_loss: 99336.2015
<keras.callbacks.History at 0x7f0904d5b410>
model.evaluate(cached_test, return_dict=True)
37/37 [==============================] - 10s 235ms/step - factorized_top_k/top_1_categorical_accuracy: 0.0146 - factorized_top_k/top_5_categorical_accuracy: 0.0780 - factorized_top_k/top_10_categorical_accuracy: 0.1358 - factorized_top_k/top_50_categorical_accuracy: 0.3735 - factorized_top_k/top_100_categorical_accuracy: 0.5058 - loss: 15478.0652 - regularization_loss: 0.0000e+00 - total_loss: 15478.0652
{'factorized_top_k/top_1_categorical_accuracy': 0.014605699107050896,
 'factorized_top_k/top_5_categorical_accuracy': 0.07804987579584122,
 'factorized_top_k/top_10_categorical_accuracy': 0.1358330100774765,
 'factorized_top_k/top_50_categorical_accuracy': 0.3735221028327942,
 'factorized_top_k/top_100_categorical_accuracy': 0.5058262944221497,
 'loss': 9413.1240234375,
 'regularization_loss': 0,
 'total_loss': 9413.1240234375}

Questo conclude l'esercitazione sul recupero sequenziale.