Modelos escaláveis e neurais de aprendizagem para classificar (LTR),Modelos escaláveis e neurais para classificar (LTR)
import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_ranking as tfr # Prep data ds = tfds.load("mslr_web/10k_fold1", split="train") ds = ds.map(lambda feature_map: { "_mask": tf.ones_like(feature_map["label"], dtype=tf.bool), **feature_map }) ds = ds.shuffle(buffer_size=1000).padded_batch(batch_size=32) ds = ds.map(lambda feature_map: ( feature_map, tf.where(feature_map["_mask"], feature_map.pop("label"), -1.))) # Create a model inputs = { "float_features": tf.keras.Input(shape=(None, 136), dtype=tf.float32) } norm_inputs = [tf.keras.layers.BatchNormalization()(x) for x in inputs.values()] x = tf.concat(norm_inputs, axis=-1) for layer_width in [128, 64, 32]: x = tf.keras.layers.Dense(units=layer_width)(x) x = tf.keras.layers.Activation(activation=tf.nn.relu)(x) scores = tf.squeeze(tf.keras.layers.Dense(units=1)(x), axis=-1) # Compile and train model = tf.keras.Model(inputs=inputs, outputs=scores) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=0.01), loss=tfr.keras.losses.SoftmaxLoss(), metrics=tfr.keras.metrics.get("ndcg", topn=5, name="NDCG@5")) model.fit(ds, epochs=3)Execute em um notebook
O TensorFlow Ranking é uma biblioteca de código aberto para desenvolver modelos de aprendizado neural escaláveis para classificação (LTR). Os modelos de classificação são normalmente usados em sistemas de busca e recomendação, mas também têm sido aplicados com sucesso em uma ampla variedade de campos, incluindo tradução automática , sistemas de diálogo e-commerce , solucionadores SAT , planejamento urbano inteligente e até biologia computacional.
Um modelo de classificação pega uma lista de itens (páginas da web, documentos, produtos, filmes, etc.) uma consulta do usuário:
Esta biblioteca oferece suporte a funções padrão de perda por ponto, par e lista para modelos LTR. Ele também suporta uma ampla gama de métricas de classificação, incluindo Classificação Recíproca Média (MRR) e Ganho Acumulado Descontado Normalizado (NDCG), para que você possa avaliar e comparar essas abordagens para sua tarefa de classificação. A biblioteca Ranking também fornece funções para abordagens de classificação aprimoradas que são pesquisadas, testadas e criadas por engenheiros de aprendizado de máquina do Google.
Comece a usar a biblioteca TensorFlow Ranking consultando o tutorial . Saiba mais sobre os recursos da biblioteca lendo a Visão geral Confira o código-fonte do TensorFlow Ranking no GitHub .