Hyperparameters used in BaseDatasetBuilder
.
tfr.keras.pipeline.DatasetHparams(
train_input_pattern: str,
valid_input_pattern: str,
train_batch_size: int,
valid_batch_size: int,
list_size: Optional[int] = None,
valid_list_size: Optional[int] = None,
dataset_reader: Any = tfr.keras.pipeline.DatasetHparams.dataset_reader
,
convert_labels_to_binary: bool = False
)
Hyperparameters to be specified to create the dataset_builder.
Attributes |
train_input_pattern
|
A glob pattern to specify the paths to the input data
for training.
|
valid_input_pattern
|
A glob pattern to specify the paths to the input data
for validation.
|
train_batch_size
|
An integer to specify the batch size of training dataset.
|
valid_batch_size
|
An integer to specify the batch size of valid dataset.
|
list_size
|
An integer to specify the list size. When None, data will be
padded to the longest list in each batch.
|
valid_list_size
|
An integer to specify the list size in valid dataset. When
not specified, valid dataset uses the same list size as list_size .
|
dataset_reader
|
A function or class that can be called with a filenames
tensor and (optional) reader_args and returns a Dataset . Defaults to
tf.data.TFRecordDataset .
|
convert_labels_to_binary
|
A boolean to indicate whether to use binary label.
|
Child Classes
class dataset_reader
Methods
__eq__
__eq__(
other
)
Class Variables |
convert_labels_to_binary
|
False
|
list_size
|
None
|
valid_list_size
|
None
|