View source on GitHub |
The tf-ranking BERT task config.
Inherits From: RankingTaskConfig
tfr.extension.premade.TFRBertConfig(
default_params: dataclasses.InitVar[Optional[Mapping[str, Any]]] = None,
restrictions: dataclasses.InitVar[Optional[List[str]]] = None,
init_checkpoint: str = '',
model: tfr.extension.premade.TFRBertModelConfig
= TFRBertModelConfig()
,
train_data: tfr.extension.task.RankingDataConfig
= None,
validation_data: tfr.extension.task.RankingDataConfig
= None,
name: Optional[str] = None,
differential_privacy_config: Optional[dp_configs.DifferentialPrivacyConfig] = None,
allow_image_summary: bool = False,
loss: str = 'softmax_loss',
loss_reduction: str = tf.keras.losses.Reduction.NONE,
aggregated_metrics: bool = False,
output_preds: bool = False
)
Methods
as_dict
as_dict()
Returns a dict representation of params_dict.ParamsDict.
For the nested params_dict.ParamsDict, a nested dict will be returned.
from_args
@classmethod
from_args( *args, **kwargs )
Builds a config from the given list of arguments.
from_json
@classmethod
from_json( file_path: str )
Wrapper for from_yaml
.
from_yaml
@classmethod
from_yaml( file_path: str )
get
get(
key, value=None
)
Accesses through built-in dictionary get method.
lock
lock()
Makes the ParamsDict immutable.
override
override(
override_params, is_strict=True
)
Override the ParamsDict with a set of given params.
Args | |
---|---|
override_params
|
a dict or a ParamsDict specifying the parameters to be overridden. |
is_strict
|
a boolean specifying whether override is strict or not. If
True, keys in override_params must be present in the ParamsDict. If
False, keys in override_params can be different from what is currently
defined in the ParamsDict. In this case, the ParamsDict will be extended
to include the new keys.
|
replace
replace(
**kwargs
)
Overrides/returns a unlocked copy with the current config unchanged.
validate
validate()
Validate the parameters consistency based on the restrictions.
This method validates the internal consistency using the pre-defined list of restrictions. A restriction is defined as a string which specifies a binary operation. The supported binary operations are {'==', '!=', '<', '<=', '>', '>='}. Note that the meaning of these operators are consistent with the underlying Python immplementation. Users should make sure the define restrictions on their type make sense.
For example, for a ParamsDict like the following
a:
a1: 1
a2: 2
b:
bb:
bb1: 10
bb2: 20
ccc:
a1: 1
a3: 3
one can define two restrictions like this ['a.a1 == b.ccc.a1', 'a.a2 <= b.bb.bb2']
What it enforces are | |
---|---|
|
Raises | |
---|---|
KeyError
|
if any of the following happens (1) any of parameters in any of restrictions is not defined in ParamsDict, (2) any inconsistency violating the restriction is found. |
ValueError
|
if the restriction defined in the string is not supported. |
__contains__
__contains__(
key
)
Implements the membership test operator.
__eq__
__eq__(
other
)
Class Variables | |
---|---|
IMMUTABLE_TYPES |
(<class 'str'>,
<class 'int'>,
<class 'float'>,
<class 'bool'>,
<class 'NoneType'>)
|
RESERVED_ATTR |
['_locked', '_restrictions']
|
SEQUENCE_TYPES |
(<class 'list'>, <class 'tuple'>)
|
aggregated_metrics |
False
|
allow_image_summary |
False
|
default_params |
None
|
differential_privacy_config |
None
|
init_checkpoint |
''
|
loss |
'softmax_loss'
|
loss_reduction |
'none'
|
model |
Instance of tfr.extension.premade.TFRBertModelConfig
|
name |
None
|
output_preds |
False
|
restrictions |
None
|
train_data |
None
|
validation_data |
None
|