Veja no TensorFlow.org | Executar no Google Colab | Ver fonte no GitHub | Baixar caderno |
O TensorFlow Quantum traz primitivos quânticos para o ecossistema TensorFlow. Agora, os pesquisadores quânticos podem aproveitar as ferramentas do TensorFlow. Neste tutorial, você examinará mais de perto a incorporação do TensorBoard em sua pesquisa de computação quântica. Usando o tutorial DCGAN do TensorFlow, você criará rapidamente experimentos e visualizações de trabalho semelhantes aos feitos por Niu et al. . Em linhas gerais você irá:
- Treine um GAN para produzir amostras que parecem ter vindo de circuitos quânticos.
- Visualize o progresso do treinamento, bem como a evolução da distribuição ao longo do tempo.
- Avalie o experimento explorando o gráfico de computação.
pip install tensorflow==2.7.0 tensorflow-quantum tensorboard_plugin_profile==2.4.0
# Update package resources to account for version changes.
import importlib, pkg_resources
importlib.reload(pkg_resources)
<module 'pkg_resources' from '/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/pkg_resources/__init__.py'>
#docs_infra: no_execute
%load_ext tensorboard
import datetime
import time
import cirq
import tensorflow as tf
import tensorflow_quantum as tfq
from tensorflow.keras import layers
# visualization tools
%matplotlib inline
import matplotlib.pyplot as plt
from cirq.contrib.svg import SVGCircuit
2022-02-04 12:46:52.770534: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
1. Geração de dados
Comece coletando alguns dados. Você pode usar o TensorFlow Quantum para gerar rapidamente algumas amostras de bitstring que serão a fonte de dados principal para o restante de seus experimentos. Como Niu et al. você explorará como é fácil emular amostragem de circuitos aleatórios com profundidade drasticamente reduzida. Primeiro, defina alguns auxiliares:
def generate_circuit(qubits):
"""Generate a random circuit on qubits."""
random_circuit = cirq.generate_boixo_2018_supremacy_circuits_v2(
qubits, cz_depth=2, seed=1234)
return random_circuit
def generate_data(circuit, n_samples):
"""Draw n_samples samples from circuit into a tf.Tensor."""
return tf.squeeze(tfq.layers.Sample()(circuit, repetitions=n_samples).to_tensor())
Agora você pode inspecionar o circuito, bem como alguns dados de amostra:
qubits = cirq.GridQubit.rect(1, 5)
random_circuit_m = generate_circuit(qubits) + cirq.measure_each(*qubits)
SVGCircuit(random_circuit_m)
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.
samples = cirq.sample(random_circuit_m, repetitions=10)
print('10 Random bitstrings from this circuit:')
print(samples)
10 Random bitstrings from this circuit: (0, 0)=1000001000 (0, 1)=0000001010 (0, 2)=1010000100 (0, 3)=0010000110 (0, 4)=0110110010
Você pode fazer a mesma coisa no TensorFlow Quantum com:
generate_data(random_circuit_m, 10)
<tf.Tensor: shape=(10, 5), dtype=int8, numpy= array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 1, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 1, 0], [1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], dtype=int8)>
Agora você pode gerar rapidamente seus dados de treinamento com:
N_SAMPLES = 60000
N_QUBITS = 10
QUBITS = cirq.GridQubit.rect(1, N_QUBITS)
REFERENCE_CIRCUIT = generate_circuit(QUBITS)
all_data = generate_data(REFERENCE_CIRCUIT, N_SAMPLES)
all_data
<tf.Tensor: shape=(60000, 10), dtype=int8, numpy= array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]], dtype=int8)>
Será útil definir algumas funções auxiliares para visualizar à medida que o treinamento estiver em andamento. Duas quantidades interessantes para usar são:
- Os valores inteiros de amostras, para que você possa criar histogramas da distribuição.
- A estimativa de fidelidade linear XEB de um conjunto de amostras, para dar alguma indicação de quão "verdadeiramente aleatória quântica" são as amostras.
@tf.function
def bits_to_ints(bits):
"""Convert tensor of bitstrings to tensor of ints."""
sigs = tf.constant([1 << i for i in range(N_QUBITS)], dtype=tf.int32)
rounded_bits = tf.clip_by_value(tf.math.round(
tf.cast(bits, dtype=tf.dtypes.float32)), clip_value_min=0, clip_value_max=1)
return tf.einsum('jk,k->j', tf.cast(rounded_bits, dtype=tf.dtypes.int32), sigs)
@tf.function
def xeb_fid(bits):
"""Compute linear XEB fidelity of bitstrings."""
final_probs = tf.squeeze(
tf.abs(tfq.layers.State()(REFERENCE_CIRCUIT).to_tensor()) ** 2)
nums = bits_to_ints(bits)
return (2 ** N_QUBITS) * tf.reduce_mean(tf.gather(final_probs, nums)) - 1.0
Aqui você pode visualizar suas coisas de distribuição e verificação de sanidade usando o XEB:
plt.hist(bits_to_ints(all_data).numpy(), 50)
plt.show()
xeb_fid(all_data)
<tf.Tensor: shape=(), dtype=float32, numpy=-0.0015467405>
2. Construa um modelo
Aqui você pode usar os componentes relevantes do tutorial DCGAN para o caso quântico. Em vez de produzir dígitos MNIST, o novo GAN será usado para produzir amostras de bitstring com comprimento N_QUBITS
LATENT_DIM = 100
def make_generator_model():
"""Construct generator model."""
model = tf.keras.Sequential()
model.add(layers.Dense(256, use_bias=False, input_shape=(LATENT_DIM,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.3))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(N_QUBITS, activation='relu'))
return model
def make_discriminator_model():
"""Constrcut discriminator model."""
model = tf.keras.Sequential()
model.add(layers.Dense(256, use_bias=False, input_shape=(N_QUBITS,)))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.3))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(1))
return model
Em seguida, instancie seus modelos de gerador e discriminador, defina as perdas e crie a função train_step
para usar em seu loop de treinamento principal:
discriminator = make_discriminator_model()
generator = make_generator_model()
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
"""Compute discriminator loss."""
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
"""Compute generator loss."""
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
BATCH_SIZE=256
@tf.function
def train_step(images):
"""Run train step on provided image batch."""
noise = tf.random.normal([BATCH_SIZE, LATENT_DIM])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(
gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(
disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(
zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(
zip(gradients_of_discriminator, discriminator.trainable_variables))
return gen_loss, disc_loss
Agora que você tem todos os blocos de construção necessários para o seu modelo, você pode configurar uma função de treinamento que incorpore a visualização do TensorBoard. Primeiro configure um gravador de arquivos TensorBoard:
logdir = "tb_logs/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
file_writer = tf.summary.create_file_writer(logdir + "/metrics")
file_writer.set_as_default()
Usando o módulo tf.summary
, agora você pode incorporar scalar
, histogram
(assim como outros) logs no TensorBoard dentro da função principal do train
:
def train(dataset, epochs, start_epoch=1):
"""Launch full training run for the given number of epochs."""
# Log original training distribution.
tf.summary.histogram('Training Distribution', data=bits_to_ints(dataset), step=0)
batched_data = tf.data.Dataset.from_tensor_slices(dataset).shuffle(N_SAMPLES).batch(512)
t = time.time()
for epoch in range(start_epoch, start_epoch + epochs):
for i, image_batch in enumerate(batched_data):
# Log batch-wise loss.
gl, dl = train_step(image_batch)
tf.summary.scalar(
'Generator loss', data=gl, step=epoch * len(batched_data) + i)
tf.summary.scalar(
'Discriminator loss', data=dl, step=epoch * len(batched_data) + i)
# Log full dataset XEB Fidelity and generated distribution.
generated_samples = generator(tf.random.normal([N_SAMPLES, 100]))
tf.summary.scalar(
'Generator XEB Fidelity Estimate', data=xeb_fid(generated_samples), step=epoch)
tf.summary.histogram(
'Generator distribution', data=bits_to_ints(generated_samples), step=epoch)
# Log new samples drawn from this particular random circuit.
random_new_distribution = generate_data(REFERENCE_CIRCUIT, N_SAMPLES)
tf.summary.histogram(
'New round of True samples', data=bits_to_ints(random_new_distribution), step=epoch)
if epoch % 10 == 0:
print('Epoch {}, took {}(s)'.format(epoch, time.time() - t))
t = time.time()
3. Visualize treinamento e desempenho
O painel do TensorBoard agora pode ser iniciado com:
#docs_infra: no_execute
%tensorboard --logdir tb_logs/
Ao chamar train
o painel do TensoBoard será atualizado automaticamente com todas as estatísticas resumidas fornecidas no loop de treinamento.
train(all_data, epochs=50)
Epoch 10, took 9.325464487075806(s) Epoch 20, took 7.684147119522095(s) Epoch 30, took 7.508770704269409(s) Epoch 40, took 7.5157341957092285(s) Epoch 50, took 7.533370494842529(s)
Enquanto o treinamento está em execução (e uma vez concluído), você pode examinar as quantidades escalares:
Mudando para a guia do histograma, você também pode ver o desempenho da rede geradora na recriação de amostras da distribuição quântica:
Além de permitir o monitoramento em tempo real de estatísticas resumidas relacionadas ao seu experimento, o TensorBoard também pode ajudar você a criar o perfil de seus experimentos para identificar gargalos de desempenho. Para executar novamente seu modelo com monitoramento de desempenho, você pode fazer:
tf.profiler.experimental.start(logdir)
train(all_data, epochs=10, start_epoch=50)
tf.profiler.experimental.stop()
Epoch 50, took 0.8879530429840088(s)
O TensorBoard fará o perfil de todo o código entre tf.profiler.experimental.start
e tf.profiler.experimental.stop
. Esses dados de perfil podem ser visualizados na página de profile
do TensorBoard:
Tente aumentar a profundidade ou experimentar diferentes classes de circuitos quânticos. Confira todos os outros ótimos recursos do TensorBoard, como ajuste de hiperparâmetros, que você pode incorporar aos seus experimentos do TensorFlow Quantum.