View source on GitHub |
Module functions for tensorflow_quantum.*
Modules
datasets
module: Experimental location for interesting quantum datasets.
differentiators
module: Module functions for tfq.differentiators.*
layers
module: Module definitions for tensorflow_quantum.python.layers.*
math
module: Module for tfq.core.ops.math_ops.*
noise
module: Module for tfq.core.ops.noise.*
optimizers
module: Module definitions for tensorflow_quantum.python.optimizers.*
util
module: A collection of helper functions which are useful in places in TFQ.
Functions
append_circuit(...)
: Merge programs in the input tensors.
convert_to_tensor(...)
: Convert lists of tfq supported primitives to tensor representations.
from_tensor(...)
: Convert a tensor of tfq primitives back to Python objects.
get_expectation_op(...)
: Get a TensorFlow op that will calculate batches of expectation values.
get_quantum_concurrent_op_mode(...)
: Get the global op latency mode from execution context.
get_sampled_expectation_op(...)
: Get a TensorFlow op that will calculate sampled expectation values.
get_sampling_op(...)
: Get a Tensorflow op that produces samples from given quantum circuits.
get_state_op(...)
: Get a TensorFlow op that produces states from given quantum circuits.
get_unitary_op(...)
: Get an op that calculates the unitary matrix for the given circuits.
padded_to_ragged(...)
: Utility tf.function
that converts a padded tensor to ragged.
padded_to_ragged2d(...)
: Utility tf.function
that converts a 2d padded tensor to ragged.
resolve_parameters(...)
: Replace symbols in a batch of programs with concrete values.
set_quantum_concurrent_op_mode(...)
: Set the global op latency mode in execution context.
Other Members | |
---|---|
version |
'0.7.2'
|