View source on GitHub |
Get a TensorFlow op that will calculate sampled expectation values.
tfq.get_sampled_expectation_op(
backend=None,
*,
quantum_concurrent=quantum_context.get_quantum_concurrent_op_mode()
)
Used in the notebooks
Used in the tutorials |
---|
This function produces a non-differentiable TF op that will calculate
batches of expectation values given tensor batches of cirq.Circuit
s,
parameter values, and cirq.PauliSum
operators to measure.
Expectation is estimated by taking num_samples shots per term in the
corresponding PauliSum.
# Simulate circuits with C++.
my_op = tfq.get_sampled_expectation_op()
# Prepare some inputs.
qubit = cirq.GridQubit(0, 0)
my_symbol = sympy.Symbol('alpha')
my_circuit_tensor = tfq.convert_to_tensor([
cirq.Circuit(cirq.H(qubit) ** my_symbol)
])
my_values = np.array([[0.123]])
my_paulis = tfq.convert_to_tensor([[
3.5 * cirq.X(qubit) - 2.2 * cirq.Y(qubit)
]])
my_num_samples = np.array([[100]])
# This op can now be run with:
output = my_op(
my_circuit_tensor, ['alpha'], my_values, my_paulis, my_num_samples)
output
tf.Tensor([[0.71530885]], shape=(1, 1), dtype=float32)
In order to make the op differentiable, a tfq.differentiator
object is
needed. see tfq.differentiators
for more details. Below is a simple
example of how to make my_op from the above code block differentiable:
diff = tfq.differentiators.ForwardDifference()
my_differentiable_op = diff.generate_differentiable_op(
analytic_op=my_op
)
Args | |
---|---|
backend
|
Optional Python object that specifies what backend this op
should use when evaluating circuits. Can be any cirq.Sampler . If
not provided the default C++ sampled expectation op is returned.
|
quantum_concurrent
|
Optional Python bool . True indicates that the
returned op should not block graph level parallelism on itself when
executing. False indicates that graph level parallelism on itself
should be blocked. Defaults to value specified in
tfq.get_quantum_concurrent_op_mode which defaults to True
(no blocking). This flag is only needed for advanced users when
using TFQ for very large simulations, or when running on a real
chip.
|
Returns | |
---|---|
A callable with the following signature:
|
|
programs
|
tf.Tensor of strings with shape [batch_size] containing
the string representations of the circuits to be executed.
|
symbol_names
|
tf.Tensor of strings with shape [n_params], which
is used to specify the order in which the values in
symbol_values should be placed inside of the circuits in
programs .
|
symbol_values
|
tf.Tensor of real numbers with shape
[batch_size, n_params] specifying parameter values to resolve
into the circuits specified by programs, following the ordering
dictated by symbol_names .
|
pauli_sums
|
tf.Tensor of strings with shape [batch_size, n_ops]
containing the string representation of the operators that will
be used on all of the circuits in the expectation calculations.
|
num_samples
|
tf.Tensor with num_samples[i][j] is equal to the
number of samples to draw in each term of pauli_sums[i][j]
when estimating the expectation. Therefore, num_samples must
have the same shape as pauli_sums .
|
Returns
|
tf.Tensor with shape [batch_size, n_ops] that holds the
expectation value for each circuit with each op applied to it
(after resolving the corresponding parameters in).
|