Zoo de distribuições aprendíveis

Ver no TensorFlow.org Executar no Google Colab Ver fonte no GitHub Baixar caderno

Nesta colab, mostramos vários exemplos de construção de distribuições aprendíveis ("treináveis"). (Não fazemos nenhum esforço para explicar as distribuições, apenas para mostrar como construí-las.)

import numpy as np
import tensorflow.compat.v2 as tf
import tensorflow_probability as tfp
from tensorflow_probability.python.internal import prefer_static
tfb = tfp.bijectors
tfd = tfp.distributions
tf.enable_v2_behavior()
event_size = 4
num_components = 3

Aprendida normal multivariada com Identidade Scaled para chol(Cov)

learnable_mvn_scaled_identity = tfd.Independent(
    tfd.Normal(
        loc=tf.Variable(tf.zeros(event_size), name='loc'),
        scale=tfp.util.TransformedVariable(
            tf.ones([1]),
            bijector=tfb.Exp(),
            name='scale')),
    reinterpreted_batch_ndims=1,
    name='learnable_mvn_scaled_identity')

print(learnable_mvn_scaled_identity)
print(learnable_mvn_scaled_identity.trainable_variables)
tfp.distributions.Independent("learnable_mvn_scaled_identity", batch_shape=[], event_shape=[4], dtype=float32)
(<tf.Variable 'loc:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>, <tf.Variable 'scale:0' shape=(1,) dtype=float32, numpy=array([0.], dtype=float32)>)

Aprendida normal multivariada com Diagonal para chol(Cov)

learnable_mvndiag = tfd.Independent(
    tfd.Normal(
        loc=tf.Variable(tf.zeros(event_size), name='loc'),
        scale=tfp.util.TransformedVariable(
            tf.ones(event_size),
            bijector=tfb.Softplus(),  # Use Softplus...cuz why not?
            name='scale')),
    reinterpreted_batch_ndims=1,
    name='learnable_mvn_diag')

print(learnable_mvndiag)
print(learnable_mvndiag.trainable_variables)
tfp.distributions.Independent("learnable_mvn_diag", batch_shape=[], event_shape=[4], dtype=float32)
(<tf.Variable 'loc:0' shape=(4,) dtype=float32, numpy=array([0., 0., 0., 0.], dtype=float32)>, <tf.Variable 'scale:0' shape=(4,) dtype=float32, numpy=array([0.54132485, 0.54132485, 0.54132485, 0.54132485], dtype=float32)>)

Mistura de Multivarita Normal (esférica)

learnable_mix_mvn_scaled_identity = tfd.MixtureSameFamily(
    mixture_distribution=tfd.Categorical(
        logits=tf.Variable(
            # Changing the `1.` intializes with a geometric decay.
            -tf.math.log(1.) * tf.range(num_components, dtype=tf.float32),
            name='logits')),
    components_distribution=tfd.Independent(
        tfd.Normal(
            loc=tf.Variable(
              tf.random.normal([num_components, event_size]),
              name='loc'),
            scale=tfp.util.TransformedVariable(
              10. * tf.ones([num_components, 1]),
              bijector=tfb.Softplus(),  # Use Softplus...cuz why not?
              name='scale')),
        reinterpreted_batch_ndims=1),
    name='learnable_mix_mvn_scaled_identity')

print(learnable_mix_mvn_scaled_identity)
print(learnable_mix_mvn_scaled_identity.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvn_scaled_identity", batch_shape=[], event_shape=[4], dtype=float32)
(<tf.Variable 'logits:0' shape=(3,) dtype=float32, numpy=array([-0., -0., -0.], dtype=float32)>, <tf.Variable 'loc:0' shape=(3, 4) dtype=float32, numpy=
array([[ 0.21316044,  0.18825649,  1.3055958 , -1.4072137 ],
       [-1.6604203 , -0.9415946 , -1.1349488 , -0.4928658 ],
       [-0.9672405 ,  0.45094398, -2.615817  ,  3.7891428 ]],
      dtype=float32)>, <tf.Variable 'scale:0' shape=(3, 1) dtype=float32, numpy=
array([[9.999954],
       [9.999954],
       [9.999954]], dtype=float32)>)

Mistura de normal multivariada (esférica) com peso da primeira mistura não aprendido

learnable_mix_mvndiag_first_fixed = tfd.MixtureSameFamily(
    mixture_distribution=tfd.Categorical(
        logits=tfp.util.TransformedVariable(
            # Initialize logits as geometric decay.
            -tf.math.log(1.5) * tf.range(num_components, dtype=tf.float32),
            tfb.Pad(paddings=[[1, 0]], constant_values=0)),
            name='logits'),
    components_distribution=tfd.Independent(
        tfd.Normal(
            loc=tf.Variable(
                # Use Rademacher...cuz why not?
                tfp.random.rademacher([num_components, event_size]),
                name='loc'),
            scale=tfp.util.TransformedVariable(
                10. * tf.ones([num_components, 1]),
                bijector=tfb.Softplus(),  # Use Softplus...cuz why not?
                name='scale')),
        reinterpreted_batch_ndims=1),
    name='learnable_mix_mvndiag_first_fixed')

print(learnable_mix_mvndiag_first_fixed)
print(learnable_mix_mvndiag_first_fixed.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvndiag_first_fixed", batch_shape=[], event_shape=[4], dtype=float32)
(<tf.Variable 'Variable:0' shape=(2,) dtype=float32, numpy=array([-0.4054651, -0.8109302], dtype=float32)>, <tf.Variable 'loc:0' shape=(3, 4) dtype=float32, numpy=
array([[ 1.,  1., -1., -1.],
       [ 1., -1.,  1.,  1.],
       [-1.,  1., -1., -1.]], dtype=float32)>, <tf.Variable 'scale:0' shape=(3, 1) dtype=float32, numpy=
array([[9.999954],
       [9.999954],
       [9.999954]], dtype=float32)>)

Mistura de normal multivariada (full Cov )

learnable_mix_mvntril = tfd.MixtureSameFamily(
    mixture_distribution=tfd.Categorical(
        logits=tf.Variable(
            # Changing the `1.` intializes with a geometric decay.
            -tf.math.log(1.) * tf.range(num_components, dtype=tf.float32),
            name='logits')),
    components_distribution=tfd.MultivariateNormalTriL(
        loc=tf.Variable(tf.zeros([num_components, event_size]), name='loc'),
        scale_tril=tfp.util.TransformedVariable(
            10. * tf.eye(event_size, batch_shape=[num_components]),
            bijector=tfb.FillScaleTriL(),
            name='scale_tril')),
    name='learnable_mix_mvntril')

print(learnable_mix_mvntril)
print(learnable_mix_mvntril.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvntril", batch_shape=[], event_shape=[4], dtype=float32)
(<tf.Variable 'loc:0' shape=(3, 4) dtype=float32, numpy=
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]], dtype=float32)>, <tf.Variable 'scale_tril:0' shape=(3, 10) dtype=float32, numpy=
array([[9.999945, 0.      , 0.      , 0.      , 9.999945, 9.999945,

        0.      , 0.      , 0.      , 9.999945],
       [9.999945, 0.      , 0.      , 0.      , 9.999945, 9.999945,
        0.      , 0.      , 0.      , 9.999945],
       [9.999945, 0.      , 0.      , 0.      , 9.999945, 9.999945,
        0.      , 0.      , 0.      , 9.999945]], dtype=float32)>, <tf.Variable 'logits:0' shape=(3,) dtype=float32, numpy=array([-0., -0., -0.], dtype=float32)>)

Mistura de normal multivariada (full Cov ) com unlearnable primeira mistura & primeiro componente

# Make a bijector which pads an eye to what otherwise fills a tril.
num_tril_nonzero = lambda num_rows: num_rows * (num_rows + 1) // 2

num_tril_rows = lambda nnz: prefer_static.cast(
    prefer_static.sqrt(0.25 + 2. * prefer_static.cast(nnz, tf.float32)) - 0.5,
    tf.int32)

# TFP doesn't have a concat bijector, so we roll out our own.
class PadEye(tfb.Bijector):

  def __init__(self, tril_fn=None):
    if tril_fn is None:
      tril_fn = tfb.FillScaleTriL()
    self._tril_fn = getattr(tril_fn, 'inverse', tril_fn)
    super(PadEye, self).__init__(
        forward_min_event_ndims=2,
        inverse_min_event_ndims=2,
        is_constant_jacobian=True,
        name='PadEye')

  def _forward(self, x):
    num_rows = int(num_tril_rows(tf.compat.dimension_value(x.shape[-1])))
    eye = tf.eye(num_rows, batch_shape=prefer_static.shape(x)[:-2])
    return tf.concat([self._tril_fn(eye)[..., tf.newaxis, :], x],
                     axis=prefer_static.rank(x) - 2)

  def _inverse(self, y):
    return y[..., 1:, :]

  def _forward_log_det_jacobian(self, x):
    return tf.zeros([], dtype=x.dtype)

  def _inverse_log_det_jacobian(self, y):
    return tf.zeros([], dtype=y.dtype)

  def _forward_event_shape(self, in_shape):
    n = prefer_static.size(in_shape)
    return in_shape + prefer_static.one_hot(n - 2, depth=n, dtype=tf.int32)

  def _inverse_event_shape(self, out_shape):
    n = prefer_static.size(out_shape)
    return out_shape - prefer_static.one_hot(n - 2, depth=n, dtype=tf.int32)


tril_bijector = tfb.FillScaleTriL(diag_bijector=tfb.Softplus())
learnable_mix_mvntril_fixed_first = tfd.MixtureSameFamily(
  mixture_distribution=tfd.Categorical(
      logits=tfp.util.TransformedVariable(
          # Changing the `1.` intializes with a geometric decay.
          -tf.math.log(1.) * tf.range(num_components, dtype=tf.float32),
          bijector=tfb.Pad(paddings=[(1, 0)]),
          name='logits')),
  components_distribution=tfd.MultivariateNormalTriL(
      loc=tfp.util.TransformedVariable(
          tf.zeros([num_components, event_size]),
          bijector=tfb.Pad(paddings=[(1, 0)], axis=-2),
          name='loc'),
      scale_tril=tfp.util.TransformedVariable(
          10. * tf.eye(event_size, batch_shape=[num_components]),
          bijector=tfb.Chain([tril_bijector, PadEye(tril_bijector)]),
          name='scale_tril')),
  name='learnable_mix_mvntril_fixed_first')


print(learnable_mix_mvntril_fixed_first)
print(learnable_mix_mvntril_fixed_first.trainable_variables)
tfp.distributions.MixtureSameFamily("learnable_mix_mvntril_fixed_first", batch_shape=[], event_shape=[4], dtype=float32)
(<tf.Variable 'loc:0' shape=(2, 4) dtype=float32, numpy=
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.]], dtype=float32)>, <tf.Variable 'scale_tril:0' shape=(2, 10) dtype=float32, numpy=
array([[9.999945, 0.      , 0.      , 0.      , 9.999945, 9.999945,

        0.      , 0.      , 0.      , 9.999945],
       [9.999945, 0.      , 0.      , 0.      , 9.999945, 9.999945,
        0.      , 0.      , 0.      , 9.999945]], dtype=float32)>, <tf.Variable 'logits:0' shape=(2,) dtype=float32, numpy=array([-0., -0.], dtype=float32)>)