Operasyonlar
mhlo.abs
(mhlo::AbsOp)
Karın kasları operasyonu
Sözdizimi:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
tensör üzerinde eleman bazında abs işlemi gerçekleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Örnek:
%result = mhlo.abs %operand : tensor<3xi32>
Özellikler: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
operand | 2/4/8/16/32/64 bit işaretsiz tamsayı veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2F tipi veya NUZ tipi veya f8E8M0FNU type veya 16-bit float veya 32-bit float veya 64-bit float veya bfloat16 type veya 32-bit float veya 64-bit float elemanları veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretli tamsayı veya karmaşık tip Eksen başına nicelenmiş 2/4/8/16/32 bit işaretli tamsayı veya 2/4/8/16/32 bit tek biçimli nicelenmiş işaretsiz tamsayı veya işaretsiz eksen başına 2/4/8/16/32 bit tekdüze nicelenmiş tam sayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | 2/4/8/16/32/64 bit işaretsiz tamsayı veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2F tipi veya NUZ tipi veya f8E8M0FNU type veya 16-bit float veya 32-bit float veya 64-bit float veya bfloat16 type veya 2/4/8/16/32-bit tekdüze nicelenmiş işaretli tamsayı veya 2/4/8/16/32-bit tekdüze nicelenmiş per eksen işaretli tamsayı veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretsiz tam sayı veya eksen başına 2/4/8/16/32-bit tek biçimli nicemlenmiş işaretsiz tam sayı değerleri |
mhlo.add
(mhlo::AddOp)
İşlem ekle
Sözdizimi:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
İki lhs
ve rhs
tensörünün eleman bazında toplamasını gerçekleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Örnek:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Özellikler: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
lhs | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri |
rhs | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri |
mhlo.add_dependency
(mhlo::AddDependencyOp)
AddDependency işlemi
Sözdizimi:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.
Gayri resmi olarak, bu işlem iki işlenenden oluşur: bir veri işleneni ve bir belirteç. İşlemin çıktısı veri işlenenidir. AfterAll ile birlikte kullanıldığında bu işlem, yan etkisi olmayan işlemlerin (belirteç değerleri üretmeyenler) sıralanmasına olanak sağlar.
Örnek:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Nitelikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
operand | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan nokta öğeleri veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri veya 2/4 sıralanmış tensör /8/16/32-bit tek tip nicemlenmiş eksen işaretli tamsayı veya 2/4/8/16/32-bit tek tip nicemlenmiş eksen işaretsiz tamsayı değerleri veya belirteç |
token | jeton |
Sonuçlar:
Sonuç | Tanım |
---|---|
output | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan nokta öğeleri veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri veya 2/4 sıralanmış tensör /8/16/32-bit tek tip nicemlenmiş eksen işaretli tamsayı veya 2/4/8/16/32-bit tek tip nicemlenmiş eksen işaretsiz tamsayı değerleri veya belirteç |
mhlo.after_all
(mhlo::AfterAllOp)
Tüm işlemlerden sonra
Sözdizimi:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
inputs
üreten işlemlerin, result
bağlı işlemlerden önce yürütülmesini sağlar.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Örnek:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Nitelikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
inputs | token değişkenliği |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | jeton |
mhlo.all_gather
(mhlo::AllGatherOp)
AllGather işlemi
Süreç ızgarasındaki her süreç grubu içinde, all_gather_dim
boyunca her süreçten işlenen tensörünün değerlerini birleştirir ve bir sonuç tensörü üretir. computation
, operands
her işlenen için ayrı ayrı uygulanır ve işlenen başına bir sonuç üretilir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Örnek:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Özellikler: SameOperandsAndResultElementType
Nitelikler:
Bağlanmak | MLIR Türü | Tanım |
---|---|---|
all_gather_dim | ::mlir::TamsayıAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği |
replica_groups | ::mlir::DenseIntElementsAttr | 64 bit işaretsiz tam sayı öğeleri özelliği |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | iki adet 64-bit tamsayı 'tanımlayıcı' ve 'tip' |
use_global_device_ids | ::mlir::UnitAttr | birim özelliği |
İşlenenler:
İşlenen | Tanım |
---|---|
operands | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«isimsiz» | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri |
mhlo.all_reduce
(mhlo::AllReduceOp)
AllReduce işlemi
Süreç ızgarasındaki her süreç grubu içinde, her süreçteki işlenen tensörünün değerlerine bir indirgeme fonksiyonu computation
uygular ve bir sonuç tensörü üretir. computation
, operands
her işlenen için ayrı ayrı uygulanır ve işlenen başına bir sonuç üretilir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Örnek:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Nitelikler: InferTensorType
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Arayüzler: InferShapedTypeOpInterface
, InferTypeOpInterface
Nitelikler:
Bağlanmak | MLIR Türü | Tanım |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64 bit işaretsiz tam sayı öğeleri özelliği |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | iki adet 64-bit tamsayı 'tanımlayıcı' ve 'tip' |
use_global_device_ids | ::mlir::UnitAttr | birim özelliği |
İşlenenler:
İşlenen | Tanım |
---|---|
operands | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«isimsiz» | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri |
mhlo.all_to_all
(mhlo::AllToAllOp)
HepsindenTümüne işlemi
Süreç ızgarasındaki her süreç grubu içinde, operand
tensörünün değerlerini split_dimension
boyunca parçalara böler, bölünmüş parçaları işlemler arasında dağıtır, dağınık parçaları concat_dimension
boyunca birleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Örnek:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Özellikler: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsElementType
, SameOperandsShape
, SameVariadicOperandSize
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Nitelikler:
Bağlanmak | MLIR Türü | Tanım |
---|---|---|
split_dimension | ::mlir::TamsayıAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği |
concat_dimension | ::mlir::TamsayıAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği |
split_count | ::mlir::TamsayıAttr | Değeri pozitif olan 64 bitlik işaretsiz tamsayı özelliği |
replica_groups | ::mlir::DenseIntElementsAttr | 64 bit işaretsiz tam sayı öğeleri özelliği |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | iki adet 64-bit tamsayı 'tanımlayıcı' ve 'tip' |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«isimsiz» | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri |
mhlo.and
(mhlo::AndOp)
Ve operasyon
Sözdizimi:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
lhs
ve rhs
olmak üzere iki tensörün eleman bazında VE'sini gerçekleştirir ve result
tensörünü üretir
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Örnek:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Özellikler: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
lhs | pred'in sıralanmış tensörü (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı değerleri |
rhs | pred'in sıralanmış tensörü (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri |
mhlo.async_done
(mhlo::AsyncDoneOp)
AsyncDone işlemi
Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.
Gayri resmi olarak bu işlem, eşzamansız bir hesaplamanın sonuna kadar bloke eder. Eşzamansız hesaplamanın nihai sonucunu döndürür.
Daha fazla bilgi için AsyncStart belgelerine bakın.
Arayüzler: InferTypeOpInterface
İşlenenler:
İşlenen | Tanım |
---|---|
bundle | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«isimsiz» | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen işaretli tamsayı başına 16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tekdüze nicelenmiş işaretsiz tamsayı değerleri veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN dereceli tensörünün herhangi bir kombinasyonu ile belirteç veya iç içe geçmiş tuple tür veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1) -bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 32-bit kayan nokta veya 64 bit kayan öğeli karmaşık tür veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretli tamsayı veya 2/4/8/16/32-bit tek biçimli nicemlenmiş işaretsiz tamsayı değerleri veya 2/4/8/16/32-bit tek biçimli nicemlenmiş sıralanmış tensör eksen başına işaretli tam sayı veya eksen başına nicelenmiş 2/4/8/16/32 bit tek tip işaretsiz tam sayı değerleri veya simge değerleri |
mhlo.async_start
(mhlo::AsyncStartOp)
Eşzamansız Başlatma işlemi
Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.
Gayri resmi olarak, bu işlem eşzamansız bir hesaplamayı başlatır.
Bu, hem eşzamansız beklemeleri (DMA'lar gibi) hem de iş parçacığı üzerinde hesaplamayı içeren işlevler olduğunda kullanılır. Örneğin, bir fonksiyon bir hesaplama, bir DMA, başka bir hesaplama, ikinci bir DMA ve son bir hesaplamadan oluşabilir. Bu, bir async_start ve ardından async_update ve bir async_done olarak temsil edilir. async_start iş parçacığı üzerinde ilk hesaplamayı yapar ve ardından DMA'yı başlatır. async_update, henüz yapılmadıysa DMA'nın tamamlanmasını bekler, ardından işlevdeki ikinci hesaplamayı yürütür ve ikinci DMA'yı başlatır. Son olarak, async_done bu son DMA'yı bekleyecek ve ardından iş parçacığı üzerinde çalıştırılması gereken son hesaplamayı çalıştıracak ve bu son hesaplamanın sonucunu döndürecektir.
operands
doğrudan hesaplamaya iletilir called_computation
eşzamansız olarak çalıştırılacak olan işlevdir execution_thread
içinde çalıştırılacağı iş parçacığının adıdır. Ana iş parçacığına "ana" denir. Tüm konuların isimleri vardır.
Bu, eşzamansız işlemler arasında gereken tüm durumu döndürür. Arabellek atamasından sonra dönüş değerleri, girişi, sonuçları ve eşzamansız işlem tarafından ihtiyaç duyulan veya düzenlenen not defterlerini tutmak için gereken alanı temsil eder.
Nitelikler:
Bağlanmak | MLIR Türü | Tanım |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | düz sembol referans özelliği |
execution_thread | ::mlir::StringAttr | dize özelliği |
İşlenenler:
İşlenen | Tanım |
---|---|
inputs | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen işaretli tamsayı başına 16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tekdüze nicelenmiş işaretsiz tamsayı değerleri veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN dereceli tensörünün herhangi bir kombinasyonu ile belirteç veya iç içe geçmiş tuple tür veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1) -bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 32-bit kayan nokta veya 64 bit kayan öğeli karmaşık tür veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretli tamsayı veya 2/4/8/16/32-bit tek biçimli nicemlenmiş işaretsiz tamsayı değerleri veya 2/4/8/16/32-bit tek biçimli nicemlenmiş sıralanmış tensör eksen başına işaretli tam sayı veya eksen başına nicelenmiş 2/4/8/16/32 bit tek tip işaretsiz tam sayı değerleri veya simge değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«isimsiz» | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri |
mhlo.async_update
(mhlo::AsyncUpdateOp)
AsyncUpdate işlemi
Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.
Gayri resmi olarak bu işlem, bir senkronizasyon engeline kadar eşzamansız bir hesaplamayı engeller. Bu, üzerinde çalıştıktan sonra bundle
döndürür.
Daha fazla bilgi için AsyncStart belgelerine bakın.
Arayüzler: InferTypeOpInterface
İşlenenler:
İşlenen | Tanım |
---|---|
bundle | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«isimsiz» | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri |
mhlo.atan2
(mhlo::Atan2Op)
Atan2 operasyonu
Sözdizimi:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
lhs
ve rhs
tensörü üzerinde eleman bazında atan2 işlemini gerçekleştirir ve result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Örnek:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Nitelikler: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
lhs | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya 32 bitlik kayan nokta veya 64 bitlik kayan öğeli karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri |
rhs | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya 32 bitlik kayan nokta veya 64 bitlik kayan öğeli karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya 32 bitlik kayan nokta veya 64 bitlik kayan öğeli karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri |
mhlo.batch_norm_grad
(mhlo::BatchNormGradOp)
BatchNormGrad işlemi
grad_output
geriye yayılan BatchNormTrainingOp'un çeşitli girişlerinin gradyanlarını hesaplar ve grad_operand
, grad_scale
ve grad_offset
tensörlerini üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Örnek:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Nitelikler: AlwaysSpeculatableImplTrait
, InferTensorType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Nitelikler:
Bağlanmak | MLIR Türü | Tanım |
---|---|---|
epsilon | ::mlir::FloatAttr | 32 bitlik kayan nokta özelliği |
feature_index | ::mlir::TamsayıAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
scale | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
mean | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
variance | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
grad_output | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
grad_operand | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
grad_scale | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
grad_offset | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
mhlo.batch_norm_inference
(mhlo::BatchNormInferenceOp)
BatchNormInference işlemi
operand
tensörünü feature_index
boyutu dışındaki tüm boyutlarda normalleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Örnek:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Nitelikler: AlwaysSpeculatableImplTrait
, InferTensorType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Nitelikler:
Bağlanmak | MLIR Türü | Tanım |
---|---|---|
epsilon | ::mlir::FloatAttr | 32 bitlik kayan nokta özelliği |
feature_index | ::mlir::TamsayıAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
scale | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
offset | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
mean | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
variance | f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri |
mhlo.batch_norm_training
(mhlo::BatchNormTrainingOp)
BatchNormEğitim işlemi
Toplu iş ve uzamsal boyutlar arasında ortalama ve varyansı hesaplar ve feature_index
boyutundaki her özellik için operand
tensörünü normalleştirir ve output
, batch_mean
ve batch_var
tensörlerini üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Örnek:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Nitelikler: AlwaysSpeculatableImplTrait
, InferTensorType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Nitelikler:
Bağlanmak | MLIR Türü | Tanım |
---|---|---|
epsilon | ::mlir::FloatAttr | 32 bitlik kayan nokta özelliği |
feature_index | ::mlir::TamsayıAttr | Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri |
scale | 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri |
offset | 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
output | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri |
batch_mean | 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri |
batch_var | 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri |
mhlo.bitcast
(mhlo :: bitcastop)
Bitcast Operasyonu
Sözdizimi:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Bu işlem XLA derleyicisi için özeldir, bu nedenle henüz bir spesifikasyon yoktur.
Gayri resmi olarak, bu işlem, elemanların fiziksel düzenlemesinin değişmediği şekilde girişin şeklini değiştirir.
Bu işlemin "elementlerin fiziksel düzenlemesi" ni anlamak için düzen bilgilerine ihtiyacı vardır ve MHLO'da düzen desteği şu anda devam etmekte olan bir çalışma.
Örnek:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Özellikler: AlwaysSpeculatableImplTrait
Arayüzler: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.bitcast_convert
(mhlo :: bitcastconvertop)
BitcastConvert İşlemi
Sözdizimi:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
operand
tensörde bir Bitcast işlemi gerçekleştirir ve tüm operand
tensörün bitlerinin result
tensörünün türü kullanılarak yeniden yorumlandığı bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Örnek:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Özellikler: AlwaysSpeculatableImplTrait
Arabirimler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.broadcast
(MHLO :: Broadcastop)
Yayın işlemi
Bu işlem StableHlo'dan çıkıyor, bu nedenle spesifikasyona dahil değil: https://github.com/openxla/stablehlo/issues/3
Gayri resmi olarak, bu işlem XLA'nın yayını ile aynı şeyi yapar: https://www.tensorflow.org/xla/operation_semantics#broadcast
Örnek:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, InferTensorType
, SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
broadcast_sizes | :: mlir :: yoğun | 64 bit Signess Integer Elements özniteliği |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.broadcast_in_dim
(MHLO :: BroadcastInimop)
BroadcastInim İşlemi
operand
tensördeki verileri çoğaltarak bir giriş tensörünün boyutlarını ve/veya sıralamasını genişletir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Örnek:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Özellikler: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
broadcast_dimensions | :: mlir :: yoğun | 64 bit Signess Integer Elements özniteliği |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4b11fnuz tipi veya f8e5m2 tipi veya f8e-tip tipi veya f8e5m2 tipi şamandıra veya 32 bit şamandıra veya 64 bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya karmaşık tip 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün nicelikli imzalı tamsayı veya 2/4/8/16/32-bit düzgün nicelenmiş unsigned sicile tamsayı veya 2/4/8/ Eksen başına 16/32 bit tekdüze kantifiye imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.case
(mhlo :: caseop)
Vaka işlemi
index
değerine bağlı olarak branches
tam olarak bir function
yürütmekten çıktıyı üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Örnek:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Özellikler: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Arayüzler: InferTypeOpInterface
İşlenenler:
İşlenen | Tanım |
---|---|
index | 32 bit imzasız tamsayı değerleri tensör |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32-bit tekdüze nicelendirilmiş unsigned smoneger değerleri veya 2 sıralı tensör ile yazın /4/8/16/32 bit tekdüze, eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze, eksen başına imzasız tamsayı değerleri veya jeton |
mhlo.cbrt
(MHLO :: CBRTOP)
CBRT işlemi
Sözdizimi:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
tensörde eleman bazında kübik kök işlemi gerçekleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Örnek:
%result = mhlo.cbrt %operand : tensor<4xf32>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32 bit tek tip niceli imzalı tamsayı veya 2/4/8/16/32 bit muntazam kantitsiz imzasız tamsayı değerleri olan BFLOAT16 tip veya karmaşık tip |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32 bit tek tip niceli imzalı tamsayı veya 2/4/8/16/32 bit muntazam kantitsiz imzasız tamsayı değerleri olan BFLOAT16 tip veya karmaşık tip |
mhlo.ceil
(MHLO :: Ceilop)
Tavan
Sözdizimi:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Element bazında operand
tensör tavanı gerçekleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceilil
Örnek:
%result = mhlo.ceil %operand : tensor<5xf32>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip veya 2/4/8/16/32-bit Tekdüzen Kantifize İmzalı Tamsayı veya 2/4/8/16/32-bit Düzgün Kantifize Olmayan Tamsayı Değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip veya 2/4/8/16/32-bit Tekdüzen Kantifize İmzalı Tamsayı veya 2/4/8/16/32-bit Düzgün Kantifize Olmayan Tamsayı Değerleri |
mhlo.cholesky
(MHLO :: Choleskyop)
Cholesky Operasyonu
Bir grup matrisin cholesky ayrışmasını hesaplar.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Örnek:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, InferTensorType
, SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
lower | :: mlir :: boolattr | Bool özniteliği |
İşlenenler:
İşlenen | Tanım |
---|---|
a | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra öğeleri ile BFLOAT16 tipi veya karmaşık tip |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra öğeleri ile BFLOAT16 tipi veya karmaşık tip |
mhlo.clamp
(MHLO :: Clampop)
Kelepçe işlemi
Sözdizimi:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
operand
tensörün her öğesini minimum ve maksimum değer arasında sıkıştırır ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Örnek:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Özellikler: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
, SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
min | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
max | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.collective_broadcast
(MHLO :: CollectiveBroadcastop)
Kolektifbroad yayın işlemi
Proses ızgarasındaki her işlem grubunda, operand
tensörün değerini kaynak işlemden hedef işlemlere gönderin ve bir result
tensörü üretin.
Bkz. Https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Örnek:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Özellikler: CompatibleOperandsAndResultType
Arayüzler: InferShapedTypeOpInterface
, InferTypeOpInterface
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
replica_groups | :: mlir :: yoğun | 64 bit Signess Integer Elements özniteliği |
channel_handle | :: mlir :: mhlo :: kanalHandleattr | İki 64 bit tamsayı 'sap' ve 'tip' |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.collective_permute
(MHLO :: CollectivePermuteop)
Kolektifermute işlemi
Proses ızgarasındaki her işlem grubunda, operand
tensörünün kaynak işleminden hedef sürece gönderir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Örnek:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, CompatibleOperandsAndResultType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
source_target_pairs | :: mlir :: yoğun | 64 bit Signess Integer Elements özniteliği |
channel_handle | :: mlir :: mhlo :: kanalHandleattr | İki 64 bit tamsayı 'sap' ve 'tip' |
İşlenenler:
İşlenen | Tanım |
---|---|
operand | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.compare
(mhlo :: compareop)
İşlemi karşılaştırın
Sözdizimi:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
comparison_direction
ve compare_type
göre lhs
ve rhs
tensörlerinin eleman bazında karşılaştırmasını gerçekleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Örnek:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, Elementwise
, InferTensorType
, SameOperandsAndResultShape
, SameOperandsElementType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
comparison_direction | :: mlir :: mhlo :: compiSIonDEvectionattrTr | Hangi karşılaştırma işlemi gerçekleştirecek. |
compare_type | :: mlir :: mhlo :: componationTypeattr | Hangi karşılaştırma türü kullanılacak. |
İşlenenler:
İşlenen | Tanım |
---|---|
lhs | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
rhs | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | Sıralı Tensör (diğer adıyla boolean veya 1-bit tamsayı) değerleri |
mhlo.complex
(mhlo :: complexop)
Karmaşık çalışma
Sözdizimi:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Bir çift gerçek ve hayali değer olan lhs
ve rhs
karmaşık bir değere eleman bazında dönüşüm gerçekleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Örnek:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, Elementwise
, SameOperandsAndResultShape
, SameOperandsElementType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
İşlenenler:
İşlenen | Tanım |
---|---|
lhs | 32 bit şamandıra veya 64 bit şamandıra değerleri sıralı tensör |
rhs | 32 bit şamandıra veya 64 bit şamandıra değerleri sıralı tensör |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | 32 bit şamandıra veya 64 bit şamandıra öğeleri ile karmaşık tipte sıralı tensör |
mhlo.composite
(mhlo :: compositeop)
Kompozit işlem
Sözdizimi:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Diğer stabilhlo operasyonlarının oluşturulduğu (bestelenen), inputs
ve composite_attributes
alarak ve results
üreten bir işlemi kapsar. OP'nin semantiği decomposition
özelliği tarafından uygulanır. composite
OP, program semantiğini değiştirmeden ayrışmasıyla değiştirilebilir. Ayrışmanın birleştirilmesinin aynı OP anlambilimini sağlamadığı durumlarda, custom_call
kullanmayı tercih edin.
version
alanı (varsayılan 0
kadar), bir kompozitin semantiğinin değiştiğini belirtmek için kullanılır.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Örnek:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Arayüzler: SymbolUserOpInterface
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
name | :: mlir :: stringattr | String özniteliği |
composite_attributes | :: mlir :: dictionaryattr | adlandırılmış öznitelik değerlerinin sözlüğü |
decomposition | :: mlir :: flatsymbolrefattr | Düz sembol referans özniteliği |
version | :: mlir :: integerattr | 32-bit Signess Integer Nititelik |
İşlenenler:
İşlenen | Tanım |
---|---|
inputs | F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32 bit tekdüze nicelendirilmiş niceli olmayan tamsayı veya 2/4/8 /16/32-bit tekdüze, eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze, eksen başına imzasız tamsayı değerleri veya jeton veya yuva tuple veya f4e2m1fn tipi veya f6e3m2fn herhangi bir tensör kombinasyonu ile yuva tuple type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1 -bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya 32 bit şamandıra veya 64 bit şamandıra elemanları ile karmaşık tip veya 2/4/8/16/32-bit Tekdüzen Nicelleştirilmiş İmzalı Tamsayı veya 2/4/8/16/32-bit Tekdüze Nicelendirilmiş Nicelenmemiş Tamsayı Değerleri veya 2/4/8/16/32 bit üniforma nicelendirilmiş tensör Eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelendirilmiş imzasız tamsayı değerleri veya jeton değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32 bit tekdüze nicelendirilmiş niceli olmayan tamsayı veya 2/4/8 /16/32-bit tekdüze, eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze, eksen başına imzasız tamsayı değerleri veya jeton veya yuva tuple veya f4e2m1fn tipi veya f6e3m2fn herhangi bir tensör kombinasyonu ile yuva tuple type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1 -bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya 32 bit şamandıra veya 64 bit şamandıra elemanları ile karmaşık tip veya 2/4/8/16/32-bit Tekdüzen Nicelleştirilmiş İmzalı Tamsayı veya 2/4/8/16/32-bit Tekdüze Nicelendirilmiş Nicelenmemiş Tamsayı Değerleri veya 2/4/8/16/32 bit üniforma nicelendirilmiş tensör Eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelendirilmiş imzasız tamsayı değerleri veya jeton değerleri |
mhlo.concatenate
(MHLO :: Concatesateop)
Birleştirme işlemi
dimension
boyutu boyunca inputs
değişken sayıda tensörü verilen argümanlarla aynı sırayla birleştirir ve bir result
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatesate
Örnek:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Özellikler: AlwaysSpeculatableImplTrait
SpeculatableImptrait, SameOperandsAndResultElementType
Arayüzler: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efektler: MemoryEffects::Effect{}
Özellikler:
Bağlanmak | Mlir tipi | Tanım |
---|---|---|
dimension | :: mlir :: integerattr | Değeri negatif olmayan 64 bit Signess Integer özelliği |
İşlenenler:
İşlenen | Tanım |
---|---|
val | F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32 bit tekdüze nicelendirilmiş niceli olmayan tamsayı veya 2/4/8 /16/32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
Sonuçlar:
Sonuç | Tanım |
---|---|
«İsimsiz» | F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri |
mhlo.constant
(MHLO :: Constantop)
Sürekli çalışma
Sabit bir value
bir output
tensörü üretir.
Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Örnek:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Özellikler: AlwaysSpeculatableImplTrait
, ConstantLike
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Sonuçlar:
Sonuç | Tanım |
---|---|
output | statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convert
(mhlo::ConvertOp)
Convert operation
Sözdizimi:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Örnek:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convolution
(mhlo::ConvolutionOp)
Convolution operation
Sözdizimi:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs
and slices of rhs
and produces result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Örnek:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.copy
(mhlo::CopyOp)
Copy operation
Sözdizimi:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand
. Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Örnek:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.cosine
(mhlo::CosineOp)
Cosine operation
Sözdizimi:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Örnek:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.count_leading_zeros
(mhlo::ClzOp)
Clz operation
Sözdizimi:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Örnek:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.create_token
(mhlo::CreateTokenOp)
CreateToken operation
Sözdizimi:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Örnek:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Sonuçlar:
Sonuç | Tanım |
---|---|
output | jeton |
mhlo.cross-replica-sum
(mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0
, use_global_device_ids = false
and computation
implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Örnek:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.custom_call
(mhlo::CustomCallOp)
CustomCall operation
Sözdizimi:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name
that takes inputs
and called_computations
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Örnek:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.divide
(mhlo::DivOp)
Div operation
Sözdizimi:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Örnek:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.domain
(mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.dot
(mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Örnek:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dot_general
(mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs
and slices of rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Örnek:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_broadcast_in_dim
(mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions
.
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Örnek:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_conv
(mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding
is specified dynamically via d_padding
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Örnek:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
d_padding | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_gather
(mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Örnek:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_iota
(mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Örnek:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Tanım |
---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_pad
(mhlo::DynamicPadOp)
DynamicPad operation
Sözdizimi:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand
, with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_reshape
(mhlo::DynamicReshapeOp)
DynamicReshape operation
Sözdizimi:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Örnek:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_slice
(mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand
using dynamically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Örnek:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_update_slice
(mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Sözdizimi:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result
tensor which is equal to the operand
tensor except that the slice starting at start_indices
is updated with the values in update
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Örnek:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
update | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.einsum
(mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Örnek:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.erf
(mhlo::ErfOp)
Erf operation
Sözdizimi:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#erf
Örnek:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.exponential
(mhlo::ExpOp)
Exp operation
Sözdizimi:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Örnek:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.exponential_minus_one
(mhlo::Expm1Op)
Expm1 operation
Sözdizimi:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Örnek:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fft
(mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Örnek:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.floor
(mhlo::FloorOp)
Floor operation
Sözdizimi:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Örnek:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fusion
(mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Sonuçlar:
Sonuç | Tanım |
---|---|
results | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.gather
(mhlo::GatherOp)
Gather operation
Gathers slices from operand
tensor from offsets specified in start_indices
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Örnek:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.get_dimension_size
(mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension
of the operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Örnek:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element
(mhlo::GetTupleElementOp)
GetTupleElement operation
Sözdizimi:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index
position of the operand
tuple and produces a result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Örnek:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Tanım |
---|---|
operand | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.if
(mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch
or false_branch
depending on the value of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
Operands:
Operand | Tanım |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.imag
(mhlo::ImagOp)
Imag operation
Sözdizimi:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Örnek:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.infeed
(mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Örnek:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
Operand | Tanım |
---|---|
token | jeton |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.iota
(mhlo::IotaOp)
Iota operation
Fills an output
tensor with values in increasing order starting from zero along the iota_dimension
dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Örnek:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Sonuçlar:
Sonuç | Tanım |
---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements değerler |
mhlo.is_finite
(mhlo::IsFiniteOp)
IsFinite operation
Sözdizimi:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x
is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Örnek:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
x | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Sonuçlar:
Sonuç | Tanım |
---|---|
y | ranked tensor of pred (AKA boolean or 1-bit integer) values |
mhlo.log
(mhlo::LogOp)
Log operation
Sözdizimi:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Örnek:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.log_plus_one
(mhlo::Log1pOp)
Log1p operation
Sözdizimi:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Örnek:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.logistic
(mhlo::LogisticOp)
Logistic operation
Sözdizimi:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Örnek:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.map
(mhlo::MapOp)
Map operation
Applies a map function computation
to inputs
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Örnek:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.maximum
(mhlo::MaxOp)
Max operation
Sözdizimi:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Örnek:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum
(mhlo::MinOp)
Min operation
Sözdizimi:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Örnek:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum_broadcast_shapes
(mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Sözdizimi:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i
corresponds to output i
.
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
shapes | variadic of 1D tensor of index values |
Sonuçlar:
Sonuç | Tanım |
---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply
(mhlo::MulOp)
Mul operation
Sözdizimi:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Örnek:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.negate
(mhlo::NegOp)
Neg operation
Sözdizimi:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Örnek:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.not
(mhlo::NotOp)
Not operation
Sözdizimi:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand
of type integer and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Örnek:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.optimization_barrier
(mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Sözdizimi:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand
are executed before any operations that depend on the result
and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result
= operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Örnek:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.or
(mhlo::OrOp)
Or operation
Sözdizimi:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Örnek:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.outfeed
(mhlo::OutfeedOp)
Outfeed operation
Writes inputs
to the outfeed and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Örnek:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | jeton |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | jeton |
mhlo.pad
(mhlo::PadOp)
Pad operation
Expands operand
by padding around the tensor as well as between the elements of the tensor with the given padding_value
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Örnek:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.partition_id
(mhlo::PartitionIdOp)
PartitionId operation
Sözdizimi:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Örnek:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt
(mhlo::PopulationCountOp)
PopulationCount operation
Sözdizimi:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Örnek:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.power
(mhlo::PowOp)
Pow operation
Sözdizimi:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs
tensor by rhs
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Örnek:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.real
(mhlo::RealOp)
Real operation
Sözdizimi:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Örnek:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.real_dynamic_slice
(mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Sözdizimi:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices
, limit_indices
and strides
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Örnek:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.recv
(mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Örnek:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type HOST_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 3>,
is_host_transfer = true
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Tanım |
---|---|
token | jeton |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.reduce
(mhlo::ReduceOp)
Reduce operation
Applies a reduction function body
to inputs
and init_values
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Örnek:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_precision
(mhlo::ReducePrecisionOp)
ReducePrecision operation
Sözdizimi:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand
to another floating-point type that uses exponent_bits
and mantissa_bits
and back to the original floating-point type and produces an output
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Örnek:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Sonuçlar:
Sonuç | Tanım |
---|---|
output | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.reduce_scatter
(mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations
, over the values of the operand
tensor from each process, splits the reduction result along scatter_dimension
into parts, and scatters the split parts between the processes to produce the result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Örnek:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_window
(mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body
to windows of inputs
and init_values
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Örnek:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.remainder
(mhlo::RemOp)
Rem operation
Sözdizimi:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Örnek:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.replica_id
(mhlo::ReplicaIdOp)
ReplicaId operation
Sözdizimi:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Örnek:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape
(mhlo::ReshapeOp)
Reshape operation
Sözdizimi:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand
tensor to a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Örnek:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.return
(mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return
$results attr-dict ( :
type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.rng
(mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution
algorithm and produces a result
tensor of a given shape shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Örnek:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
Operand | Tanım |
---|---|
a | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
b | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rng_bit_generator
(mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output
filled with uniform random data and an updated output state output_state
given an initial state initial_state
using the pseudorandom number generator algorithm rng_algorithm
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Örnek:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
Operand | Tanım |
---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Sonuçlar:
Sonuç | Tanım |
---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_afz
(mhlo::RoundOp)
Round operation
Sözdizimi:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Örnek:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_even
(mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Sözdizimi:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Örnek:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rsqrt
(mhlo::RsqrtOp)
Rsqrt operation
Sözdizimi:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand
tensor and produces a result
tensor, implementing the rSqrt
operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Örnek:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.scatter
(mhlo::ScatterOp)
Scatter operation
Produces results
tensors which are equal to inputs
tensors except that several slices specified by scatter_indices
are updated with the values updates
using update_computation
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Örnek:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects
, SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select
(mhlo::SelectOp)
Select operation
Sözdizimi:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result
tensor where each element is selected from on_true
or on_false
tensor based on the value of the corresponding element of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Örnek:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
on_true | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
on_false | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select_and_scatter
(mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source
tensor using scatter
based on the outcome of reduce_window
of the input
tensor using select
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Örnek:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
source | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.send
(mhlo::SendOp)
Send operation
Sends inputs
to a channel channel_id
and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Örnek:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_HOST>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 2>,
is_host_transfer = true
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | jeton |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | jeton |
mhlo.set_dimension_size
(mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Örnek:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
size | tensor of 32-bit signless integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.shift_left
(mhlo::ShiftLeftOp)
ShiftLeft operation
Sözdizimi:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Örnek:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_arithmetic
(mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Sözdizimi:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Örnek:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_logical
(mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Sözdizimi:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Örnek:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.sign
(mhlo::SignOp)
Sign operation
Sözdizimi:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand
element-wise and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Örnek:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.sine
(mhlo::SineOp)
Sine operation
Sözdizimi:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Örnek:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.slice
(mhlo::SliceOp)
Slice operation
Extracts a slice from the operand
using statically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Örnek:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sort
(mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs
together, according to a custom comparator
, along the given dimension
and produces a variadic number of tensors as results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Örnek:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Tanım |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sparse_dot
(mhlo::SparseDotOp)
Sparse dot operation
Similar to dot_general
operation, with one or both of the operands being sparse. An additional argument provides sparsity meta information. Disclaimer: this op is experimental / a work in progress.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
lhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
rhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
meta | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sqrt
(mhlo::SqrtOp)
Sqrt operation
Sözdizimi:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Örnek:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.stochastic_convert
(mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.subtract
(mhlo::SubtractOp)
Subtract operation
Sözdizimi:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Örnek:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.tan
(mhlo::TanOp)
Tan operation
Sözdizimi:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand)
element-wise.
Örnek:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tanh
(mhlo::TanhOp)
Tanh operation
Sözdizimi:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Örnek:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.topk
(mhlo::TopKOp)
TopK operation
Sözdizimi:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k
values and their indices, along the last dimension of the operand if largest=true
or the bottom k
values if largest=false
.
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Örnek:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
values | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
indices | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.torch_index_select
(mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims
attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Örnek:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
index | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.trace
(mhlo::TraceOp)
Trace operation
Sözdizimi:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Örnek:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.transpose
(mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand
tensor using permutation
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Örnek:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.triangular_solve
(mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Örnek:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
Operand | Tanım |
---|---|
a | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
b | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tuple
(mhlo::TupleOp)
Tuple operation
Sözdizimi:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result
tuple from values val
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Örnek:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
val | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.uniform_dequantize
(mhlo::UniformDequantizeOp)
UniformDequantize operation
Sözdizimi:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand
to a floating-point tensor result
according to the quantization parameters defined by the operand
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Örnek:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.uniform_quantize
(mhlo::UniformQuantizeOp)
UniformQuantize operation
Sözdizimi:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand
to a quantized tensor result
according to the quantization parameters defined by the result
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Örnek:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.while
(mhlo::WhileOp)
While operation
Produces the output from executing body
function 0 or more times while the cond
function outputs true
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Örnek:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
, OpAsmOpInterface
Operands:
Operand | Tanım |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.xla.rng_get_and_update_state
(mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Sözdizimi:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Attributes:
Bağlanmak | MLIR Type | Tanım |
---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Sonuçlar:
Sonuç | Tanım |
---|---|
«unnamed» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor
(mhlo::XorOp)
Xor operation
Sözdizimi:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Örnek:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Tanım |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Sonuçlar:
Sonuç | Tanım |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Attributes
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex
. The argTupleIndices
and resultTupleIndices
are used to index into nested tuples in operand and result respectively. If isMustAlias
is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1
may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
argTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
resultIndex | int64_t | |
resultTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
isMustAlias | bool |
ChannelHandleAttr
two 64-bit integers 'handle' and 'type'
Sözdizimi:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
halletmek | int64_t | |
tip | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Sözdizimi:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Enum cases:
- EQ (
EQ
) - NE (
NE
) - GE (
GE
) - GT (
GT
) - LE (
LE
) - LT (
LT
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Sözdizimi:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Enum cases:
- NOTYPE (
NOTYPE
) - FLOAT (
FLOAT
) - TOTALORDER (
TOTALORDER
) - SIGNED (
SIGNED
) - UNSIGNED (
UNSIGNED
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
inputBatchDimension | int64_t | |
inputFeatureDimension | int64_t | |
inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
kernelInputFeatureDimension | int64_t | |
kernelOutputFeatureDimension | int64_t | |
kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
outputBatchDimension | int64_t | |
outputFeatureDimension | int64_t | |
outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Sözdizimi:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr
, parameter
tells us which argument of the main
function of the module is prefetched, and indices
is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices
is the shape achieved after indexing by each element of indices
in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>>
is tensor<i32>
.
An empty value for indices
means the whole shape is prefetched.
Örneğin,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0
tells us that the async copy of the 0
th parameter is a cross_program_prefetch
, while the index
of [0]
tells us that the 0
th element of the tuple is prefetched while the other element of the tuple is not.
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
parametre | int64_t | |
endeksler | ::llvm::ArrayRef<int64_t> | Boyut |
telafi etmek | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Sözdizimi:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Enum cases:
- NONE (
NONE
) - LATEST (
LATEST
) - EARLIEST (
EARLIEST
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
Dequantization mode. Only MIN_COMBINED is supported.
Sözdizimi:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Enum cases:
- MIN_COMBINED (
MIN_COMBINED
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Sözdizimi:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Enum cases:
- sharding (
sharding
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Sözdizimi:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
lhsPrecisionType | Type | |
rhsPrecisionType | Type | |
accumulationType | Type | |
lhsComponentCount | int64_t | |
rhsComponentCount | int64_t | |
numPrimitiveOperations | int64_t | |
allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Boyut |
FftTypeAttr
XLA fast fourier transform type.
Sözdizimi:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Enum cases:
- FFT (
FFT
) - IFFT (
IFFT
) - RFFT (
RFFT
) - IRFFT (
IRFFT
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
fusion kind
Sözdizimi:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Enum cases:
- kLoop (
kLoop
) - kInput (
kInput
) - kOutput (
kOutput
) - kCustom (
kCustom
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
offsetDims | ::llvm::ArrayRef<int64_t> | Boyut |
collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Boyut |
operandBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
startIndexMap | ::llvm::ArrayRef<int64_t> | Boyut |
indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Sözdizimi:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index
. The output_tuple_indices
and operand_tuple_indices
are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
outputTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
operandIndex | int64_t | |
operandTupleIndices | ::llvm::ArrayRef<int64_t> | Boyut |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Sözdizimi:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - HIGH (
HIGH
) - HIGHEST (
HIGHEST
) - PACKED_NIBBLE (
PACKED_NIBBLE
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::Precision | an enum of type Precision |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Sözdizimi:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - THREE_FRY (
THREE_FRY
) - PHILOX (
PHILOX
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Sözdizimi:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Enum cases:
- UNIFORM (
UNIFORM
) - NORMAL (
NORMAL
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
updateWindowDims | ::llvm::ArrayRef<int64_t> | Boyut |
insertedWindowDims | ::llvm::ArrayRef<int64_t> | Boyut |
inputBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Boyut |
scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Boyut |
indexVectorDim | int64_t |
SparsityDescriptorAttr
Describes structured (N:M) sparsity configuration
Sözdizimi:
#mhlo.sparsity<
int64_t, # dimension
int64_t, # n
int64_t # m
>
This attribute is defined for a sparse dot operation with a structured sparse input tensor. With (N=2,M=4), every 4 consecutive logical elements have exactly 2 non-zero physical elements in the input tensor.
$dimension defines the index of the contracting dimension that is sparse (it has to be the most minor dimension). The additional metadata operand in the sparse dot operation defines which logical elements are zeroed out.
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
boyut | int64_t | |
N | int64_t | |
M | int64_t |
TransposeAttr
Transpose options
Sözdizimi:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Enum cases:
- TRANSPOSE_INVALID (
TRANSPOSE_INVALID
) - NO_TRANSPOSE (
NO_TRANSPOSE
) - TRANSPOSE (
TRANSPOSE
) - ADJOINT (
ADJOINT
)
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
değer | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Sözdizimi:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding
field of the tensor type.
See HLO_BoundedAttrInterface
for documentation for bounds
.
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
sınırlar | ::llvm::ArrayRef<int64_t> |
Türler
AsyncBundleType
Opaque collection of other types
Sözdizimi:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parameters:
Parametre | C++ type | Tanım |
---|---|---|
types | ::llvm::ArrayRef<Type> |
Enums
ComparisonDirection
Which comparison operation to perform.
Cases:
Sembol | Değer | Sicim |
---|---|---|
EQ | 0 | EQ |
NE | 1 | NE |
GE | 2 | GE |
GT | 3 | GT |
LE | 4 | LE |
LT | 5 | LT |
ComparisonType
Which comparison type to use.
Cases:
Sembol | Değer | Sicim |
---|---|---|
NOTYPE | 0 | NOTYPE |
BATMADAN YÜZMEK | 1 | BATMADAN YÜZMEK |
TOTALORDER | 2 | TOTALORDER |
SIGNED | 3 | SIGNED |
UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Cases:
Sembol | Değer | Sicim |
---|---|---|
API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Cases:
Sembol | Değer | Sicim |
---|---|---|
HİÇBİRİ | 0 | HİÇBİRİ |
EN SONUNCU | 1 | EN SONUNCU |
EARLIEST | 2 | EARLIEST |
DequantizeMode
Dequantization mode. Only MIN_COMBINED is supported.
Cases:
Sembol | Değer | Sicim |
---|---|---|
MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Cases:
Sembol | Değer | Sicim |
---|---|---|
sharding | 0 | sharding |
FftType
XLA fast fourier transform type.
Cases:
Sembol | Değer | Sicim |
---|---|---|
FFT | 0 | FFT |
IFFT | 1 | IFFT |
RFFT | 2 | RFFT |
IRFFT | 3 | IRFFT |
FusionKind
fusion kind
Cases:
Sembol | Değer | Sicim |
---|---|---|
kLoop | 0 | kLoop |
kInput | 1 | kInput |
kOutput | 2 | kOutput |
kCustom | 3 | kCustom |
Kesinlik
XLA precision for an operand. Has backend specific meaning.
Cases:
Sembol | Değer | Sicim |
---|---|---|
VARSAYILAN | 0 | VARSAYILAN |
YÜKSEK | 1 | YÜKSEK |
HIGHEST | 2 | HIGHEST |
PACKED_NIBBLE | 3 | PACKED_NIBBLE |
RngAlgorithm
XLA PRNG algorithm to be used.
Cases:
Sembol | Değer | Sicim |
---|---|---|
VARSAYILAN | 0 | VARSAYILAN |
THREE_FRY | 1 | THREE_FRY |
PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Cases:
Sembol | Değer | Sicim |
---|---|---|
UNIFORM | 1 | UNIFORM |
NORMAL | 2 | NORMAL |
Transpose
Transpose options
Cases:
Sembol | Değer | Sicim |
---|---|---|
TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
NO_TRANSPOSE | 1 | NO_TRANSPOSE |
TRANSPOSE | 2 | TRANSPOSE |
ADJOINT | 3 | ADJOINT |