'mhlo' Lehçe

Operasyonlar

mhlo.abs (mhlo::AbsOp)

Karın kasları operasyonu

Sözdizimi:

operation ::= `mhlo.abs` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operand tensör üzerinde eleman bazında abs işlemi gerçekleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs

Örnek:

%result = mhlo.abs %operand : tensor<3xi32>

Özellikler: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
operand 2/4/8/16/32/64 bit işaretsiz tamsayı veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2F tipi veya NUZ tipi veya f8E8M0FNU type veya 16-bit float veya 32-bit float veya 64-bit float veya bfloat16 type veya 32-bit float veya 64-bit float elemanları veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretli tamsayı veya karmaşık tip Eksen başına nicelenmiş 2/4/8/16/32 bit işaretli tamsayı veya 2/4/8/16/32 bit tek biçimli nicelenmiş işaretsiz tamsayı veya işaretsiz eksen başına 2/4/8/16/32 bit tekdüze nicelenmiş tam sayı değerleri

Sonuçlar:

Sonuç Tanım
result 2/4/8/16/32/64 bit işaretsiz tamsayı veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2F tipi veya NUZ tipi veya f8E8M0FNU type veya 16-bit float veya 32-bit float veya 64-bit float veya bfloat16 type veya 2/4/8/16/32-bit tekdüze nicelenmiş işaretli tamsayı veya 2/4/8/16/32-bit tekdüze nicelenmiş per eksen işaretli tamsayı veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretsiz tam sayı veya eksen başına 2/4/8/16/32-bit tek biçimli nicemlenmiş işaretsiz tam sayı değerleri

mhlo.add (mhlo::AddOp)

İşlem ekle

Sözdizimi:

operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

İki lhs ve rhs tensörünün eleman bazında toplamasını gerçekleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add

Örnek:

%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>

Özellikler: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
lhs f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri
rhs f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri

Sonuçlar:

Sonuç Tanım
result f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri

mhlo.add_dependency (mhlo::AddDependencyOp)

AddDependency işlemi

Sözdizimi:

operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)

Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.

Gayri resmi olarak, bu işlem iki işlenenden oluşur: bir veri işleneni ve bir belirteç. İşlemin çıktısı veri işlenenidir. AfterAll ile birlikte kullanıldığında bu işlem, yan etkisi olmayan işlemlerin (belirteç değerleri üretmeyenler) sıralanmasına olanak sağlar.

Örnek:

%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>

Nitelikler: AlwaysSpeculatableImplTrait

Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
operand f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan nokta öğeleri veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri veya 2/4 sıralanmış tensör /8/16/32-bit tek tip nicemlenmiş eksen işaretli tamsayı veya 2/4/8/16/32-bit tek tip nicemlenmiş eksen işaretsiz tamsayı değerleri veya belirteç
token jeton

Sonuçlar:

Sonuç Tanım
output f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan nokta öğeleri veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri veya 2/4 sıralanmış tensör /8/16/32-bit tek tip nicemlenmiş eksen işaretli tamsayı veya 2/4/8/16/32-bit tek tip nicemlenmiş eksen işaretsiz tamsayı değerleri veya belirteç

mhlo.after_all (mhlo::AfterAllOp)

Tüm işlemlerden sonra

Sözdizimi:

operation ::= `mhlo.after_all` $inputs attr-dict
              `:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))

inputs üreten işlemlerin, result bağlı işlemlerden önce yürütülmesini sağlar.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

Örnek:

%result = mhlo.after_all %input0, %input1 : !mhlo.token

Nitelikler: AlwaysSpeculatableImplTrait

Arayüzler: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
inputs token değişkenliği

Sonuçlar:

Sonuç Tanım
result jeton

mhlo.all_gather (mhlo::AllGatherOp)

AllGather işlemi

Süreç ızgarasındaki her süreç grubu içinde, all_gather_dim boyunca her süreçten işlenen tensörünün değerlerini birleştirir ve bir sonuç tensörü üretir. computation , operands her işlenen için ayrı ayrı uygulanır ve işlenen başına bir sonuç üretilir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather

Örnek:

%result = "mhlo.all_gather"(%operand) {
  all_gather_dim = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
  // use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>

Özellikler: SameOperandsAndResultElementType

Nitelikler:

Bağlanmak MLIR Türü Tanım
all_gather_dim ::mlir::TamsayıAttr Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği
replica_groups ::mlir::DenseIntElementsAttr 64 bit işaretsiz tam sayı öğeleri özelliği
channel_handle ::mlir::mhlo::ChannelHandleAttr iki adet 64-bit tamsayı 'tanımlayıcı' ve 'tip'
use_global_device_ids ::mlir::UnitAttr birim özelliği

İşlenenler:

İşlenen Tanım
operands f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«isimsiz» f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri

mhlo.all_reduce (mhlo::AllReduceOp)

AllReduce işlemi

Süreç ızgarasındaki her süreç grubu içinde, her süreçteki işlenen tensörünün değerlerine bir indirgeme fonksiyonu computation uygular ve bir sonuç tensörü üretir. computation , operands her işlenen için ayrı ayrı uygulanır ve işlenen başına bir sonuç üretilir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

Örnek:

%result = "mhlo.all_reduce"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
    %0 = mhlo.add %arg1, %arg2 : tensor<f32>
    mhlo.return %0 : tensor<f32>
}) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>

Nitelikler: InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface

Nitelikler:

Bağlanmak MLIR Türü Tanım
replica_groups ::mlir::DenseIntElementsAttr 64 bit işaretsiz tam sayı öğeleri özelliği
channel_handle ::mlir::mhlo::ChannelHandleAttr iki adet 64-bit tamsayı 'tanımlayıcı' ve 'tip'
use_global_device_ids ::mlir::UnitAttr birim özelliği

İşlenenler:

İşlenen Tanım
operands f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«isimsiz» f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri

mhlo.all_to_all (mhlo::AllToAllOp)

HepsindenTümüne işlemi

Süreç ızgarasındaki her süreç grubu içinde, operand tensörünün değerlerini split_dimension boyunca parçalara böler, bölünmüş parçaları işlemler arasında dağıtır, dağınık parçaları concat_dimension boyunca birleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all

Örnek:

%result = "mhlo.all_to_all"(%operand) {
  split_dimension = 1 : i64,
  concat_dimension = 0 : i64,
  split_count = 2 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>

Özellikler: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Nitelikler:

Bağlanmak MLIR Türü Tanım
split_dimension ::mlir::TamsayıAttr Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği
concat_dimension ::mlir::TamsayıAttr Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği
split_count ::mlir::TamsayıAttr Değeri pozitif olan 64 bitlik işaretsiz tamsayı özelliği
replica_groups ::mlir::DenseIntElementsAttr 64 bit işaretsiz tam sayı öğeleri özelliği
channel_handle ::mlir::mhlo::ChannelHandleAttr iki adet 64-bit tamsayı 'tanımlayıcı' ve 'tip'

İşlenenler:

İşlenen Tanım
operand f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«isimsiz» f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen başına nicelenmiş 16/32-bit işaretli tamsayı veya eksen başına 2/4/8/16/32-bit işaretsiz tamsayı değerleri

mhlo.and (mhlo::AndOp)

Ve operasyon

Sözdizimi:

operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

lhs ve rhs olmak üzere iki tensörün eleman bazında VE'sini gerçekleştirir ve result tensörünü üretir

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and

Örnek:

%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>

Özellikler: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
lhs pred'in sıralanmış tensörü (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı değerleri
rhs pred'in sıralanmış tensörü (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı değerleri

Sonuçlar:

Sonuç Tanım
result f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık tür 32 bitlik kayan nokta veya 64 bitlik kayan öğe veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8/16 /Eksen başına nicelenmiş 32 bitlik tek tip işaretli tam sayı veya eksen başına 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tamsayı değerleri

mhlo.async_done (mhlo::AsyncDoneOp)

AsyncDone işlemi

Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.

Gayri resmi olarak bu işlem, eşzamansız bir hesaplamanın sonuna kadar bloke eder. Eşzamansız hesaplamanın nihai sonucunu döndürür.

Daha fazla bilgi için AsyncStart belgelerine bakın.

Arayüzler: InferTypeOpInterface

İşlenenler:

İşlenen Tanım
bundle f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri

Sonuçlar:

Sonuç Tanım
«isimsiz» f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen işaretli tamsayı başına 16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tekdüze nicelenmiş işaretsiz tamsayı değerleri veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN dereceli tensörünün herhangi bir kombinasyonu ile belirteç veya iç içe geçmiş tuple tür veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1) -bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 32-bit kayan nokta veya 64 bit kayan öğeli karmaşık tür veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretli tamsayı veya 2/4/8/16/32-bit tek biçimli nicemlenmiş işaretsiz tamsayı değerleri veya 2/4/8/16/32-bit tek biçimli nicemlenmiş sıralanmış tensör eksen başına işaretli tam sayı veya eksen başına nicelenmiş 2/4/8/16/32 bit tek tip işaretsiz tam sayı değerleri veya simge değerleri

mhlo.async_start (mhlo::AsyncStartOp)

Eşzamansız Başlatma işlemi

Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.

Gayri resmi olarak, bu işlem eşzamansız bir hesaplamayı başlatır.

Bu, hem eşzamansız beklemeleri (DMA'lar gibi) hem de iş parçacığı üzerinde hesaplamayı içeren işlevler olduğunda kullanılır. Örneğin, bir fonksiyon bir hesaplama, bir DMA, başka bir hesaplama, ikinci bir DMA ve son bir hesaplamadan oluşabilir. Bu, bir async_start ve ardından async_update ve bir async_done olarak temsil edilir. async_start iş parçacığı üzerinde ilk hesaplamayı yapar ve ardından DMA'yı başlatır. async_update, henüz yapılmadıysa DMA'nın tamamlanmasını bekler, ardından işlevdeki ikinci hesaplamayı yürütür ve ikinci DMA'yı başlatır. Son olarak, async_done bu son DMA'yı bekleyecek ve ardından iş parçacığı üzerinde çalıştırılması gereken son hesaplamayı çalıştıracak ve bu son hesaplamanın sonucunu döndürecektir.

operands doğrudan hesaplamaya iletilir called_computation eşzamansız olarak çalıştırılacak olan işlevdir execution_thread içinde çalıştırılacağı iş parçacığının adıdır. Ana iş parçacığına "ana" denir. Tüm konuların isimleri vardır.

Bu, eşzamansız işlemler arasında gereken tüm durumu döndürür. Arabellek atamasından sonra dönüş değerleri, girişi, sonuçları ve eşzamansız işlem tarafından ihtiyaç duyulan veya düzenlenen not defterlerini tutmak için gereken alanı temsil eder.

Nitelikler:

Bağlanmak MLIR Türü Tanım
called_computation ::mlir::FlatSymbolRefAttr düz sembol referans özelliği
execution_thread ::mlir::StringAttr dize özelliği

İşlenenler:

İşlenen Tanım
inputs f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNU tipi veya f8E8M0FNU tipinin değişken tensörü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64- bit float veya bfloat16 tipi veya pred (AKA boolean veya 1 bitlik tam sayı) veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya 2/4/8/16/32/64 bitlik işaretsiz tam sayı veya karmaşık 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli veya 2/4/8/16/32 bitlik tekdüze nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı veya 2/4/8 /Eksen işaretli tamsayı başına 16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tekdüze nicelenmiş işaretsiz tamsayı değerleri veya f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN dereceli tensörünün herhangi bir kombinasyonu ile belirteç veya iç içe geçmiş tuple tür veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya pred (AKA boolean veya 1) -bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 32-bit kayan nokta veya 64 bit kayan öğeli karmaşık tür veya 2/4/8/16/32-bit tek biçimli nicelenmiş işaretli tamsayı veya 2/4/8/16/32-bit tek biçimli nicemlenmiş işaretsiz tamsayı değerleri veya 2/4/8/16/32-bit tek biçimli nicemlenmiş sıralanmış tensör eksen başına işaretli tam sayı veya eksen başına nicelenmiş 2/4/8/16/32 bit tek tip işaretsiz tam sayı değerleri veya simge değerleri

Sonuçlar:

Sonuç Tanım
«isimsiz» f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri

mhlo.async_update (mhlo::AsyncUpdateOp)

AsyncUpdate işlemi

Bu işlem XLA derleyicisine özel olduğundan henüz bir spesifikasyonu yoktur.

Gayri resmi olarak bu işlem, bir senkronizasyon engeline kadar eşzamansız bir hesaplamayı engeller. Bu, üzerinde çalıştıktan sonra bundle döndürür.

Daha fazla bilgi için AsyncStart belgelerine bakın.

Arayüzler: InferTypeOpInterface

İşlenenler:

İşlenen Tanım
bundle f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri

Sonuçlar:

Sonuç Tanım
«isimsiz» f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipinin herhangi bir sıralı tensör kombinasyonuna sahip async_bundle veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64-bit float veya bfloat16 türü veya pred (AKA boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit işaretsiz tamsayı veya 2/4/8/16/32/64-bit işaretsiz 32 bitlik kayan noktalı veya 64 bitlik kayan öğeli tamsayı veya karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicemlenmiş işaretsiz tam sayı veya 2/ Eksen başına işaretli tamsayıya göre 4/8/16/32-bit tek tip nicemlenmiş veya eksen başına 2/4/8/16/32-bit tek tip nicemlenmiş işaretsiz tamsayı değerleri veya simge değerleri

mhlo.atan2 (mhlo::Atan2Op)

Atan2 operasyonu

Sözdizimi:

operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

lhs ve rhs tensörü üzerinde eleman bazında atan2 işlemini gerçekleştirir ve result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2

Örnek:

%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>

Nitelikler: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
lhs f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya 32 bitlik kayan nokta veya 64 bitlik kayan öğeli karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri
rhs f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya 32 bitlik kayan nokta veya 64 bitlik kayan öğeli karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri

Sonuçlar:

Sonuç Tanım
result f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 türü veya 32 bitlik kayan nokta veya 64 bitlik kayan öğeli karmaşık tür veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretli tam sayı veya 2/4/8/16/32 bitlik tek biçimli nicelenmiş işaretsiz tam sayı değerleri

mhlo.batch_norm_grad (mhlo::BatchNormGradOp)

BatchNormGrad işlemi

grad_output geriye yayılan BatchNormTrainingOp'un çeşitli girişlerinin gradyanlarını hesaplar ve grad_operand , grad_scale ve grad_offset tensörlerini üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad

Örnek:

%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
    tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

Nitelikler: AlwaysSpeculatableImplTrait , InferTensorType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Nitelikler:

Bağlanmak MLIR Türü Tanım
epsilon ::mlir::FloatAttr 32 bitlik kayan nokta özelliği
feature_index ::mlir::TamsayıAttr Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği

İşlenenler:

İşlenen Tanım
operand f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
scale f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
mean f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
variance f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
grad_output f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri

Sonuçlar:

Sonuç Tanım
grad_operand f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
grad_scale f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
grad_offset f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri

mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)

BatchNormInference işlemi

operand tensörünü feature_index boyutu dışındaki tüm boyutlarda normalleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference

Örnek:

%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>

Nitelikler: AlwaysSpeculatableImplTrait , InferTensorType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Nitelikler:

Bağlanmak MLIR Türü Tanım
epsilon ::mlir::FloatAttr 32 bitlik kayan nokta özelliği
feature_index ::mlir::TamsayıAttr Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği

İşlenenler:

İşlenen Tanım
operand f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
scale f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
offset f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
mean f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri
variance f4E2M1FN tipi veya f6E2M3FN tipi veya f6E3M2FN tipi veya f8E3M4 tipi veya f8E4M3 tipi veya f8E4M3FN tipi veya f8E4M3FNUZ tipi veya f8E4M3B11FNUZ tipi veya f8E5M2 tipi veya f8E5M2FNUZ tipi veya f8E8M0FNU tipi veya 16 bit kayan nokta veya 32 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri

Sonuçlar:

Sonuç Tanım
result f4E2M1FN türü veya f6E2M3FN türü veya f6E3M2FN türü veya f8E3M4 türü veya f8E4M3 türü veya f8E4M3FN türü veya f8E4M3FNUZ türü veya f8E4M3B11FNUZ türü veya f8E5M2 türü veya f8E5M2FNUZ türü veya f8E8M0FNU türü veya 16 bit kayan nokta veya 3 2 bit kayan nokta veya 64 bit kayan nokta veya bfloat16 tür değerleri

mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)

BatchNormEğitim işlemi

Toplu iş ve uzamsal boyutlar arasında ortalama ve varyansı hesaplar ve feature_index boyutundaki her özellik için operand tensörünü normalleştirir ve output , batch_mean ve batch_var tensörlerini üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training

Örnek:

%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

Nitelikler: AlwaysSpeculatableImplTrait , InferTensorType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Nitelikler:

Bağlanmak MLIR Türü Tanım
epsilon ::mlir::FloatAttr 32 bitlik kayan nokta özelliği
feature_index ::mlir::TamsayıAttr Değeri negatif olmayan 64 bitlik işaretsiz tamsayı özelliği

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri
scale 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri
offset 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri

Sonuçlar:

Sonuç Tanım
output F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri
batch_mean 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri
batch_var 1D F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip Değerleri

mhlo.bitcast (mhlo :: bitcastop)

Bitcast Operasyonu

Sözdizimi:

operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)

Bu işlem XLA derleyicisi için özeldir, bu nedenle henüz bir spesifikasyon yoktur.

Gayri resmi olarak, bu işlem, elemanların fiziksel düzenlemesinin değişmediği şekilde girişin şeklini değiştirir.

Bu işlemin "elementlerin fiziksel düzenlemesi" ni anlamak için düzen bilgilerine ihtiyacı vardır ve MHLO'da düzen desteği şu anda devam etmekte olan bir çalışma.

Örnek:

%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>

Özellikler: AlwaysSpeculatableImplTrait

Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.bitcast_convert (mhlo :: bitcastconvertop)

BitcastConvert İşlemi

Sözdizimi:

operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)

operand tensörde bir Bitcast işlemi gerçekleştirir ve tüm operand tensörün bitlerinin result tensörünün türü kullanılarak yeniden yorumlandığı bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert

Örnek:

%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>

Özellikler: AlwaysSpeculatableImplTrait

Arabirimler: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.broadcast (MHLO :: Broadcastop)

Yayın işlemi

Bu işlem StableHlo'dan çıkıyor, bu nedenle spesifikasyona dahil değil: https://github.com/openxla/stablehlo/issues/3

Gayri resmi olarak, bu işlem XLA'nın yayını ile aynı şeyi yapar: https://www.tensorflow.org/xla/operation_semantics#broadcast

Örnek:

%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, InferTensorType , SameOperandsAndResultElementType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Özellikler:

Bağlanmak Mlir tipi Tanım
broadcast_sizes :: mlir :: yoğun 64 bit Signess Integer Elements özniteliği

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.broadcast_in_dim (MHLO :: BroadcastInimop)

BroadcastInim İşlemi

operand tensördeki verileri çoğaltarak bir giriş tensörünün boyutlarını ve/veya sıralamasını genişletir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim

Örnek:

%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>

Özellikler: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Arayüzler: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Özellikler:

Bağlanmak Mlir tipi Tanım
broadcast_dimensions :: mlir :: yoğun 64 bit Signess Integer Elements özniteliği

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4b11fnuz tipi veya f8e5m2 tipi veya f8e-tip tipi veya f8e5m2 tipi şamandıra veya 32 bit şamandıra veya 64 bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya karmaşık tip 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün nicelikli imzalı tamsayı veya 2/4/8/16/32-bit düzgün nicelenmiş unsigned sicile tamsayı veya 2/4/8/ Eksen başına 16/32 bit tekdüze kantifiye imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.case (mhlo :: caseop)

Vaka işlemi

index değerine bağlı olarak branches tam olarak bir function yürütmekten çıktıyı üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case

Örnek:

%result0, %result1 = "mhlo.case"(%index) ({
  mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
  mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)

Özellikler: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Arayüzler: InferTypeOpInterface

İşlenenler:

İşlenen Tanım
index 32 bit imzasız tamsayı değerleri tensör

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32-bit tekdüze nicelendirilmiş unsigned smoneger değerleri veya 2 sıralı tensör ile yazın /4/8/16/32 bit tekdüze, eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze, eksen başına imzasız tamsayı değerleri veya jeton

mhlo.cbrt (MHLO :: CBRTOP)

CBRT işlemi

Sözdizimi:

operation ::= `mhlo.cbrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operand tensörde eleman bazında kübik kök işlemi gerçekleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt

Örnek:

%result = mhlo.cbrt %operand : tensor<4xf32>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32 bit tek tip niceli imzalı tamsayı veya 2/4/8/16/32 bit muntazam kantitsiz imzasız tamsayı değerleri olan BFLOAT16 tip veya karmaşık tip

Sonuçlar:

Sonuç Tanım
result F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32 bit tek tip niceli imzalı tamsayı veya 2/4/8/16/32 bit muntazam kantitsiz imzasız tamsayı değerleri olan BFLOAT16 tip veya karmaşık tip

mhlo.ceil (MHLO :: Ceilop)

Tavan

Sözdizimi:

operation ::= `mhlo.ceil` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Element bazında operand tensör tavanı gerçekleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceilil

Örnek:

%result = mhlo.ceil %operand : tensor<5xf32>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip veya 2/4/8/16/32-bit Tekdüzen Kantifize İmzalı Tamsayı veya 2/4/8/16/32-bit Düzgün Kantifize Olmayan Tamsayı Değerleri

Sonuçlar:

Sonuç Tanım
result F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 Tip veya 2/4/8/16/32-bit Tekdüzen Kantifize İmzalı Tamsayı veya 2/4/8/16/32-bit Düzgün Kantifize Olmayan Tamsayı Değerleri

mhlo.cholesky (MHLO :: Choleskyop)

Cholesky Operasyonu

Bir grup matrisin cholesky ayrışmasını hesaplar.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky

Örnek:

%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, InferTensorType , SameOperandsAndResultElementType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Özellikler:

Bağlanmak Mlir tipi Tanım
lower :: mlir :: boolattr Bool özniteliği

İşlenenler:

İşlenen Tanım
a F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra öğeleri ile BFLOAT16 tipi veya karmaşık tip

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya 32 bit şamandıra veya 64 bit şamandıra öğeleri ile BFLOAT16 tipi veya karmaşık tip

mhlo.clamp (MHLO :: Clampop)

Kelepçe işlemi

Sözdizimi:

operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
              `:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))

operand tensörün her öğesini minimum ve maksimum değer arasında sıkıştırır ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp

Örnek:

%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>

Özellikler: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
min F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri
max F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
result F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.collective_broadcast (MHLO :: CollectiveBroadcastop)

Kolektifbroad yayın işlemi

Proses ızgarasındaki her işlem grubunda, operand tensörün değerini kaynak işlemden hedef işlemlere gönderin ve bir result tensörü üretin.

Bkz. Https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast

Örnek:

%result = "mhlo.collective_broadcast"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>

Özellikler: CompatibleOperandsAndResultType

Arayüzler: InferShapedTypeOpInterface , InferTypeOpInterface

Özellikler:

Bağlanmak Mlir tipi Tanım
replica_groups :: mlir :: yoğun 64 bit Signess Integer Elements özniteliği
channel_handle :: mlir :: mhlo :: kanalHandleattr İki 64 bit tamsayı 'sap' ve 'tip'

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.collective_permute (MHLO :: CollectivePermuteop)

Kolektifermute işlemi

Proses ızgarasındaki her işlem grubunda, operand tensörünün kaynak işleminden hedef sürece gönderir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute

Örnek:

%result = "mhlo.collective_permute"(%operand) {
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, CompatibleOperandsAndResultType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Özellikler:

Bağlanmak Mlir tipi Tanım
source_target_pairs :: mlir :: yoğun 64 bit Signess Integer Elements özniteliği
channel_handle :: mlir :: mhlo :: kanalHandleattr İki 64 bit tamsayı 'sap' ve 'tip'

İşlenenler:

İşlenen Tanım
operand F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.compare (mhlo :: compareop)

İşlemi karşılaştırın

Sözdizimi:

operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
              attr-dict `:` functional-type(operands, results)

comparison_direction ve compare_type göre lhs ve rhs tensörlerinin eleman bazında karşılaştırmasını gerçekleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare

Örnek:

%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Özellikler:

Bağlanmak Mlir tipi Tanım
comparison_direction :: mlir :: mhlo :: compiSIonDEvectionattrTr Hangi karşılaştırma işlemi gerçekleştirecek.
compare_type :: mlir :: mhlo :: componationTypeattr Hangi karşılaştırma türü kullanılacak.

İşlenenler:

İşlenen Tanım
lhs F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri
rhs F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» Sıralı Tensör (diğer adıyla boolean veya 1-bit tamsayı) değerleri

mhlo.complex (mhlo :: complexop)

Karmaşık çalışma

Sözdizimi:

operation ::= `mhlo.complex` operands attr-dict
              `:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))

Bir çift gerçek ve hayali değer olan lhs ve rhs karmaşık bir değere eleman bazında dönüşüm gerçekleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex

Örnek:

%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, Elementwise , SameOperandsAndResultShape , SameOperandsElementType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

İşlenenler:

İşlenen Tanım
lhs 32 bit şamandıra veya 64 bit şamandıra değerleri sıralı tensör
rhs 32 bit şamandıra veya 64 bit şamandıra değerleri sıralı tensör

Sonuçlar:

Sonuç Tanım
result 32 bit şamandıra veya 64 bit şamandıra öğeleri ile karmaşık tipte sıralı tensör

mhlo.composite (mhlo :: compositeop)

Kompozit işlem

Sözdizimi:

operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)

Diğer stabilhlo operasyonlarının oluşturulduğu (bestelenen), inputs ve composite_attributes alarak ve results üreten bir işlemi kapsar. OP'nin semantiği decomposition özelliği tarafından uygulanır. composite OP, program semantiğini değiştirmeden ayrışmasıyla değiştirilebilir. Ayrışmanın birleştirilmesinin aynı OP anlambilimini sağlamadığı durumlarda, custom_call kullanmayı tercih edin.

version alanı (varsayılan 0 kadar), bir kompozitin semantiğinin değiştiğini belirtmek için kullanılır.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite

Örnek:

%results = mhlo.composite "my.op" %arg0, %arg1 {
  decomposition = @my_op,
  composite_attributes = { my_attribute = "my_value" },
  version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>

Arayüzler: SymbolUserOpInterface

Özellikler:

Bağlanmak Mlir tipi Tanım
name :: mlir :: stringattr String özniteliği
composite_attributes :: mlir :: dictionaryattr adlandırılmış öznitelik değerlerinin sözlüğü
decomposition :: mlir :: flatsymbolrefattr Düz sembol referans özniteliği
version :: mlir :: integerattr 32-bit Signess Integer Nititelik

İşlenenler:

İşlenen Tanım
inputs F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32 bit tekdüze nicelendirilmiş niceli olmayan tamsayı veya 2/4/8 /16/32-bit tekdüze, eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze, eksen başına imzasız tamsayı değerleri veya jeton veya yuva tuple veya f4e2m1fn tipi veya f6e3m2fn herhangi bir tensör kombinasyonu ile yuva tuple type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1 -bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya 32 bit şamandıra veya 64 bit şamandıra elemanları ile karmaşık tip veya 2/4/8/16/32-bit Tekdüzen Nicelleştirilmiş İmzalı Tamsayı veya 2/4/8/16/32-bit Tekdüze Nicelendirilmiş Nicelenmemiş Tamsayı Değerleri veya 2/4/8/16/32 bit üniforma nicelendirilmiş tensör Eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelendirilmiş imzasız tamsayı değerleri veya jeton değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32 bit tekdüze nicelendirilmiş niceli olmayan tamsayı veya 2/4/8 /16/32-bit tekdüze, eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze, eksen başına imzasız tamsayı değerleri veya jeton veya yuva tuple veya f4e2m1fn tipi veya f6e3m2fn herhangi bir tensör kombinasyonu ile yuva tuple type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1 -bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya 32 bit şamandıra veya 64 bit şamandıra elemanları ile karmaşık tip veya 2/4/8/16/32-bit Tekdüzen Nicelleştirilmiş İmzalı Tamsayı veya 2/4/8/16/32-bit Tekdüze Nicelendirilmiş Nicelenmemiş Tamsayı Değerleri veya 2/4/8/16/32 bit üniforma nicelendirilmiş tensör Eksen başına imzalanan tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelendirilmiş imzasız tamsayı değerleri veya jeton değerleri

mhlo.concatenate (MHLO :: Concatesateop)

Birleştirme işlemi

dimension boyutu boyunca inputs değişken sayıda tensörü verilen argümanlarla aynı sırayla birleştirir ve bir result tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatesate

Örnek:

%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>

Özellikler: AlwaysSpeculatableImplTrait SpeculatableImptrait, SameOperandsAndResultElementType

Arayüzler: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efektler: MemoryEffects::Effect{}

Özellikler:

Bağlanmak Mlir tipi Tanım
dimension :: mlir :: integerattr Değeri negatif olmayan 64 bit Signess Integer özelliği

İşlenenler:

İşlenen Tanım
val F4E2M1FN tipi veya f6e2m3fn tipi veya f6e3m2fn tipi veya f8e3m4 tipi veya f8e4m3 tipi veya f8e4m3fnuz tipi veya f8e4m2 tip 16 bit şamandıra veya 32 bit şamandıra veya 64- bit şamandıra veya bfloat16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64 bit Signess Integer veya 2/4/8/16/32/64 bit imzasız tamsayı veya kompleks 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit düzgün niceli imzalı tamsayı veya 2/4/8/16/32 bit tekdüze nicelendirilmiş niceli olmayan tamsayı veya 2/4/8 /16/32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

Sonuçlar:

Sonuç Tanım
«İsimsiz» F4E2M1FN tipi veya f6e2m3fn tipi veya f8e3m2fn tipi veya f8e4m3 tipi veya f8e4m3fn tipi veya f8e4m3fnuz tipi veya f8e4m3b11fnuz tipi veya f8e5m2 tipi veya f8e5m2 tipi veya f8e veya 32 bit şamandıra veya 64 bit şamandıra veya BFLOAT16 tip veya pred (aka boolean veya 1-bit tamsayı) veya 2/4/8/16/32/64-bit Signess Integer veya 2/4/8/16/32/64-bit imzasız tamsayı veya karmaşık tip ile 32 bit şamandıra veya 64 bit şamandıra elemanları veya 2/4/8/16/32-bit tek tip niceli imzalı imzalı tamsayı veya 2/4/8/16/32-bit tekdüze niceli imzasız tamsayı veya 2/4/8/16 /32 bit tekdüze Eksen başına kantifiye imzalanmış tamsayı veya 2/4/8/16/32 bit tekdüze eksen başına nicelleştirilmiş imzasız tamsayı değerleri

mhlo.constant (MHLO :: Constantop)

Sürekli çalışma

Sabit bir value bir output tensörü üretir.

Bakınız: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant

Örnek:

%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>

Özellikler: AlwaysSpeculatableImplTrait , ConstantLike

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
value ::mlir::ElementsAttr constant vector/tensor attribute

Sonuçlar:

Sonuç Tanım
output statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.convert (mhlo::ConvertOp)

Convert operation

Sözdizimi:

operation ::= `mhlo.convert` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert

Örnek:

%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.convolution (mhlo::ConvolutionOp)

Convolution operation

Sözdizimi:

operation ::= `mhlo.convolution` `(`operands`)`
              `dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
              `window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
              $lhs_dilation, $rhs_dilation,
              $window_reversal) `}`
              attr-dict `:` functional-type(operands, results)

Computes dot products between windows of lhs and slices of rhs and produces result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

Örnek:

%result = "mhlo.convolution"(%lhs, %rhs) {
  window_strides = dense<4> : tensor<2xi64>,
  padding = dense<0> : tensor<2x2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
batch_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.copy (mhlo::CopyOp)

Copy operation

Sözdizimi:

operation ::= `mhlo.copy` operands attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.

Örnek:

%0 = mhlo.copy %arg0 : tensor<f32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
cross_program_prefetch_index ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.cosine (mhlo::CosineOp)

Cosine operation

Sözdizimi:

operation ::= `mhlo.cosine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise cosine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine

Örnek:

%result = mhlo.cosine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.count_leading_zeros (mhlo::ClzOp)

Clz operation

Sözdizimi:

operation ::= `mhlo.count_leading_zeros` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros

Örnek:

%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.create_token (mhlo::CreateTokenOp)

CreateToken operation

Sözdizimi:

operation ::= `mhlo.create_token` attr-dict `:` type(results)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

Örnek:

%output = mhlo.create_token : !mhlo.token

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Sonuçlar:

Sonuç Tanım
output jeton

mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)

CrossReplicaSum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

Örnek:

%result = "mhlo.cross-replica-sum"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.custom_call (mhlo::CustomCallOp)

CustomCall operation

Sözdizimi:

operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
              attr-dict `:` functional-type(operands, results)

Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call

Örnek:

%results = "mhlo.custom_call"(%input0) {
  call_target_name = "foo",
  has_side_effect = false,
  backend_config = "bar",
  api_version = 1 : i32,
  called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>

A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.

If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.

Depending on the API version there are two ways to pass extra bits of static
information to the external function:

1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
   dictionary attribute, that will be encoded according to the custom call
   calling convention and passed to the external function as the attributes
   argument. External code is expected to use declarative bindings (see
   `xla/runtime/custom_call.h`) to decode them at run time. These custom
   calls are only supported if XLA uses XLA runtime.

2. For previous API versions it is the user responsibility to encode extra
   bits of static information as a string `backend_config` attribute, and
   decode it at run time.

Interfaces: MemoryEffectOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
call_target_name ::mlir::StringAttr string attribute
has_side_effect ::mlir::BoolAttr bool attribute
backend_config ::mlir::Attribute string attribute or dictionary of named attribute values
api_version ::mlir::mhlo::CustomCallApiVersionAttr Custom call API version
called_computations ::mlir::ArrayAttr flat symbol ref array attribute
custom_call_schedule ::mlir::mhlo::CustomCallScheduleAttr Specifies the desired schedule for the custom-call.
operand_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
result_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of CustomCall

Operands:

Operand Tanım
inputs variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.divide (mhlo::DivOp)

Div operation

Sözdizimi:

operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide

Örnek:

%result = mhlo.divide %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.domain (mhlo::DomainOp)

Domain operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:

  • Prevent unintentionally optimizing instructions across domains.
  • Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
kind ::mlir::mhlo::DomainKindAttr Kind of domain metatdata attached to an HLO domain.
entry_metadata ::mlir::StringAttr string attribute
exit_metadata ::mlir::StringAttr string attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.dot (mhlo::DotOp)

Dot operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot

Örnek:

%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dot_general (mhlo::DotGeneralOp)

DotGeneral operation

Computes dot products between slices of lhs and slices of rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general

Örnek:

%result = "mhlo.dot_general"(%lhs, %rhs) {
  dot_dimension_numbers = #mhlo.dot<
    lhs_batching_dimensions = [0],
    rhs_batching_dimensions = [0],
    lhs_contracting_dimensions = [2],
    rhs_contracting_dimensions = [1]
  >,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
dot_dimension_numbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
precision_config ::mlir::ArrayAttr Precision Config attribute
algorithm ::mlir::mhlo::DotAlgorithmAttr Attribute that models the algorithm constraints to use for computing dot.

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)

DynamicBroadcastInDim operation

This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .

It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim

Örnek:

%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
  broadcast_dimensions = array<i64: 2, 1>,
  known_expanding_dimensions = array<i64: 0>,
  known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
broadcast_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_expanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_nonexpanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
output_dimensions 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_conv (mhlo::DynamicConvOp)

DynamicConv operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

Örnek:

%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
  window_strides = dense<4> : tensor<2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
batch_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
d_padding ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_gather (mhlo::DynamicGatherOp)

DynamicGather operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

Örnek:

%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
  dimension_numbers = #mhlo.gather<
    offset_dims = [2, 3],
    collapsed_slice_dims = [0],
    start_index_map = [0, 2],
    index_vector_dim = 2>,
  indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
indices_are_sorted ::mlir::BoolAttr bool attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
slice_sizes statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_iota (mhlo::DynamicIotaOp)

DynamicIota operation

This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota

Örnek:

%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
iota_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

Operand Tanım
output_shape 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_pad (mhlo::DynamicPadOp)

DynamicPad operation

Sözdizimi:

operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)

Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
padding_value ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
edge_padding_low 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
edge_padding_high 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
interior_padding 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)

DynamicReshape operation

Sözdizimi:

operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)

This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape

Örnek:

%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
output_shape 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_slice (mhlo::DynamicSliceOp)

DynamicSlice operation

Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice

Örnek:

%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
  : (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)

DynamicUpdateSlice operation

Sözdizimi:

operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)

Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice

Örnek:

%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
  : (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
update ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.einsum (mhlo::EinsumOp)

Einsum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum

Örnek:

%result = "mhlo.einsum"(%lhs, %rhs) {
  einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
einsum_config ::mlir::StringAttr string attribute

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.erf (mhlo::ErfOp)

Erf operation

Sözdizimi:

operation ::= `mhlo.erf` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise erf operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#erf

Örnek:

%result = mhlo.erf %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.exponential (mhlo::ExpOp)

Exp operation

Sözdizimi:

operation ::= `mhlo.exponential` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential

Örnek:

%result = mhlo.exponential %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.exponential_minus_one (mhlo::Expm1Op)

Expm1 operation

Sözdizimi:

operation ::= `mhlo.exponential_minus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one

Örnek:

%result = mhlo.exponential_minus_one %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.fft (mhlo::FftOp)

Fft operation

Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft

Örnek:

%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
fft_type ::mlir::mhlo::FftTypeAttr XLA fast fourier transform type.
fft_length ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.floor (mhlo::FloorOp)

Floor operation

Sözdizimi:

operation ::= `mhlo.floor` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise floor of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor

Örnek:

%result = mhlo.floor %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.fusion (mhlo::FusionOp)

Fusion operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.

Attributes:

Bağlanmak MLIR Type Tanım
fusion_kind ::mlir::mhlo::FusionKindAttr fusion kind
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of Fusion

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Sonuçlar:

Sonuç Tanım
results variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.gather (mhlo::GatherOp)

Gather operation

Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

Örnek:

%result = "mhlo.gather"(%operand, %start_indices) {
  dimension_numbers = #stablehlo.gather<
    offset_dims = [3, 4],
    collapsed_slice_dims = [1],
    operand_batching_dims = [0],
    start_indices_batching_dims = [1],
    start_index_map = [2, 1],
    index_vector_dim = 3>,
  slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
  indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
indices_are_sorted ::mlir::BoolAttr bool attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)

GetDimensionSize operation

Produces the size of the given dimension of the operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size

Örnek:

%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» tensor of 32-bit signless integer values

mhlo.get_tuple_element (mhlo::GetTupleElementOp)

GetTupleElement operation

Sözdizimi:

operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)

Extracts element at index position of the operand tuple and produces a result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element

Örnek:

%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
index ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operands:

Operand Tanım
operand nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.if (mhlo::IfOp)

If operation

Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if

Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor ) -> () }, { "mhlo.return"(%result_false_branch) : (tensor ) -> () }) : (tensor ) -> tensor

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface

Operands:

Operand Tanım
pred ranked tensor of pred (AKA boolean or 1-bit integer) values

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.imag (mhlo::ImagOp)

Imag operation

Sözdizimi:

operation ::= `mhlo.imag` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the imaginary part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag

Örnek:

%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.infeed (mhlo::InfeedOp)

Infeed operation

Reads data from the infeed and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed

Örnek:

%results:2 = "mhlo.infeed"(%token) {
  infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)

Attributes:

Bağlanmak MLIR Type Tanım
infeed_config ::mlir::StringAttr string attribute
layout ::mlir::ArrayAttr array attribute

Operands:

Operand Tanım
token jeton

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.iota (mhlo::IotaOp)

Iota operation

Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota

Örnek:

%output = mhlo.iota dim = 0 : tensor<4x5xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
iota_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Sonuçlar:

Sonuç Tanım
output statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements değerler

mhlo.is_finite (mhlo::IsFiniteOp)

IsFinite operation

Sözdizimi:

operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)

Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite

Örnek:

%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
x ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Sonuçlar:

Sonuç Tanım
y ranked tensor of pred (AKA boolean or 1-bit integer) values

mhlo.log (mhlo::LogOp)

Log operation

Sözdizimi:

operation ::= `mhlo.log` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log

Örnek:

%result = mhlo.log %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.log_plus_one (mhlo::Log1pOp)

Log1p operation

Sözdizimi:

operation ::= `mhlo.log_plus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one

Örnek:

%result = mhlo.log_plus_one %operand : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.logistic (mhlo::LogisticOp)

Logistic operation

Sözdizimi:

operation ::= `mhlo.logistic` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logistic operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic

Örnek:

%result = mhlo.logistic %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.map (mhlo::MapOp)

Map operation

Applies a map function computation to inputs along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map

Örnek:

%result = "mhlo.map"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.maximum (mhlo::MaxOp)

Max operation

Sözdizimi:

operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum

Örnek:

%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.minimum (mhlo::MinOp)

Min operation

Sözdizimi:

operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum

Örnek:

%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)

Minimizes the rank of two or more shapes to be broadcasted

Sözdizimi:

operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)

Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .

The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.

The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.

Here is an example with two input shapes:

mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
                                 [1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]

The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
shapes variadic of 1D tensor of index values

Sonuçlar:

Sonuç Tanım
results variadic of 1D tensor of index values

mhlo.multiply (mhlo::MulOp)

Mul operation

Sözdizimi:

operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise product of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply

Örnek:

%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.negate (mhlo::NegOp)

Neg operation

Sözdizimi:

operation ::= `mhlo.negate` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise negation of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate

Örnek:

%result = mhlo.negate %operand : tensor<2x3xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.not (mhlo::NotOp)

Not operation

Sözdizimi:

operation ::= `mhlo.not` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise NOT of tensor operand of type integer and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not

Örnek:

%result = mhlo.not %operand : tensor<5x3x1xi1>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)

OptimizationBarrier operation

Sözdizimi:

operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?

Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier

Örnek:

%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>

Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Sonuçlar:

Sonuç Tanım
result variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.or (mhlo::OrOp)

Or operation

Sözdizimi:

operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or

Örnek:

%result = mhlo.or %lhs, %rhs : tensor<2xi1>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.outfeed (mhlo::OutfeedOp)

Outfeed operation

Writes inputs to the outfeed and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed

Örnek:

%result = "mhlo.outfeed"(%input0, %token) {
  outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
outfeed_config ::mlir::StringAttr string attribute

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
token jeton

Sonuçlar:

Sonuç Tanım
«unnamed» jeton

mhlo.pad (mhlo::PadOp)

Pad operation

Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad

Örnek:

%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
  : (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
edge_padding_low ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
edge_padding_high ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
interior_padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
padding_value ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.partition_id (mhlo::PartitionIdOp)

PartitionId operation

Sözdizimi:

operation ::= `mhlo.partition_id` attr-dict `:` type(results)

Produces partition_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id

Örnek:

%result = mhlo.partition_id : tensor<ui32>

Interfaces: InferTypeOpInterface

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of 32-bit unsigned integer values

mhlo.popcnt (mhlo::PopulationCountOp)

PopulationCount operation

Sözdizimi:

operation ::= `mhlo.popcnt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt

Örnek:

%result = mhlo.popcnt %operand : tensor<4xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.power (mhlo::PowOp)

Pow operation

Sözdizimi:

operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power

Örnek:

%result = mhlo.power %lhs, %rhs : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.real (mhlo::RealOp)

Real operation

Sözdizimi:

operation ::= `mhlo.real` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the real part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real

Örnek:

%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)

RealDynamicSlice operation

Sözdizimi:

operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

Örnek:

%result = mhlo.real_dynamic_slice %operand,
            %start_indices, %limit_indices, %strides
       : (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
limit_indices 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
strides 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.recv (mhlo::RecvOp)

Recv operation

Receives data from a channel with channel_id and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv

Örnek:

%results:2 = "mhlo.recv"(%token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type HOST_TO_DEVICE>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 3>,
  is_host_transfer = true
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)

Attributes:

Bağlanmak MLIR Type Tanım
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute

Operands:

Operand Tanım
token jeton

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.reduce (mhlo::ReduceOp)

Reduce operation

Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce

Örnek:

%result = "mhlo.reduce"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
init_values variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.reduce_precision (mhlo::ReducePrecisionOp)

ReducePrecision operation

Sözdizimi:

operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
              attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))

Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision

Örnek:

%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
exponent_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
mantissa_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Sonuçlar:

Sonuç Tanım
output ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.reduce_scatter (mhlo::ReduceScatterOp)

ReduceScatter operation

Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter

Örnek:

%result = "mhlo.reduce_scatter"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
  %0 = mhlo.add %arg0, %arg1 : tensor<f32>
  mhlo.return %0 : tensor<f32>
}) {
  scatter_dimension = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>

Attributes:

Bağlanmak MLIR Type Tanım
scatter_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
use_global_device_ids ::mlir::UnitAttr unit attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.reduce_window (mhlo::ReduceWindowOp)

ReduceWindow operation

Applies a reduction function body to windows of inputs and init_values and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window

Örnek:

%result = "mhlo.reduce_window"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  window_dimensions = dense<[2, 1]> : tensor<2xi64>,
  window_strides = dense<[4, 1]> : tensor<2xi64>,
  base_dilations = dense<[2, 1]> : tensor<2xi64>,
  window_dilations = dense<[3, 1]> : tensor<2xi64>,
  padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
base_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
init_values variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.remainder (mhlo::RemOp)

Rem operation

Sözdizimi:

operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder

Örnek:

%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.replica_id (mhlo::ReplicaIdOp)

ReplicaId operation

Sözdizimi:

operation ::= `mhlo.replica_id` attr-dict `:` type(results)

Produces replica_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id

Örnek:

%result = mhlo.replica_id : tensor<ui32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of 32-bit unsigned integer values

mhlo.reshape (mhlo::ReshapeOp)

Reshape operation

Sözdizimi:

operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)

Performs reshape of operand tensor to a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape

Örnek:

%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.return (mhlo::ReturnOp)

_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425

Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.

Example:

    ```mlir
    %result = "mhlo.reduce"(%input, %init_value) ({
      ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
        %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
        "mhlo.return"(%0) : (tensor<i32>) -> ()
    }) {
      dimensions = dense<1> : tensor<1xi64>
    } : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
    ```_


Syntax:

```

operation ::= mhlo.return $results attr-dict ( : type($results)^)?



Traits: `AlwaysSpeculatableImplTrait`, `Terminator`

Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`

Effects: `MemoryEffects::Effect{}`

#### Operands:

| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values


### `mhlo.reverse` (mhlo::ReverseOp)

_Reverse operation_

Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.

See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>

Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.rng (mhlo::RngOp)

Rng operation

Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng

Örnek:

%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>

Traits: InferTensorType

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
rng_distribution ::mlir::mhlo::RngDistributionAttr XLA PRNG distribution to be used.

Operands:

Operand Tanım
a 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
b 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
shape 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)

RngBitGenerator operation

Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator

Örnek:

%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
rng_algorithm ::mlir::mhlo::RngAlgorithmAttr XLA PRNG algorithm to be used.

Operands:

Operand Tanım
initial_state ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Sonuçlar:

Sonuç Tanım
output_state ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
output statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.round_nearest_afz (mhlo::RoundOp)

Round operation

Sözdizimi:

operation ::= `mhlo.round_nearest_afz` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz

Örnek:

%result = mhlo.round_nearest_afz %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)

RoundNearestEven operation

Sözdizimi:

operation ::= `mhlo.round_nearest_even` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even

Örnek:

%result = mhlo.round_nearest_even %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.rsqrt (mhlo::RsqrtOp)

Rsqrt operation

Sözdizimi:

operation ::= `mhlo.rsqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt

Örnek:

%result = mhlo.rsqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.scatter (mhlo::ScatterOp)

Scatter operation

Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter

Örnek:

%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  scatter_dimension_numbers = #mhlo.scatter<
    update_window_dims = [3, 4],
    inserted_window_dims = [1],
    input_batching_dims = [0],
    scatter_indices_batching_dims = [1],
    scatter_dims_to_operand_dims = [2, 1],
    index_vector_dim = 3>,
  indices_are_sorted = false,
  unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>

Traits: RecursiveMemoryEffects , SameVariadicOperandSize

Interfaces: InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
scatter_dimension_numbers ::mlir::mhlo::ScatterDimensionNumbersAttr Attribute that models the dimension information for scatter
indices_are_sorted ::mlir::BoolAttr bool attribute
unique_indices ::mlir::BoolAttr bool attribute

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
scatter_indices ranked tensor of integer or index values
updates variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.select (mhlo::SelectOp)

Select operation

Sözdizimi:

operation ::= `mhlo.select` operands attr-dict `:`
              custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))

Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select

Örnek:

%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
pred ranked tensor of pred (AKA boolean or 1-bit integer) values
on_true ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
on_false ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.select_and_scatter (mhlo::SelectAndScatterOp)

SelectAndScatter operation

Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter

Örnek:

%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GE>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  window_dimensions = dense<[3, 1]> : tensor<2xi64>,
  window_strides = dense<[2, 1]> : tensor<2xi64>,
  padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>

Traits: RecursiveMemoryEffects

Interfaces: InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
source ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
init_value ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.send (mhlo::SendOp)

Send operation

Sends inputs to a channel channel_id and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send

Örnek:

%result = "mhlo.send"(%operand, %token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type DEVICE_TO_HOST>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 2>,
  is_host_transfer = true
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
token jeton

Sonuçlar:

Sonuç Tanım
«unnamed» jeton

mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)

SetDimensionSize operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize

Örnek:

%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
size tensor of 32-bit signless integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.shift_left (mhlo::ShiftLeftOp)

ShiftLeft operation

Sözdizimi:

operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left

Örnek:

%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)

ShiftRightArithmetic operation

Sözdizimi:

operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic

Örnek:

%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)

ShiftRightLogical operation

Sözdizimi:

operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical

Örnek:

%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.sign (mhlo::SignOp)

Sign operation

Sözdizimi:

operation ::= `mhlo.sign` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Returns the sign of the operand element-wise and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign

Örnek:

%result = mhlo.sign %operand : tensor<7xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.sine (mhlo::SineOp)

Sine operation

Sözdizimi:

operation ::= `mhlo.sine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise sine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine

Örnek:

%result = mhlo.sine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.slice (mhlo::SliceOp)

Slice operation

Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

Örnek:

%result = "mhlo.slice" (%operand) {
  start_indices = dense<[1, 2]> : tensor<2xi64>,
  limit_indices = dense<[3, 4]> : tensor<2xi64>,
  strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
start_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
limit_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.sort (mhlo::SortOp)

Sort operation

Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort

Örnek:

%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
    %predicate = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GT>
      } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
  dimension = 0 : i64,
  is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
dimension ::mlir::IntegerAttr 64-bit signless integer attribute
is_stable ::mlir::BoolAttr bool attribute

Operands:

Operand Tanım
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.sparse_dot (mhlo::SparseDotOp)

Sparse dot operation

Similar to dot_general operation, with one or both of the operands being sparse. An additional argument provides sparsity meta information. Disclaimer: this op is experimental / a work in progress.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
lhs_sparsity ::mlir::mhlo::SparsityDescriptorAttr Describes structured (N:M) sparsity configuration
rhs_sparsity ::mlir::mhlo::SparsityDescriptorAttr Describes structured (N:M) sparsity configuration
dot_dimension_numbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Tanım
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
meta variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.sqrt (mhlo::SqrtOp)

Sqrt operation

Sözdizimi:

operation ::= `mhlo.sqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise square root operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt

Örnek:

%result = mhlo.sqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.stochastic_convert (mhlo::StochasticConvertOp)

StochasticConvert operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295

Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.

Traits: AlwaysSpeculatableImplTrait , Elementwise

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
random ranked tensor of 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.subtract (mhlo::SubtractOp)

Subtract operation

Sözdizimi:

operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract

Örnek:

%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.tan (mhlo::TanOp)

Tan operation

Sözdizimi:

operation ::= `mhlo.tan` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954

Informally, this operation returns Tan(operand) element-wise.

Örnek:

%0 = mhlo.tan %arg0 : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

mhlo.tanh (mhlo::TanhOp)

Tanh operation

Sözdizimi:

operation ::= `mhlo.tanh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh

Örnek:

%result = mhlo.tanh %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.topk (mhlo::TopKOp)

TopK operation

Sözdizimi:

operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
              type($operand) `->` `(`type($values)`,` type($indices)`)`

Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .

See: https://www.tensorflow.org/xla/operation_semantics#top-k

Örnek:

%values, %indices = mhlo.topk(%operand, k=5, largest=true)
  : tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)

Traits: InferTensorType , RecursiveMemoryEffects

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
k ::mlir::IntegerAttr 64-bit signless integer attribute
largest ::mlir::BoolAttr bool attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
values ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
indices ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.torch_index_select (mhlo::TorchIndexSelectOp)

TorchIndexSelect operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html

The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.

Örnek:

%result = "mhlo.torch_index_select"(%operand, %index) {
  dim = 2 : i64,
  batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
dim ::mlir::IntegerAttr 64-bit signless integer attribute
batch_dims ::mlir::IntegerAttr 64-bit signless integer attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
index ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.trace (mhlo::TraceOp)

Trace operation

Sözdizimi:

operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604

It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.

Örnek:

mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>

Attributes:

Bağlanmak MLIR Type Tanım
tag ::mlir::StringAttr string attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.transpose (mhlo::TransposeOp)

Transpose operation

Permutes the dimensions of operand tensor using permutation and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose

Örnek:

%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
permutation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.triangular_solve (mhlo::TriangularSolveOp)

TriangularSolve operation

Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve

Örnek:

%result = "mhlo.triangular_solve"(%a, %b) {
  left_side = true,
  lower = true,
  unit_diagonal = false,
  transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Bağlanmak MLIR Type Tanım
left_side ::mlir::BoolAttr bool attribute
lower ::mlir::BoolAttr bool attribute
unit_diagonal ::mlir::BoolAttr bool attribute
transpose_a ::mlir::mhlo::TransposeAttr Transpose options

Operands:

Operand Tanım
a ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values
b ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Sonuçlar:

Sonuç Tanım
«unnamed» ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

mhlo.tuple (mhlo::TupleOp)

Tuple operation

Sözdizimi:

operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))

Produces a result tuple from values val .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple

Örnek:

%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
val variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Sonuçlar:

Sonuç Tanım
result nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)

UniformDequantize operation

Sözdizimi:

operation ::= `mhlo.uniform_dequantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize

Örnek:

%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.uniform_quantize (mhlo::UniformQuantizeOp)

UniformQuantize operation

Sözdizimi:

operation ::= `mhlo.uniform_quantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize

Örnek:

%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.while (mhlo::WhileOp)

While operation

Produces the output from executing body function 0 or more times while the cond function outputs true .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while

Örnek:

%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction LT>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface , OpAsmOpInterface

Operands:

Operand Tanım
operand variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Sonuçlar:

Sonuç Tanım
«unnamed» variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)

XlaRngGetAndUpdateState operation

Sözdizimi:

operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.

The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.

Interfaces: InferTypeOpInterface

Attributes:

Bağlanmak MLIR Type Tanım
delta ::mlir::IntegerAttr 64-bit signless integer attribute

Sonuçlar:

Sonuç Tanım
«unnamed» statically shaped tensor of 64-bit unsigned integer values

mhlo.xor (mhlo::XorOp)

Xor operation

Sözdizimi:

operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor

Örnek:

%result = mhlo.xor %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Tanım
lhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Sonuçlar:

Sonuç Tanım
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Attributes

ArgResultAliasAttr

Attribute that models the alias relationship of entry function argument

This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.

This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.

func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
    mhlo.result_alias<result_index = [2], ...>}
  ) -> tensor<2xf32>, tensor<3xf32> {
  // function body ...
}

Parameters:

Parametre C++ type Tanım
argTupleIndices ::llvm::ArrayRef<int64_t> Boyut
resultIndex int64_t
resultTupleIndices ::llvm::ArrayRef<int64_t> Boyut
isMustAlias bool

ChannelHandleAttr

two 64-bit integers 'handle' and 'type'

Sözdizimi:

#mhlo.channel_handle<
  int64_t,   # handle
  int64_t   # type
>

Parameters:

Parametre C++ type Tanım
halletmek int64_t
tip int64_t

ComparisonDirectionAttr

Which comparison operation to perform.

Sözdizimi:

#mhlo.comparison_direction<
  ::mlir::mhlo::ComparisonDirection   # value
>

Enum cases:

  • EQ ( EQ )
  • NE ( NE )
  • GE ( GE )
  • GT ( GT )
  • LE ( LE )
  • LT ( LT )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::ComparisonDirection an enum of type ComparisonDirection

ComparisonTypeAttr

Which comparison type to use.

Sözdizimi:

#mhlo.comparison_type<
  ::mlir::mhlo::ComparisonType   # value
>

Enum cases:

  • NOTYPE ( NOTYPE )
  • FLOAT ( FLOAT )
  • TOTALORDER ( TOTALORDER )
  • SIGNED ( SIGNED )
  • UNSIGNED ( UNSIGNED )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::ComparisonType an enum of type ComparisonType

ConvDimensionNumbersAttr

Structure of dimension information for conv op

Parameters:

Parametre C++ type Tanım
inputBatchDimension int64_t
inputFeatureDimension int64_t
inputSpatialDimensions ::llvm::ArrayRef<int64_t> Boyut
kernelInputFeatureDimension int64_t
kernelOutputFeatureDimension int64_t
kernelSpatialDimensions ::llvm::ArrayRef<int64_t> Boyut
outputBatchDimension int64_t
outputFeatureDimension int64_t
outputSpatialDimensions ::llvm::ArrayRef<int64_t> Boyut

CrossProgramPrefetchAttr

Argument that is prefetched from another program

Sözdizimi:

#mhlo.cross_program_prefetch<
  int64_t,   # parameter
  ::llvm::ArrayRef<int64_t>,   # indices
  std::optional<int64_t>   # offset
>

This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.

A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .

An empty value for indices means the whole shape is prefetched.

Örneğin,

module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
  func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
    return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
  func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
    %2 = "mhlo.async_done"(%1) {called_computation=@copy}
    return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
}

The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.

Parameters:

Parametre C++ type Tanım
parametre int64_t
endeksler ::llvm::ArrayRef<int64_t> Boyut
telafi etmek std::optional<int64_t>

CustomCallScheduleAttr

Specifies the desired schedule for the custom-call.

Sözdizimi:

#mhlo.custom_call_schedule<
  ::mlir::mhlo::CustomCallSchedule   # value
>

Enum cases:

  • NONE ( NONE )
  • LATEST ( LATEST )
  • EARLIEST ( EARLIEST )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::CustomCallSchedule an enum of type CustomCallSchedule

DequantizeModeAttr

Dequantization mode. Only MIN_COMBINED is supported.

Sözdizimi:

#mhlo.dequantize_mode<
  ::mlir::mhlo::DequantizeMode   # value
>

Enum cases:

  • MIN_COMBINED ( MIN_COMBINED )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::DequantizeMode an enum of type DequantizeMode

DomainKindAttr

Kind of domain metatdata attached to an HLO domain.

Sözdizimi:

#mhlo.kind<
  ::mlir::mhlo::DomainKind   # value
>

Enum cases:

  • sharding ( sharding )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::DomainKind an enum of type DomainKind

DotAlgorithmAttr

Attribute that models the algorithm constraints to use for computing dot.

Sözdizimi:

#mhlo.dot_algorithm<
  Type,   # lhsPrecisionType
  Type,   # rhsPrecisionType
  Type,   # accumulationType
  int64_t,   # lhsComponentCount
  int64_t,   # rhsComponentCount
  int64_t,   # numPrimitiveOperations
  bool   # allowImpreciseAccumulation
>

Parameters:

Parametre C++ type Tanım
lhsPrecisionType Type
rhsPrecisionType Type
accumulationType Type
lhsComponentCount int64_t
rhsComponentCount int64_t
numPrimitiveOperations int64_t
allowImpreciseAccumulation bool

DotDimensionNumbersAttr

Attribute that models the dimension information for dot.

Parameters:

Parametre C++ type Tanım
lhsBatchingDimensions ::llvm::ArrayRef<int64_t> Boyut
rhsBatchingDimensions ::llvm::ArrayRef<int64_t> Boyut
lhsContractingDimensions ::llvm::ArrayRef<int64_t> Boyut
rhsContractingDimensions ::llvm::ArrayRef<int64_t> Boyut

FftTypeAttr

XLA fast fourier transform type.

Sözdizimi:

#mhlo.fft_type<
  ::mlir::mhlo::FftType   # value
>

Enum cases:

  • FFT ( FFT )
  • IFFT ( IFFT )
  • RFFT ( RFFT )
  • IRFFT ( IRFFT )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::FftType an enum of type FftType

FusionKindAttr

fusion kind

Sözdizimi:

#mhlo.fusion_kind<
  ::mlir::mhlo::FusionKind   # value
>

Enum cases:

  • kLoop ( kLoop )
  • kInput ( kInput )
  • kOutput ( kOutput )
  • kCustom ( kCustom )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::FusionKind an enum of type FusionKind

GatherDimensionNumbersAttr

Attribute that models the dimension information for gather

Parameters:

Parametre C++ type Tanım
offsetDims ::llvm::ArrayRef<int64_t> Boyut
collapsedSliceDims ::llvm::ArrayRef<int64_t> Boyut
operandBatchingDims ::llvm::ArrayRef<int64_t> Boyut
startIndicesBatchingDims ::llvm::ArrayRef<int64_t> Boyut
startIndexMap ::llvm::ArrayRef<int64_t> Boyut
indexVectorDim int64_t

OutputOperandAliasAttr

Attribute that models the alias relationship of output and operand of a CustomCall op

Sözdizimi:

#mhlo.output_operand_alias<
  ::llvm::ArrayRef<int64_t>,   # outputTupleIndices
  int64_t,   # operandIndex
  ::llvm::ArrayRef<int64_t>   # operandTupleIndices
>

This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.

See https://www.tensorflow.org/xla/aliasing

Example when used as array with in mhlo.custom-call:

%0 = "mhlo.custom_call"(%arg0, %arg1) {
  // other attributes
  output_operand_alias = [
    #mhlo.output_operand_alias<output_tuple_indices = [0],
                               operand_index = 0,
                               operand_tuple_indices = [1]>
  ]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>

The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.

Parameters:

Parametre C++ type Tanım
outputTupleIndices ::llvm::ArrayRef<int64_t> Boyut
operandIndex int64_t
operandTupleIndices ::llvm::ArrayRef<int64_t> Boyut

PrecisionAttr

XLA precision for an operand. Has backend specific meaning.

Sözdizimi:

#mhlo.precision<
  ::mlir::mhlo::Precision   # value
>

Enum cases:

  • DEFAULT ( DEFAULT )
  • HIGH ( HIGH )
  • HIGHEST ( HIGHEST )
  • PACKED_NIBBLE ( PACKED_NIBBLE )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::Precision an enum of type Precision

RngAlgorithmAttr

XLA PRNG algorithm to be used.

Sözdizimi:

#mhlo.rng_algorithm<
  ::mlir::mhlo::RngAlgorithm   # value
>

Enum cases:

  • DEFAULT ( DEFAULT )
  • THREE_FRY ( THREE_FRY )
  • PHILOX ( PHILOX )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::RngAlgorithm an enum of type RngAlgorithm

RngDistributionAttr

XLA PRNG distribution to be used.

Sözdizimi:

#mhlo.rng_distribution<
  ::mlir::mhlo::RngDistribution   # value
>

Enum cases:

  • UNIFORM ( UNIFORM )
  • NORMAL ( NORMAL )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::RngDistribution an enum of type RngDistribution

ScatterDimensionNumbersAttr

Attribute that models the dimension information for scatter

Parameters:

Parametre C++ type Tanım
updateWindowDims ::llvm::ArrayRef<int64_t> Boyut
insertedWindowDims ::llvm::ArrayRef<int64_t> Boyut
inputBatchingDims ::llvm::ArrayRef<int64_t> Boyut
scatterIndicesBatchingDims ::llvm::ArrayRef<int64_t> Boyut
scatterDimsToOperandDims ::llvm::ArrayRef<int64_t> Boyut
indexVectorDim int64_t

SparsityDescriptorAttr

Describes structured (N:M) sparsity configuration

Sözdizimi:

#mhlo.sparsity<
  int64_t,   # dimension
  int64_t,   # n
  int64_t   # m
>

This attribute is defined for a sparse dot operation with a structured sparse input tensor. With (N=2,M=4), every 4 consecutive logical elements have exactly 2 non-zero physical elements in the input tensor.

$dimension defines the index of the contracting dimension that is sparse (it has to be the most minor dimension). The additional metadata operand in the sparse dot operation defines which logical elements are zeroed out.

Parameters:

Parametre C++ type Tanım
boyut int64_t
N int64_t
M int64_t

TransposeAttr

Transpose options

Sözdizimi:

#mhlo.transpose<
  ::mlir::mhlo::Transpose   # value
>

Enum cases:

  • TRANSPOSE_INVALID ( TRANSPOSE_INVALID )
  • NO_TRANSPOSE ( NO_TRANSPOSE )
  • TRANSPOSE ( TRANSPOSE )
  • ADJOINT ( ADJOINT )

Parameters:

Parametre C++ type Tanım
değer ::mlir::mhlo::Transpose an enum of type Transpose

TypeExtensionsAttr

Attribute that extends tensor type with MHLO type properties.

Sözdizimi:

#mhlo.type_extensions<
  ::llvm::ArrayRef<int64_t>   # bounds
>

This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.

See HLO_BoundedAttrInterface for documentation for bounds .

Parameters:

Parametre C++ type Tanım
sınırlar ::llvm::ArrayRef<int64_t>

Türler

AsyncBundleType

Opaque collection of other types

Sözdizimi:

!mhlo.async_bundle<
  ::llvm::ArrayRef<Type>   # types
>

Parameters:

Parametre C++ type Tanım
types ::llvm::ArrayRef<Type>

Enums

ComparisonDirection

Which comparison operation to perform.

Cases:

Sembol Değer Sicim
EQ 0 EQ
NE 1 NE
GE 2 GE
GT 3 GT
LE 4 LE
LT 5 LT

ComparisonType

Which comparison type to use.

Cases:

Sembol Değer Sicim
NOTYPE 0 NOTYPE
BATMADAN YÜZMEK 1 BATMADAN YÜZMEK
TOTALORDER 2 TOTALORDER
SIGNED 3 SIGNED
UNSIGNED 4 UNSIGNED

CustomCallApiVersion

Custom call API version

Cases:

Sembol Değer Sicim
API_VERSION_UNSPECIFIED 0 API_VERSION_UNSPECIFIED
API_VERSION_ORIGINAL 1 API_VERSION_ORIGINAL
API_VERSION_STATUS_RETURNING 2 API_VERSION_STATUS_RETURNING
API_VERSION_STATUS_RETURNING_UNIFIED 3 API_VERSION_STATUS_RETURNING_UNIFIED
API_VERSION_TYPED_FFI 4 API_VERSION_TYPED_FFI

CustomCallSchedule

Specifies the desired schedule for the custom-call.

Cases:

Sembol Değer Sicim
HİÇBİRİ 0 HİÇBİRİ
EN SONUNCU 1 EN SONUNCU
EARLIEST 2 EARLIEST

DequantizeMode

Dequantization mode. Only MIN_COMBINED is supported.

Cases:

Sembol Değer Sicim
MIN_COMBINED 0 MIN_COMBINED

DomainKind

Kind of domain metatdata attached to an HLO domain.

Cases:

Sembol Değer Sicim
sharding 0 sharding

FftType

XLA fast fourier transform type.

Cases:

Sembol Değer Sicim
FFT 0 FFT
IFFT 1 IFFT
RFFT 2 RFFT
IRFFT 3 IRFFT

FusionKind

fusion kind

Cases:

Sembol Değer Sicim
kLoop 0 kLoop
kInput 1 kInput
kOutput 2 kOutput
kCustom 3 kCustom

Kesinlik

XLA precision for an operand. Has backend specific meaning.

Cases:

Sembol Değer Sicim
VARSAYILAN 0 VARSAYILAN
YÜKSEK 1 YÜKSEK
HIGHEST 2 HIGHEST
PACKED_NIBBLE 3 PACKED_NIBBLE

RngAlgorithm

XLA PRNG algorithm to be used.

Cases:

Sembol Değer Sicim
VARSAYILAN 0 VARSAYILAN
THREE_FRY 1 THREE_FRY
PHILOX 2 PHILOX

RngDistribution

XLA PRNG distribution to be used.

Cases:

Sembol Değer Sicim
UNIFORM 1 UNIFORM
NORMAL 2 NORMAL

Transpose

Transpose options

Cases:

Sembol Değer Sicim
TRANSPOSE_INVALID 0 TRANSPOSE_INVALID
NO_TRANSPOSE 1 NO_TRANSPOSE
TRANSPOSE 2 TRANSPOSE
ADJOINT 3 ADJOINT