Definição de operação
mhlo.abs
(mhlo::AbsOp)
Operação abdominal
Sintaxe:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa operação abs elemento a elemento no tensor operand
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Exemplo:
%result = mhlo.abs %operand : tensor<3xi32>
Características: AlwaysSpeculatableImplTrait, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
operand | tensor de número inteiro sem sinal de 4/8/16/32/64 bits ou tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou complexo tipo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou inteiros assinados quantizados uniformes de 4/8/16/32 bits ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
result | tensor de número inteiro sem sinal de 4/8/16/32/64 bits ou tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou 4 /8/16/32 bits inteiro com sinal quantizado uniforme ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.add
(mhlo::AddOp)
Adicionar operação
Sintaxe:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Executa a adição elemento a elemento de dois tensores lhs
e rhs
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Exemplo:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Características: AlwaysSpeculatableImplTrait, Comutativo, CompatívelOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
lhs | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
rhs | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
result | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.add_dependency
(mhlo::AddDependencyOp)
Operação AdicionarDependência
Sintaxe:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Esta operação é privada do compilador XLA, portanto ainda não possui especificação.
Informalmente, esta operação tem dois operandos: um operando de dados e um token. A saída da operação é o operando de dados. Quando usada com AfterAll, esta operação permite ordenar operações sem efeitos colaterais (aquelas que não produzem valores de token).
Exemplo:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Características: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
operand | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou 4/8/16/32 bits valores inteiros não assinados quantizados uniformes ou token |
token | símbolo |
Resultados:
Resultado | Descrição |
---|---|
output | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou 4/8/16/32 bits valores inteiros não assinados quantizados uniformes ou token |
mhlo.after_all
(mhlo::AfterAllOp)
Operação AfterAll
Sintaxe:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Garante que as operações que produzem as inputs
sejam executadas antes de quaisquer operações que dependam de result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Exemplo:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Características: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
inputs | variável de token |
Resultados:
Resultado | Descrição |
---|---|
result | símbolo |
mhlo.all_gather
(mhlo::AllGatherOp)
Operação AllGather
Dentro de cada grupo de processos na grade de processos, concatena os valores do tensor operand
de cada processo ao longo de all_gather_dim
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Exemplo:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Características: SameOperandsAndResultElementType
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
all_gather_dim | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
replica_groups | ::mlir::DenseIntElementsAttr | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dois inteiros de 64 bits 'handle' e 'type' |
use_global_device_ids | ::mlir::UnitAttr | atributo de unidade |
Operandos:
Operando | Descrição |
---|---|
operand | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.all_reduce
(mhlo::AllReduceOp)
Operação AllReduce
Dentro de cada grupo de processos na grade de processos, aplica um computation
de função de redução aos valores de um tensor de operando de cada processo e produz um tensor de resultado. O computation
é aplicado separadamente para cada operando em operands
, produzindo um resultado por operando.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Exemplo:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Características: InferTensorType, SameOperandsAndResultElementType, SingleBlock, SingleBlockImplicitTerminator
Interfaces: InferShapedTypeOpInterface, InferTypeOpInterface
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dois inteiros de 64 bits 'handle' e 'type' |
use_global_device_ids | ::mlir::UnitAttr | atributo de unidade |
Operandos:
Operando | Descrição |
---|---|
operands | variável do tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/ Inteiro sem sinal de 8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou uniforme de 4/8/16/32 bits inteiro com sinal quantizado ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variável do tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/ Inteiro sem sinal de 8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou uniforme de 4/8/16/32 bits inteiro com sinal quantizado ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.all_to_all
(mhlo::AllToAllOp)
Operação AllToAll
Dentro de cada grupo de processos na grade de processos, divide os valores do tensor operand
ao longo split_dimension
em partes, espalha as partes divididas entre os processos, concatena as partes dispersas ao longo de concat_dimension
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Exemplo:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Características: AlwaysSpeculatableImplTrait, InferTensorType, SameOperandsElementType, SameOperandsShape, SameVariadicOperandSize
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
split_dimension | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
concat_dimension | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
split_count | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
replica_groups | ::mlir::DenseIntElementsAttr | Atributo de elementos inteiros sem sinal de 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dois inteiros de 64 bits 'handle' e 'type' |
Operandos:
Operando | Descrição |
---|---|
operand | variável do tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/ Inteiro sem sinal de 8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou uniforme de 4/8/16/32 bits inteiro com sinal quantizado ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variável do tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/ Inteiro sem sinal de 8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou uniforme de 4/8/16/32 bits inteiro com sinal quantizado ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.and
(mhlo::AndOp)
E operação
Sintaxe:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Executa AND elemento a elemento de dois tensores lhs
e rhs
e produz um tensor result
Consulte: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Exemplo:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Características: AlwaysSpeculatableImplTrait, Comutativo, CompatívelOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
lhs | tensor de pred (também conhecido como booleano ou inteiro de 1 bit) ou inteiro sem sinal de 4/8/16/32/64 bits ou valores inteiros sem sinal de 4/8/16/32/64 bits |
rhs | tensor de pred (também conhecido como booleano ou inteiro de 1 bit) ou inteiro sem sinal de 4/8/16/32/64 bits ou valores inteiros sem sinal de 4/8/16/32/64 bits |
Resultados:
Resultado | Descrição |
---|---|
result | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.async_done
(mhlo::AsyncDoneOp)
Operação AsyncDone
Esta operação é privada do compilador XLA, portanto ainda não possui especificação.
Informalmente, esta operação é bloqueada até o final de uma computação assíncrona. Ele retorna o resultado final da computação assíncrona.
Consulte a documentação do AsyncStart para obter mais informações.
Interfaces: InferTypeOpInterface
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | atributo de referência de símbolo plano |
execution_thread | ::mlir::StringAttr | atributo de string |
group_id | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
bundle | async_bundle com qualquer combinação de tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou número inteiro sem sinal de 4/8/16/32/64 bits ou número inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou 8/4/16/32 Número inteiro assinado quantizado uniforme de bits ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou valores de token |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variável do tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/ Inteiro sem sinal de 8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou uniforme de 4/8/16/32 bits inteiro assinado quantizado ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou token ou tupla aninhada com qualquer combinação de tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou flutuante de 16 bits ou 32 -bit float ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou inteiro sem sinal de 4/8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou inteiros assinados quantizados uniformes de 4/8/16/32 bits ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou valores de token |
mhlo.async_start
(mhlo::AsyncStartOp)
Operação AsyncStart
Esta operação é privada do compilador XLA, portanto ainda não possui especificação.
Informalmente, esta operação inicia uma computação assíncrona.
Isso é usado quando há funções que contêm esperas assíncronas (como DMAs) e computação no thread. Por exemplo, uma função pode consistir em um cálculo, um DMA, outro cálculo, um segundo DMA e um cálculo final. Isso seria representado como async_start seguido por async_update e async_done. O async_start faria o primeiro cálculo no thread e depois iniciaria o DMA. O async_update esperaria a conclusão do DMA se ainda não tivesse sido feito, então executaria o segundo cálculo na função e iniciaria o segundo DMA. Finalmente, o async_done esperaria neste último DMA e então executaria o último cálculo que precisa ser executado no thread e retornaria o resultado desse cálculo final.
operands
são passados diretamente para a computação called_computation
é a função que será executada de forma assíncrona execution_thread
é o nome do thread no qual ela será executada. O thread principal é chamado de "principal". Todos os tópicos têm nomes. group_id
rotula um conjunto de operações de início assíncrono, concluído assíncrono e zero ou mais operações de atualização assíncrona correspondentes ao mesmo cálculo. Representamos um group_id ausente com um valor negativo ou Nenhum.
Isso retorna todo o estado necessário entre operações assíncronas. Após a atribuição do buffer, os valores de retorno representam o espaço necessário para armazenar a entrada, os resultados e quaisquer scratchpads necessários ou editados pela operação assíncrona.
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | atributo de referência de símbolo plano |
execution_thread | ::mlir::StringAttr | atributo de string |
group_id | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
inputs | variável do tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/ Inteiro sem sinal de 8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou uniforme de 4/8/16/32 bits inteiro assinado quantizado ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou token ou tupla aninhada com qualquer combinação de tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou flutuante de 16 bits ou 32 -bit float ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou inteiro sem sinal de 4/8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou inteiros assinados quantizados uniformes de 4/8/16/32 bits ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou valores de token |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | async_bundle com qualquer combinação de tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou número inteiro sem sinal de 4/8/16/32/64 bits ou número inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou 8/4/16/32 Número inteiro assinado quantizado uniforme de bits ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou valores de token |
mhlo.async_update
(mhlo::AsyncUpdateOp)
Operação AsyncUpdate
Esta operação é privada do compilador XLA, portanto ainda não possui especificação.
Informalmente, esta operação bloqueia uma computação assíncrona até uma barreira de sincronização. Isso retorna bundle
após operar nele.
Consulte a documentação do AsyncStart para obter mais informações.
Interfaces: InferTypeOpInterface
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | atributo de referência de símbolo plano |
execution_thread | ::mlir::StringAttr | atributo de string |
group_id | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
bundle | async_bundle com qualquer combinação de tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou número inteiro sem sinal de 4/8/16/32/64 bits ou número inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou 8/4/16/32 Número inteiro assinado quantizado uniforme de bits ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou valores de token |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | async_bundle com qualquer combinação de tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou número inteiro sem sinal de 4/8/16/32/64 bits ou número inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou 8/4/16/32 Número inteiro assinado quantizado uniforme de bits ou valores inteiros não assinados quantizados uniformes de 4/8/16/32 bits ou valores de token |
mhlo.atan2
(mhlo::Atan2Op)
Operação Atan2
Sintaxe:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Executa a operação atan2 elemento a elemento no tensor lhs
e rhs
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Exemplo:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Características: AlwaysSpeculatableImplTrait, CompatívelOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
lhs | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou tipo complexo com float de 32 bits ou elementos float de 64 bits ou 4 /8/16/32 bits inteiro com sinal quantizado uniforme ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
rhs | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou tipo complexo com float de 32 bits ou elementos float de 64 bits ou 4 /8/16/32 bits inteiro com sinal quantizado uniforme ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
result | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou tipo complexo com float de 32 bits ou elementos float de 64 bits ou 4 /8/16/32 bits inteiro com sinal quantizado uniforme ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.batch_norm_grad
(mhlo::BatchNormGradOp)
Operação BatchNormGrad
Calcula gradientes de várias entradas de BatchNormTrainingOp retropropagando de grad_output
e produz tensores grad_operand
, grad_scale
e grad_offset
.
Consulte: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Exemplo:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Características: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
epsilon | ::mlir::FloatAttr | Atributo flutuante de 32 bits |
feature_index | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
operand | tensor classificado do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores de tipo bfloat16 |
scale | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
mean | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
variance | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
grad_output | tensor classificado do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores de tipo bfloat16 |
Resultados:
Resultado | Descrição |
---|---|
grad_operand | tensor classificado do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores de tipo bfloat16 |
grad_scale | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
grad_offset | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
mhlo.batch_norm_inference
(mhlo::BatchNormInferenceOp)
Operação BatchNormInference
Normaliza o tensor operand
em todas as dimensões, exceto na dimensão feature_index
, e produz um tensor result
.
Consulte: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Exemplo:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Características: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
epsilon | ::mlir::FloatAttr | Atributo flutuante de 32 bits |
feature_index | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
operand | tensor classificado do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores de tipo bfloat16 |
scale | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
offset | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
mean | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
variance | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
Resultados:
Resultado | Descrição |
---|---|
result | tensor classificado do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores de tipo bfloat16 |
mhlo.batch_norm_training
(mhlo::BatchNormTrainingOp)
Operação BatchNormTraining
Calcula a média e a variação entre dimensões de lote e espaciais e normaliza o tensor operand
, para cada recurso na dimensão feature_index
e produz tensores output
, batch_mean
e batch_var
.
Consulte: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Exemplo:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Características: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
epsilon | ::mlir::FloatAttr | Atributo flutuante de 32 bits |
feature_index | ::mlir::IntegerAttr | Atributo inteiro sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
operand | tensor classificado do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores de tipo bfloat16 |
scale | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
offset | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
Resultados:
Resultado | Descrição |
---|---|
output | tensor classificado do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores de tipo bfloat16 |
batch_mean | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
batch_var | Tensor 1D do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou valores do tipo bfloat16 |
mhlo.bitcast
(mhlo::BitcastOp)
Operação de transmissão de bits
Sintaxe:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Esta operação é privada do compilador XLA, portanto ainda não possui especificação.
Informalmente, esta operação altera a forma da entrada de forma que o arranjo físico dos elementos permanece inalterado.
Esta operação precisa de informações de layout para dar sentido ao "arranjo físico dos elementos", e o suporte de layout no MHLO é atualmente um trabalho em andamento.
Exemplo:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Características: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
operand | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.bitcast_convert
(mhlo::BitcastConvertOp)
Operação BitcastConvert
Sintaxe:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Executa uma operação de bitcast no tensor operand
e produz um tensor result
onde os bits de todo o tensor operand
são reinterpretados usando o tipo do tensor de result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Exemplo:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Características: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Operandos:
Operando | Descrição |
---|---|
operand | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.broadcast
(mhlo::BroadcastOp)
Operação de transmissão
Esta operação está saindo do StableHLO, portanto não está incluída na especificação: https://github.com/openxla/stablehlo/issues/3
Informalmente, esta operação faz a mesma coisa que o Broadcast do XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast
Exemplo:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Características: AlwaysSpeculatableImplTrait, InferTensorType, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
broadcast_sizes | ::mlir::DenseIntElementsAttr | Atributo de elementos inteiros sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
operand | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.broadcast_in_dim
(mhlo::BroadcastInDimOp)
Operação BroadcastInDim
Expande as dimensões e/ou classificação de um tensor de entrada duplicando os dados no tensor operand
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Exemplo:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Características: AlwaysSpeculatableImplTrait, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects::Effect{}
Atributos:
Atributo | Tipo MLIR | Descrição |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | Atributo de elementos inteiros sem sinal de 64 bits |
Operandos:
Operando | Descrição |
---|---|
operand | tensor do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/8/ Inteiro sem sinal de 16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou sinal quantizado uniforme de 4/8/16/32 bits inteiro ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor de forma estática do tipo f8E4M3B11FNUZ ou tipo f8E4M3FN ou tipo f8E4M3FNUZ ou tipo f8E5M2 ou tipo f8E5M2FNUZ ou float de 16 bits ou float de 32 bits ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou inteiro de 1 bit) ou 4/ Inteiro sem sinal de 8/16/32/64 bits ou inteiro sem sinal de 4/8/16/32/64 bits ou tipo complexo com elementos flutuantes de 32 bits ou elementos flutuantes de 64 bits ou uniforme de 4/8/16/32 bits inteiro com sinal quantizado ou valores inteiros sem sinal quantizados uniformes de 4/8/16/32 bits |
mhlo.case
(mhlo::CaseOp)
Operação de caso
Produz a saída da execução exatamente uma function
de branches
, dependendo do valor do index
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Exemplo:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Características: efeitos RecursiveMemory, Singleblock, SingleBlockImplicitterMinator
Interfaces: InfertypeOpInterface
Operando:
Operando | Descrição |
---|---|
index | Tensor de valores inteiros sem sinais de 32 bits |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/ 8/16/32/64 bits sem sinais ou número inteiro ou tipo complexo de 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes ou uniformes Inteiro inteiro signo quantizado ou 4/8/16/32 bits de valores inteiros não assinados quantizados ou token |
mhlo.cbrt
(MHLO :: CBRTOP)
Operação CBRT
Sintaxe:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa a operação de raiz cúbica em termos de elemento no tensor operand
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Exemplo:
%result = mhlo.cbrt %operand : tensor<4xf32>
Traços: sempre especulableImplTrait, compatível opesondSandResulttype, elemento -time, SameopendSandResultshape
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
operand | Tensor do tipo F8E4M3B11FNUZ ou tipo F8E4M3FN ou tipo F8E4M3FNUZ ou tipo F8E5M2 ou tipo F8E5M2FNUZ ou float de float ou 42 bitt ou 64 bits ou BFLOAT ou tipo de float 42-Bit ou BFLOAT ou BFLOAT ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo de float 42-Bit ou Bfloat ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo com 32-Bit. /8/16/32 bits uniformes quantizados signos inteiros ou 4/8/16/32 bits uniformes quantizados valores inteiros não assinados |
Resultados:
Resultado | Descrição |
---|---|
result | Tensor do tipo F8E4M3B11FNUZ ou tipo F8E4M3FN ou tipo F8E4M3FNUZ ou tipo F8E5M2 ou tipo F8E5M2FNUZ ou float de float ou 42 bitt ou 64 bits ou BFLOAT ou tipo de float 42-Bit ou BFLOAT ou BFLOAT ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo de float 42-Bit ou Bfloat ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo com 32-Bit. /8/16/32 bits uniformes quantizados signos inteiros ou 4/8/16/32 bits uniformes quantizados valores inteiros não assinados |
mhlo.ceil
(MHLO :: CEILOP)
Operação do teto
Sintaxe:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa tensor de operand
no elemento e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Exemplo:
%result = mhlo.ceil %operand : tensor<5xf32>
Traços: sempre especulableImplTrait, compatível opesondSandResulttype, elemento -time, SameopendSandResultshape
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
operand | Tensor do tipo F8E4M3B11FNUZ ou tipo f8E4m3fn ou tipo f8e4m3fNUz ou tipo f8e5m2 ou tipo f8e5m2fnUz ou flutuação de 16 bits ou flutuação de 32 bits ou 64 bits ou valores de bfloat16 |
Resultados:
Resultado | Descrição |
---|---|
result | Tensor do tipo F8E4M3B11FNUZ ou tipo f8E4m3fn ou tipo f8e4m3fNUz ou tipo f8e5m2 ou tipo f8e5m2fnUz ou flutuação de 16 bits ou flutuação de 32 bits ou 64 bits ou valores de bfloat16 |
mhlo.cholesky
(MHLO :: Choleskyop)
Operação Cholesky
Calcula a decomposição de Cholesky de um lote de matrizes.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Exemplo:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Traços: sempre especulableImplTrait, Infertensortype, MameoOperAndSandResultElementTypepe
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
lower | :: mlir :: boolattr | atributo bool |
Operando:
Operando | Descrição |
---|---|
a | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.clamp
(MHLO :: Clampop)
Operação de grampo
Sintaxe:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Prenda todos os elementos do tensor operand
entre um valor mínimo e máximo e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Exemplo:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Traços: Sempre especulableImplTrait, HLO_BROADCASTINGELEMENTEMENTE, INFEMTENSORTYPE, SHAMEOPERANDRESSANDRESULENTELEMENTTYPE
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
min | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
max | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
mhlo.collective_permute
(mhlo :: collectivepermuteop)
Operação CollectivePermute
Dentro de cada grupo de processo na grade do processo, envia o valor do tensor do operand
do processo de origem para o processo de destino e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Exemplo:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Traços: sempre especulável e
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
source_target_pairs | :: mlir :: denseInteLentsAttr | Atributo de elementos inteiros sem sinais de 64 bits |
channel_handle | :: mlir :: mhlo :: ChannelHandleattr | Dois números inteiros de 64 bits 'Handle' e 'Type' |
Operando:
Operando | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
mhlo.compare
(MHLO :: Compareop)
Compare operação
Sintaxe:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Executa a comparação de elementos de tensores de lhs
e rhs
de acordo com comparison_direction
e compare_type
, e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Exemplo:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Traços: sempre especulableImplTrait, elemento, inferenteType, SameoOperAndSandResultShape, SameoOpendSelementTypepe
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
comparison_direction | :: mlir :: mhlo :: ComparisOndirectionAttr | Qual operação de comparação para executar. |
compare_type | :: mlir :: mhlo :: comparonTypeattr | Qual tipo de comparação a ser usado. |
Operando:
Operando | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | Tensor de valores pred (também conhecido como booleano ou 1 bit) |
mhlo.complex
(MHLO :: Complexop)
Operação complexa
Sintaxe:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Executa conversão de elemento para um valor complexo de um par de valores reais e imaginários, lhs
e rhs
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Exemplo:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Traços: sempre especulableImplTrait, elemento, SameoOperAndSandResultShape, SameoPeRandSelementType
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
lhs | Tensor de valores de flutuação de 32 bits ou de 64 bits |
rhs | Tensor de valores de flutuação de 32 bits ou de 64 bits |
Resultados:
Resultado | Descrição |
---|---|
result | Tensor do tipo complexo com flutuação de 32 bits ou elementos de flutuação de 64 bits valores |
mhlo.compute_reshape_shape
(MHLO :: ComputaShapeShapeop)
Operação de compra em computação
Sintaxe:
operation ::= `mhlo.compute_reshape_shape` operands attr-dict `:` functional-type(operands, results)
Esta operação é um trabalho em andamento, portanto ainda não está incluído na especificação: https://github.com/openxla/stablehlo/issues/8
Informalmente, esta operação calcula um output_shape for DynamicReshapeop a partir do número de elementos do num_elements
em um operando de DynamicReshapeop e da forma dynamic_shape
fornecida ao RESHAPE da TF: https://www.tensorflow.org/api_docs/tython/tf/rhape
Por exemplo, para num_elements = 12
e dynamic_shape = [2, -1]
, o result
será [2, 6]
. Se os operando não forem válidos (por exemplo, se as dimensões não dividirem uniformemente o número de elementos ou se houver vários valores -1 em dimensões), isso leva a um comportamento indefinido.
Exemplo:
%result = mhlo.compute_reshape_shape %num_elements, %dynamic_shape
: (index, tensor<2xi32>) -> tensor<2xi32>
Traços: Sempre especulávelImplTrait
Interfaces: Condicionalmente especulável, Nomemoryeffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
num_elements | índice |
dynamic_shape | 1d tensor de valores inteiros ou índices |
Resultados:
Resultado | Descrição |
---|---|
result | 1d tensor de valores inteiros ou índices |
mhlo.concatenate
(MHLO :: Concatenateop)
Operação concatenada
Concatena um número variádico de tensores em inputs
ao longo da dimensão dimension
na mesma ordem que os argumentos fornecidos e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Exemplo:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Traços: sempre especulableImplTrait, SameoOpendSandResultElementType
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
dimension | :: mlir :: integerattr | Atributo inteiro sem sinais de 64 bits |
Operando:
Operando | Descrição |
---|---|
val | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/ 8/16/32/64 bits sem sinais ou número inteiro ou tipo complexo de 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes ou uniformes número inteiro signo quantizado ou 4/8/16/32 bits uniformes quantizados valores inteiros não assinados |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
mhlo.constant
(MHLO :: Constantop)
Operação constante
Produz um tensor output
a partir de um value
constante.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Exemplo:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Características: sempre especulableImpltrait, constante
Interfaces: Condicionalmente especulável, InfertypeOpInterface, Nomemoryeffect (MemoryeffectOpInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
value | :: mlir :: elementsattr | atributo constante de vetor/tensor |
Resultados:
Resultado | Descrição |
---|---|
output | tensor de formato estaticamente de F8E4M3B11FNUZ ou tipo F8E4M3FN ou tipo F8E4M3FNUZ ou tipo F8E5M2 ou F8E5M2FNUz ou butão ou bit-bit ou BFLOAT ou BFLOAT ou BFLOAT ou BFLOAT ou BFLOAT ou BFLOAT 1-BIT (BFLOAT) ou BFLOAT ou BFLOAT ou BFLOAT 1-BIT (BFLOAT) ou BFLOAT 1-BIT ou BFLOAT ou BFLOAT 1-BIT (BFLOAT) ou BFLOAT ou BFLOAT ou 32-BIT BOOT ou BFLOAT ou BFLOAT ou BFLOAT 1-BIT 1-Bit1) 8/16/32/64 bits sem sinais ou número inteiro ou tipo complexo de 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes ou uniformes número inteiro signo quantizado ou 4/8/16/32 bits uniformes quantizados valores inteiros não assinados |
mhlo.convert
(MHLO :: Convertop)
Converter operação
Sintaxe:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa uma conversão no elemento de um tipo de elemento para outro no tensor operand
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Exemplo:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traços: sempre especulableImplTrait, elemento, SameopendSandResultShape
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, Nomemoryeffect (MemoryEffectOPOpInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
mhlo.convolution
(MHLO :: ConvolutionOP)
Operação de convolução
Sintaxe:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Calcula produtos de pontos entre janelas de lhs
e fatias de rhs
e produz result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Exemplo:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traços: Sempre especulávelImplTrait
Interfaces: Condicionalmente especulável, Nomemoryeffect (MemoryEffectOpInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
window_strides | :: mlir :: denseInteLentsAttr | Atributo de elementos inteiros sem sinais de 64 bits |
padding | :: mlir :: denseInteLentsAttr | Atributo de elementos inteiros sem sinais de 64 bits |
lhs_dilation | :: mlir :: denseInteLentsAttr | Atributo de elementos inteiros sem sinais de 64 bits |
rhs_dilation | :: mlir :: denseInteLentsAttr | Atributo de elementos inteiros sem sinais de 64 bits |
window_reversal | :: mlir :: denselementsattr | atributo constante de vetor booleano/tensor |
dimension_numbers | :: mlir :: mhlo :: convdimensionNumbersattr | Estrutura de informações de dimensão para convivência |
feature_group_count | :: mlir :: integerattr | Atributo inteiro sem sinais de 64 bits |
batch_group_count | :: mlir :: integerattr | Atributo inteiro sem sinais de 64 bits |
precision_config | :: mlir :: Arrayattr | Atributo de configuração de precisão |
Operando:
Operando | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
mhlo.copy
(MHLO :: Copyop)
Operação de cópia
Sintaxe:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esta operação é privada para o compilador XLA, por isso ainda não possui uma especificação.
Informalmente, esta operação uma cópia do operand
. Dependendo dos metadados anexados à operação, ele pode se comportar de maneira bastante diferente de um não-OP.
Exemplo:
%0 = mhlo.copy %arg0 : tensor<f32>
Traços: sempre especulável e
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
cross_program_prefetch_index | :: mlir :: integerattr | Atributo inteiro sem sinais de 32 bits |
Operando:
Operando | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou valores inteiros uniformes de 4/8/16/32 bits quantizados não assinados ou tupla de token ou aninhado com qualquer combinação de tensor de F8E4M3B11FNUZ ou F8E4M3fn ou tipo f8e4m3fnUz ou tipo F8e5m2 ou F8e5m2fNUZz Float ou Float ou BFLOAT16 ou Pred (aka boolean ou número de 1 bit) ou 4/8/16/32/64 bits sem sinal signal ou 4/8/16/32/64 bits não assinados ou complexo ou complexo Digite com elementos flutuantes de bóia de 32 bits ou de 64 bits ou número inteiro signo quantizado de 4/8/8/16/32 bits ou 4/8/16/32 bits quantizados valores inteiros não assinados ou valores de token ou valores de token |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou valores inteiros uniformes de 4/8/16/32 bits quantizados não assinados ou tupla de token ou aninhado com qualquer combinação de tensor de F8E4M3B11FNUZ ou F8E4M3fn ou tipo f8e4m3fnUz ou tipo F8e5m2 ou F8e5m2fNUZz Float ou Float ou BFLOAT16 ou Pred (aka boolean ou número de 1 bit) ou 4/8/16/32/64 bits sem sinal signal ou 4/8/16/32/64 bits não assinados ou complexo ou complexo Digite com elementos flutuantes de bóia de 32 bits ou de 64 bits ou número inteiro signo quantizado de 4/8/8/16/32 bits ou 4/8/16/32 bits quantizados valores inteiros não assinados ou valores de token ou valores de token |
mhlo.cosine
(MHLO :: Cosineop)
Operação de cosseno
Sintaxe:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa a operação de cosseno no elemento no tensor operand
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Exemplo:
%result = mhlo.cosine %operand : tensor<2xf32>
Traços: sempre especulableImplTrait, compatível opesondSandResulttype, elemento -time, SameopendSandResultshape
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
operand | Tensor do tipo F8E4M3B11FNUZ ou tipo F8E4M3FN ou tipo F8E4M3FNUZ ou tipo F8E5M2 ou tipo F8E5M2FNUZ ou float de float ou 42 bitt ou 64 bits ou BFLOAT ou tipo de float 42-Bit ou BFLOAT ou BFLOAT ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo de float 42-Bit ou Bfloat ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo com 32-Bit. /8/16/32 bits uniformes quantizados signos inteiros ou 4/8/16/32 bits uniformes quantizados valores inteiros não assinados |
Resultados:
Resultado | Descrição |
---|---|
result | Tensor do tipo F8E4M3B11FNUZ ou tipo F8E4M3FN ou tipo F8E4M3FNUZ ou tipo F8E5M2 ou tipo F8E5M2FNUZ ou float de float ou 42 bitt ou 64 bits ou BFLOAT ou tipo de float 42-Bit ou BFLOAT ou BFLOAT ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo de float 42-Bit ou Bfloat ou BFLOAT com 32-Bit com 32-Bit ou Bfloat ou Bfloat ou tipo com 32-Bit. /8/16/32 bits uniformes quantizados signos inteiros ou 4/8/16/32 bits uniformes quantizados valores inteiros não assinados |
mhlo.count_leading_zeros
(MHLO :: Clzop)
Operação CLZ
Sintaxe:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Executa contagem de elementos do número de bits zero líderes no tensor operand
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Exemplo:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traços: sempre especulableImplTrait, compatível opesondSandResulttype, elemento -time, SameopendSandResultshape
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
operand | tensor de 4/8/16/32/64 bits sem sinais ou 4/8/16/32/64 bits não assinados valores inteiros |
Resultados:
Resultado | Descrição |
---|---|
result | tensor de 4/8/16/32/64 bits sem sinais ou 4/8/16/32/64 bits não assinados valores inteiros |
mhlo.create_token
(mhlo :: createtoketop)
Operação CreateToken
Sintaxe:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
Esta operação está saindo de StableHlo, portanto não está incluída na especificação: https://github.com/openxla/stablehlo/issues/3
Informalmente, esta operação faz a mesma coisa que depois de permitir com 0 entradas: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Exemplo:
%output = mhlo.create_token : !mhlo.token
Traços: Sempre especulávelImplTrait
Interfaces: Condicionalmente especulável, InfertypeOpInterface, Nomemoryeffect (MemoryeffectOpInterface)
Efeitos: MemoryEffects :: Effect {}
Resultados:
Resultado | Descrição |
---|---|
output | símbolo |
mhlo.cross-replica-sum
(MHLO :: CrossReplicasmopOp)
Operação CrossReplicasum
Esta operação está saindo de StableHlo, portanto não está incluída na especificação: https://github.com/openxla/stablehlo/issues/3
Informalmente, esta operação faz a mesma coisa que AllreduceOp com channel_id = 0
, use_global_device_ids = false
E computation
IMPLEMENCIMENTO ADICIONE: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Exemplo:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traços: sempre especulável e
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
replica_groups | :: mlir :: denseInteLentsAttr | Atributo de elementos inteiros sem sinais de 64 bits |
Operando:
Operando | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados |
mhlo.cstr_reshapable
(MHLO :: CSTRESHAPABLEOP)
Operação CSTRESHAPABLE
Sintaxe:
operation ::= `mhlo.cstr_reshapable` operands attr-dict `:` functional-type(operands, results)
Esta operação é um trabalho em andamento, portanto ainda não está incluído na especificação: https://github.com/openxla/stablehlo/issues/8
Informalmente, esta operação cria uma testemunha sobre a restrição de que a compra de compra teria sucesso com os operandos fornecidos.
Exemplo:
%result = mhlo.cstr_reshapable %num_elements, %dynamic_shape
: (index, tensor<3xi32>) -> !shape.witness
Traços: Sempre especulávelImplTrait
Interfaces: Condicionalmente especulável, InfertypeOpInterface, Nomemoryeffect (MemoryeffectOpInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
num_elements | índice |
dynamic_shape | 1d tensor de valores inteiros ou índices |
Resultados:
Resultado | Descrição |
---|---|
result |
mhlo.custom_call
(MHLO :: CustomCallop)
Operação CustomCall
Sintaxe:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsula uma operação definida pela implementação call_target_name
que pega inputs
e called_computations
e produz results
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Exemplo:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryeffectOpInterface
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
call_target_name | :: mlir :: stringattr | atributo da string |
has_side_effect | :: mlir :: boolattr | atributo bool |
backend_config | :: mlir :: atributo | atributo string ou dicionário de valores de atributo nomeado |
api_version | :: mlir :: mhlo :: CustomCallaPiversionAttr | Versão API de chamada personalizada |
called_computations | :: mlir :: Arrayattr | atributo de matriz de símbolo plano |
custom_call_schedule | :: mlir :: mhlo :: CustomCallScheduleattr | Especifica o cronograma desejado para a chamada personalizada. |
operand_layouts | :: mlir :: Arrayattr | Matriz de layout (1D Tensor of Index Type) atributos |
result_layouts | :: mlir :: Arrayattr | Matriz de layout (1D Tensor of Index Type) atributos |
output_operand_aliases | :: mlir :: Arrayattr | Atributo de alias para saídas e operandos da CustomCall |
Operando:
Operando | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/ 8/16/32/64 bits sem sinais ou número inteiro ou tipo complexo de 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes ou uniformes quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token or nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32 -bit bloat ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou número inteiro de 1 bit) ou 4/8/16/32/64 bits sem assinatura ou 4/8/16/32/64 bits não assinados ou tipo de complexo com elementos flutuantes ou de 64 bits ou 4/8/8/16/32 bits de uniforme, número inteiro assinado ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados ou valores de token |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/ 8/16/32/64 bits sem sinais ou número inteiro ou tipo complexo de 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes ou uniformes quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token or nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32 -bit bloat ou float de 64 bits ou tipo bfloat16 ou pred (também conhecido como booleano ou número inteiro de 1 bit) ou 4/8/16/32/64 bits sem assinatura ou 4/8/16/32/64 bits não assinados ou tipo de complexo com elementos flutuantes ou de 64 bits ou 4/8/8/16/32 bits de uniforme, número inteiro assinado ou 4/8/16/32 bits quantizados valores inteiros quantizados não assinados ou valores de token |
mhlo.divide
(MHLO :: Divop)
Operação Div
Sintaxe:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Realiza a divisão de dividendos lhs
elemento e os tensores de divisores rhs
e produz um tensor result
.
Veja: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Exemplo:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traços: sempre especulableImplTrait, compatível opesondSandResulttype, elemento -time, SameopendSandResultshape
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Operando:
Operando | Descrição |
---|---|
lhs | Tensor de 4/8/16/32/64 bits sem sinais ou 4/8/8/16/32/64 bits não assinado ou f8e4m3b11fnUz ou F8E4M3FN ou tipo F8E4M3fNUS ou tipo F8e5m2 ou F8e5m2fnUz do tipo F8e5m2 ou F8e5m2fnUz Float de 32 bits ou tipo de flutuação de 64 bits ou tipo BFLOAT16 ou complexo com elementos flutuantes de bóia ou 64 bits ou número inteiro assinado de 4/8/8/16/32 bit Valores inteiros uniformes quantizados não assinados |
rhs | Tensor de 4/8/16/32/64 bits sem sinais ou 4/8/8/16/32/64 bits não assinado ou f8e4m3b11fnUz ou F8E4M3FN ou tipo F8E4M3fNUS ou tipo F8e5m2 ou F8e5m2fnUz do tipo F8e5m2 ou F8e5m2fnUz Float de 32 bits ou tipo de flutuação de 64 bits ou tipo BFLOAT16 ou complexo com elementos flutuantes de bóia ou 64 bits ou número inteiro assinado de 4/8/8/16/32 bit Valores inteiros uniformes quantizados não assinados |
Resultados:
Resultado | Descrição |
---|---|
result | Tensor de 4/8/16/32/64 bits sem sinais ou 4/8/8/16/32/64 bits não assinado ou f8e4m3b11fnUz ou F8E4M3FN ou tipo F8E4M3fNUS ou tipo F8e5m2 ou F8e5m2fnUz do tipo F8e5m2 ou F8e5m2fnUz Float de 32 bits ou tipo de flutuação de 64 bits ou tipo BFLOAT16 ou complexo com elementos flutuantes de bóia ou 64 bits ou número inteiro assinado de 4/8/8/16/32 bit Valores inteiros uniformes quantizados não assinados |
mhlo.domain
(MHLO :: DOMAINOP)
Operação de domínio
Esta operação é privada para o compilador XLA, por isso ainda não possui uma especificação.
Informalmente, essas operações são usadas para agrupar instruções com a mesma propriedade DomainMetadata. O ShardingMetadata é o principal caso de uso hoje para agrupar instruções no mesmo dispositivo. As instruções de domínio fornecem dois grandes benefícios:
- Evite otimização involuntária de instruções entre domínios.
- Atribuir automaticamente os metadados das instruções criadas no domínio. Sem instruções de domínio, cada passe de otimização HLO teria que verificar e propagar os metadados, o que seria fácil de perder e também adicionar complexidade ao compilador. Como as instruções do domínio conectam dois domínios diferentes, cada instrução de domínio está associada a dois domainmetadata - um no lado do operando e outro no lado do usuário do domínio.
Traços: sempre especulável e
Interfaces: Condicionalmente especulável, InferShapedTypeOpInterface, InfertypeopInterface, Nomemoryeffect (MemoryEffectOPOPInterface)
Efeitos: MemoryEffects :: Effect {}
Atributos:
Atributo | Tipo mlir | Descrição |
---|---|---|
kind | :: mlir :: mhlo :: domainkindattr | Tipo de metatdata de domínio anexado a um domínio HLO. |
entry_metadata | :: mlir :: stringattr | atributo da string |
exit_metadata | :: mlir :: stringattr | atributo da string |
Operando:
Operando | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits de uniformes quantizados valores inteiros não assinados ou token |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/ 16/32/64 bits sem sinais ou número inteiro ou tipo complexo 4/8/16/32/64 bits sem assinatura ou elementos de flutuação ou de 32 bits ou uniformes de float de 64 bits ou 4/8/16/32 bit Inteiro ou 4/8/16/32 bits de uniformes quantizados valores inteiros não assinados ou token |
mhlo.dot
(MHLO :: dotop)
Operação de ponto
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Exemplo:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dot_general
(mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs
and slices of rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Exemplo:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_broadcast_in_dim
(mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as BroadcastInDimOp except that the result shape is specified dynamically via output_dimensions
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
output_dimensions | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_conv
(mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding
is specified dynamically via d_padding
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Exemplo:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
d_padding | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_gather
(mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Exemplo:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
start_indices | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
slice_sizes | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_iota
(mhlo::DynamicIotaOp)
DynamicIota operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as IotaOp except that the result shape is specified dynamically via output_shape
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Exemplo:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Descrição |
---|---|
output_shape | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_pad
(mhlo::DynamicPadOp)
DynamicPad operation
Sintaxe:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand
, with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
padding_value | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
edge_padding_low | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
edge_padding_high | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
interior_padding | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_reshape
(mhlo::DynamicReshapeOp)
DynamicReshape operation
Sintaxe:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ReshapeOp except that the result shape is specified dynamically via output_shape
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Exemplo:
%0 = mhlo.dynamic_reshape %arg0, %shape : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
output_shape | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_slice
(mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand
using dynamically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Exemplo:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
start_indices | variadic of 0D tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.dynamic_update_slice
(mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Sintaxe:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result
tensor which is equal to the operand
tensor except that the slice starting at start_indices
is updated with the values in update
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Exemplo:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
update | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
start_indices | variadic of 0D tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.einsum
(mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Exemplo:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.exponential
(mhlo::ExpOp)
Exp operation
Sintaxe:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Exemplo:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.exponential_minus_one
(mhlo::Expm1Op)
Expm1 operation
Sintaxe:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Exemplo:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fft
(mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Exemplo:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.floor
(mhlo::FloorOp)
Floor operation
Sintaxe:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Exemplo:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.fusion
(mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
Resultados:
Resultado | Descrição |
---|---|
results | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token values |
mhlo.gather
(mhlo::GatherOp)
Gather operation
Gathers slices from operand
tensor from offsets specified in start_indices
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Exemplo:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
start_indices | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.get_dimension_size
(mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension
of the operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Exemplo:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of 32-bit signless integer values |
mhlo.get_tuple_element
(mhlo::GetTupleElementOp)
GetTupleElement operation
Sintaxe:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index
position of the operand
tuple and produces a result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Exemplo:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Descrição |
---|---|
operand | nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token or nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token values |
mhlo.if
(mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch
or false_branch
depending on the value of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects, SingleBlock, SingleBlockImplicitTerminator
Interfaces: InferTypeOpInterface
Operands:
Operand | Descrição |
---|---|
pred | tensor of pred (AKA boolean or 1-bit integer) values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
mhlo.imag
(mhlo::ImagOp)
Imag operation
Sintaxe:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Exemplo:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.infeed
(mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Exemplo:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
Operand | Descrição |
---|---|
token | símbolo |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of statically shaped tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
mhlo.iota
(mhlo::IotaOp)
Iota operation
Fills an output
tensor with values in increasing order starting from zero along the iota_dimension
dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Exemplo:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Resultados:
Resultado | Descrição |
---|---|
output | statically shaped tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.is_finite
(mhlo::IsFiniteOp)
IsFinite operation
Sintaxe:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x
is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Exemplo:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
x | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Resultados:
Resultado | Descrição |
---|---|
y | tensor of pred (AKA boolean or 1-bit integer) values |
mhlo.log
(mhlo::LogOp)
Log operation
Sintaxe:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Exemplo:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.log_plus_one
(mhlo::Log1pOp)
Log1p operation
Sintaxe:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Exemplo:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.logistic
(mhlo::LogisticOp)
Logistic operation
Sintaxe:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Exemplo:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.map
(mhlo::MapOp)
Map operation
Applies a map function computation
to inputs
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Exemplo:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType, RecursiveMemoryEffects, SameOperandsAndResultShape, SingleBlock, SingleBlockImplicitTerminator
Interfaces: InferShapedTypeOpInterface, InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.maximum
(mhlo::MaxOp)
Max operation
Sintaxe:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Exemplo:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait, Commutative, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.minimum
(mhlo::MinOp)
Min operation
Sintaxe:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Exemplo:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait, Commutative, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.multiply
(mhlo::MulOp)
Mul operation
Sintaxe:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Exemplo:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait, Commutative, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.negate
(mhlo::NegOp)
Neg operation
Sintaxe:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Exemplo:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.not
(mhlo::NotOp)
Not operation
Sintaxe:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand
of type integer and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Exemplo:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
mhlo.optimization_barrier
(mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Sintaxe:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand
are executed before any operations that depend on the result
and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result
= operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Exemplo:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait, HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
Resultados:
Resultado | Descrição |
---|---|
result | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
mhlo.or
(mhlo::OrOp)
Or operation
Sintaxe:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Exemplo:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait, Commutative, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
rhs | tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.outfeed
(mhlo::OutfeedOp)
Outfeed operation
Writes inputs
to the outfeed and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Exemplo:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
token | símbolo |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | símbolo |
mhlo.pad
(mhlo::PadOp)
Pad operation
Expands operand
by padding around the tensor as well as between the elements of the tensor with the given padding_value
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Exemplo:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
padding_value | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.partition_id
(mhlo::PartitionIdOp)
PartitionId operation
Sintaxe:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Exemplo:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of 32-bit unsigned integer values |
mhlo.popcnt
(mhlo::PopulationCountOp)
PopulationCount operation
Sintaxe:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Exemplo:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
mhlo.power
(mhlo::PowOp)
Pow operation
Sintaxe:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs
tensor by rhs
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Exemplo:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.real
(mhlo::RealOp)
Real operation
Sintaxe:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Exemplo:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.real_dynamic_slice
(mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Sintaxe:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices
, limit_indices
and strides
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Exemplo:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
start_indices | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
limit_indices | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
strides | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.recv
(mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Exemplo:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type HOST_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 3>,
is_host_transfer = true
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrição |
---|---|
token | símbolo |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of statically shaped tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
mhlo.reduce
(mhlo::ReduceOp)
Reduce operation
Applies a reduction function body
to inputs
and init_values
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Exemplo:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType, RecursiveMemoryEffects, SameVariadicOperandSize, SingleBlock, SingleBlockImplicitTerminator
Interfaces: InferShapedTypeOpInterface, InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
init_values | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.reduce_precision
(mhlo::ReducePrecisionOp)
ReducePrecision operation
Sintaxe:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand
to another floating-point type that uses exponent_bits
and mantissa_bits
and back to the original floating-point type and produces an output
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Exemplo:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Resultados:
Resultado | Descrição |
---|---|
output | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.reduce_scatter
(mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations
, over the values of the operand
tensor from each process, splits the reduction result along scatter_dimension
into parts, and scatters the split parts between the processes to produce the result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Exemplo:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Traits: SameOperandsAndResultElementType
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.reduce_window
(mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body
to windows of inputs
and init_values
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Exemplo:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType, RecursiveMemoryEffects, SameVariadicOperandSize, SingleBlock, SingleBlockImplicitTerminator
Interfaces: InferShapedTypeOpInterface, InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
init_values | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.remainder
(mhlo::RemOp)
Rem operation
Sintaxe:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Exemplo:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.replica_id
(mhlo::ReplicaIdOp)
ReplicaId operation
Sintaxe:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Exemplo:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of 32-bit unsigned integer values |
mhlo.reshape
(mhlo::ReshapeOp)
Reshape operation
Sintaxe:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand
tensor to a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Exemplo:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | statically shaped tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.return
(mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return
$results attr-dict ( :
type($results)^)?
Traits: AlwaysSpeculatableImplTrait, Terminator
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token or nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token values
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.rng
(mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution
algorithm and produces a result
tensor of a given shape shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Exemplo:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface, InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
Operand | Descrição |
---|---|
a | 0D tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
b | 0D tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
shape | 1D tensor of index or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rng_bit_generator
(mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output
filled with uniform random data and an updated output state output_state
given an initial state initial_state
using the pseudorandom number generator algorithm rng_algorithm
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Exemplo:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
Operand | Descrição |
---|---|
initial_state | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Resultados:
Resultado | Descrição |
---|---|
output_state | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
output | statically shaped tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_afz
(mhlo::RoundOp)
Round operation
Sintaxe:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Exemplo:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_even
(mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Sintaxe:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Exemplo:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rsqrt
(mhlo::RsqrtOp)
Rsqrt operation
Sintaxe:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand
tensor and produces a result
tensor, implementing the rSqrt
operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Exemplo:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.scatter
(mhlo::ScatterOp)
Scatter operation
Produces results
tensors which are equal to inputs
tensors except that several slices specified by scatter_indices
are updated with the values updates
using update_computation
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Exemplo:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [2,3],
inserted_window_dims = [0],
scatter_dims_to_operand_dims = [1, 0],
index_vector_dim = 2>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<2x3x2x2xi32>) -> tensor<3x4x2xi32>
Traits: RecursiveMemoryEffects, SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
scatter_indices | tensor of integer or index values |
updates | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.select
(mhlo::SelectOp)
Select operation
Sintaxe:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result
tensor where each element is selected from on_true
or on_false
tensor based on the value of the corresponding element of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Exemplo:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait, HLO_BroadcastingElementwise, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
pred | tensor of pred (AKA boolean or 1-bit integer) values |
on_true | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
on_false | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.select_and_scatter
(mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source
tensor using scatter
based on the outcome of reduce_window
of the input
tensor using select
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Exemplo:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
source | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
init_value | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.send
(mhlo::SendOp)
Send operation
Sends inputs
to a channel channel_id
and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Exemplo:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_HOST>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 2>,
is_host_transfer = true
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
token | símbolo |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | símbolo |
mhlo.set_dimension_size
(mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Exemplo:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait, InferTensorType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
size | tensor of 32-bit signless integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.shift_left
(mhlo::ShiftLeftOp)
ShiftLeft operation
Sintaxe:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Exemplo:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
rhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_arithmetic
(mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Sintaxe:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Exemplo:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
rhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_logical
(mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Sintaxe:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Exemplo:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
rhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
mhlo.sign
(mhlo::SignOp)
Sign operation
Sintaxe:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand
element-wise and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Exemplo:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of 4/8/16/32/64-bit signless integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.sine
(mhlo::SineOp)
Sine operation
Sintaxe:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Exemplo:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.slice
(mhlo::SliceOp)
Slice operation
Extracts a slice from the operand
using statically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Exemplo:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.sort
(mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs
together, according to a custom comparator
, along the given dimension
and produces a variadic number of tensors as results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Exemplo:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType, RecursiveMemoryEffects, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface, InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrição |
---|---|
inputs | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.sqrt
(mhlo::SqrtOp)
Sqrt operation
Sintaxe:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Exemplo:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.stochastic_convert
(mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
random | tensor of 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.subtract
(mhlo::SubtractOp)
Subtract operation
Sintaxe:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Exemplo:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
rhs | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.tan
(mhlo::TanOp)
Tan operation
Sintaxe:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand)
element-wise.
Exemplo:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tanh
(mhlo::TanhOp)
Tanh operation
Sintaxe:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Exemplo:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.topk
(mhlo::TopKOp)
TopK operation
Sintaxe:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k
values and their indices, along the last dimension of the operand if largest=true
or the bottom k
values if largest=false
.
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Exemplo:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType, RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface, InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
values | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
indices | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.torch_index_select
(mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims
attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Exemplo:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
index | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.trace
(mhlo::TraceOp)
Trace operation
Sintaxe:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Exemplo:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.transpose
(mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand
tensor using permutation
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Exemplo:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.triangular_solve
(mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Exemplo:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait, InferTensorType, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
Operand | Descrição |
---|---|
a | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
b | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tuple
(mhlo::TupleOp)
Tuple operation
Sintaxe:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result
tuple from values val
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Exemplo:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
val | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token or nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token values |
Resultados:
Resultado | Descrição |
---|---|
result | nested tuple with any combination of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token values |
mhlo.unary_einsum
(mhlo::UnaryEinsumOp)
UnaryEinsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Exemplo:
%result = "mhlo.unary_einsum"(%operand) {
einsum_config = "ab->a"
} : (tensor<4x16xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.uniform_dequantize
(mhlo::UniformDequantizeOp)
UniformDequantize operation
Sintaxe:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand
to a floating-point tensor result
according to the quantization parameters defined by the operand
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Exemplo:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait, Elementwise, InferTensorType, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.uniform_quantize
(mhlo::UniformQuantizeOp)
UniformQuantize operation
Sintaxe:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand
to a quantized tensor result
according to the quantization parameters defined by the result
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Exemplo:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
operand | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.while
(mhlo::WhileOp)
While operation
Produces the output from executing body
function 0 or more times while the cond
function outputs true
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Exemplo:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects, SingleBlock, SingleBlockImplicitTerminator
Interfaces: InferTypeOpInterface, OpAsmOpInterface
Operands:
Operand | Descrição |
---|---|
operand | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | variadic of tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values or token |
mhlo.xla.rng_get_and_update_state
(mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Sintaxe:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Atributos:
Atributo | MLIR Type | Descrição |
---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Resultados:
Resultado | Descrição |
---|---|
"sem nome" | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor
(mhlo::XorOp)
Xor operation
Sintaxe:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Exemplo:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait, Commutative, CompatibleOperandsAndResultType, Elementwise, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable, InferShapedTypeOpInterface, InferTypeOpInterface, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrição |
---|---|
lhs | tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
rhs | tensor of pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer values |
Resultados:
Resultado | Descrição |
---|---|
result | tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 4/8/16/32/64-bit signless integer or 4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 4/8/16/32-bit uniform quantized signed integer or 4/8/16/32-bit uniform quantized unsigned integer values |
Attribute definition
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex
. The argTupleIndices
and resultTupleIndices
are used to index into nested tuples in operand and result respectively. If isMustAlias
is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1
may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
argTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
resultIndex | int64_t | |
resultTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
isMustAlias | bool |
ChannelHandleAttr
two 64-bit integers 'handle' and 'type'
Sintaxe:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
lidar | int64_t | |
tipo | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Sintaxe:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Enum cases:
- EQ (
EQ
) - NE (
NE
) - GE (
GE
) - GT (
GT
) - LE (
LE
) - LT (
LT
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Sintaxe:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Enum cases:
- NOTYPE (
NOTYPE
) - FLOAT (
FLOAT
) - TOTALORDER (
TOTALORDER
) - SIGNED (
SIGNED
) - UNSIGNED (
UNSIGNED
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
inputBatchDimension | int64_t | |
inputFeatureDimension | int64_t | |
inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
kernelInputFeatureDimension | int64_t | |
kernelOutputFeatureDimension | int64_t | |
kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
outputBatchDimension | int64_t | |
outputFeatureDimension | int64_t | |
outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Sintaxe:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr
, parameter
tells us which argument of the main
function of the module is prefetched, and indices
is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices
is the shape achieved after indexing by each element of indices
in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>>
is tensor<i32>
.
An empty value for indices
means the whole shape is prefetched.
Por exemplo,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0
tells us that the async copy of the 0
th parameter is a cross_program_prefetch
, while the index
of [0]
tells us that the 0
th element of the tuple is prefetched while the other element of the tuple is not.
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
parâmetro | int64_t | |
índices | ::llvm::ArrayRef<int64_t> | Dimensão |
desvio | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Sintaxe:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Enum cases:
- NONE (
NONE
) - LATEST (
LATEST
) - EARLIEST (
EARLIEST
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
Dequantization mode. Only MIN_COMBINED is supported.
Sintaxe:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Enum cases:
- MIN_COMBINED (
MIN_COMBINED
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Sintaxe:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Enum cases:
- sharding (
sharding
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensão |
FftTypeAttr
XLA fast fourier transform type.
Sintaxe:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Enum cases:
- FFT (
FFT
) - IFFT (
IFFT
) - RFFT (
RFFT
) - IRFFT (
IRFFT
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
fusion kind
Sintaxe:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Enum cases:
- kLoop (
kLoop
) - kInput (
kInput
) - kOutput (
kOutput
) - kCustom (
kCustom
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
offsetDims | ::llvm::ArrayRef<int64_t> | Dimensão |
collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Dimensão |
startIndexMap | ::llvm::ArrayRef<int64_t> | Dimensão |
indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Sintaxe:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index
. The output_tuple_indices
and operand_tuple_indices
are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
outputTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
operandIndex | int64_t | |
operandTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensão |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Sintaxe:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - HIGH (
HIGH
) - HIGHEST (
HIGHEST
) - PACKED_NIBBLE (
PACKED_NIBBLE
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::Precision | an enum of type Precision |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Sintaxe:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - THREE_FRY (
THREE_FRY
) - PHILOX (
PHILOX
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Sintaxe:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Enum cases:
- UNIFORM (
UNIFORM
) - NORMAL (
NORMAL
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
updateWindowDims | ::llvm::ArrayRef<int64_t> | Dimensão |
insertedWindowDims | ::llvm::ArrayRef<int64_t> | Dimensão |
scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Dimensão |
indexVectorDim | int64_t |
TransposeAttr
Transpose options
Sintaxe:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Enum cases:
- TRANSPOSE_INVALID (
TRANSPOSE_INVALID
) - NO_TRANSPOSE (
NO_TRANSPOSE
) - TRANSPOSE (
TRANSPOSE
) - ADJOINT (
ADJOINT
) #### Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
valor | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Sintaxe:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding
field of the tensor type.
See HLO_BoundedAttrInterface
for documentation for bounds
.
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
limites | ::llvm::ArrayRef<int64_t> |
Type definition
AsyncBundleType
Opaque collection of other types
Sintaxe:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parameters:
Parâmetro | C++ type | Descrição |
---|---|---|
tipos | ::llvm::ArrayRef<Type> |