Operacje
mhlo.abs
(mhlo::AbsOp)
Operacja ABS
Składnia:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje elementarną operację abs na tensorze operand
i generuje tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Przykład:
%result = mhlo.abs %operand : tensor<3xi32>
Cechy: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
Operand | Opis |
---|---|
operand | tensor rankingowy 2/4/8/16/32/64-bitowej liczby całkowitej bez znaku lub typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typ f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub typ złożony z 32-bitowymi float lub 64-bitowymi elementami float lub 2/4/8/16/32-bitowy jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku na każdą oś |
Wyniki:
Wynik | Opis |
---|---|
result | tensor rankingowy 2/4/8/16/32/64-bitowej liczby całkowitej bez znaku lub typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typ f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub typ bfloat16 lub 2/4/8/16/32-bitowa jednolita kwantyzowana liczba całkowita ze znakiem lub 2/4/8/16/32 -bitowa jednolita kwantyzacja na każdą liczbę całkowitą ze znakiem lub 2/4/8/16/32-bitowa jednolita kwantyzacja liczba całkowita bez znaku lub 2/4/8/16/32-bitowa, jednolicie skwantowana na oś wartości całkowite bez znaku |
mhlo.add
(mhlo::AddOp)
Dodaj operację
Składnia:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Wykonuje elementarne dodawanie dwóch tensorów lhs
i rhs
i tworzy tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Przykład:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Cechy: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
Operand | Opis |
---|---|
lhs | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe, jednolite kwantowane wartości całkowite bez znaku na oś |
rhs | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe, jednolite kwantowane wartości całkowite bez znaku na oś |
Wyniki:
Wynik | Opis |
---|---|
result | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe, jednolite kwantowane wartości całkowite bez znaku na oś |
mhlo.add_dependency
(mhlo::AddDependencyOp)
Operacja AddDependency
Składnia:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Ta operacja jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie ta operacja składa się z dwóch operandów: operandu danych i tokenu. Wynikiem operacji jest operand danych. W przypadku użycia z AfterAll ta operacja umożliwia porządkowanie operacji, które nie powodują skutków ubocznych (tych, które nie generują wartości tokenów).
Przykład:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
Operand | Opis |
---|---|
operand | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub uszeregowany tensor 2/4/8/16/32-bitów jednolicie skwantowana na oś całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolita kwantyzacja na oś wartości całkowite bez znaku lub token |
token | znak |
Wyniki:
Wynik | Opis |
---|---|
output | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub uszeregowany tensor 2/4/8/16/32-bitów jednolicie skwantowana na oś całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolita kwantyzacja na oś wartości całkowite bez znaku lub token |
mhlo.after_all
(mhlo::AfterAllOp)
Po całej operacji
Składnia:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Zapewnia, że operacje generujące inputs
zostaną wykonane przed jakimikolwiek operacjami zależnymi od result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Przykład:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
Operand | Opis |
---|---|
inputs | variadic tokena |
Wyniki:
Wynik | Opis |
---|---|
result | znak |
mhlo.all_gather
(mhlo::AllGatherOp)
Operacja AllGather
W każdej grupie procesów w siatce procesów łączy wartości tensora operandu z każdego procesu wzdłuż all_gather_dim
i tworzy tensor wynikowy. computation
są stosowane oddzielnie dla każdego operandu w operands
, dając jeden wynik na każdy operand.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Przykład:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Cechy: SameOperandsAndResultElementType
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
all_gather_dim | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
replica_groups | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
use_global_device_ids | ::mlir::Attrjednostki | atrybut jednostki |
Operandy:
Operand | Opis |
---|---|
operands | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku |
mhlo.all_reduce
(mhlo::AllReduceOp)
Operacja AllReduce
W obrębie każdej grupy procesów w siatce procesów stosuje computation
funkcji redukcji do wartości tensora argumentu z każdego procesu i tworzy tensor wynikowy. computation
są stosowane oddzielnie dla każdego operandu w operands
, dając jeden wynik na każdy operand.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Przykład:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Cechy: InferTensorType
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfejsy: InferShapedTypeOpInterface
, InferTypeOpInterface
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
use_global_device_ids | ::mlir::Attrjednostki | atrybut jednostki |
Operandy:
Operand | Opis |
---|---|
operands | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku |
mhlo.all_to_all
(mhlo::AllToAllOp)
Operacja AllToAll
W obrębie każdej grupy procesów w siatce procesów dzieli wartości tensora operand
wzdłuż split_dimension
na części, rozprasza podzielone części pomiędzy procesami, łączy rozproszone części wzdłuż concat_dimension
i tworzy tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Przykład:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Cechy: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsElementType
, SameOperandsShape
, SameVariadicOperandSize
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
split_dimension | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
concat_dimension | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
split_count | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest dodatnia |
replica_groups | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
Operandy:
Operand | Opis |
---|---|
operand | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku |
mhlo.and
(mhlo::AndOp)
I operacja
Składnia:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Wykonuje elementarne AND dwóch tensorów lhs
i rhs
i tworzy tensor result
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Przykład:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Cechy: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
Operand | Opis |
---|---|
lhs | uszeregowany tensor pred (inaczej wartość logiczna lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku |
rhs | uszeregowany tensor pred (inaczej wartość logiczna lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku |
Wyniki:
Wynik | Opis |
---|---|
result | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe, jednolite kwantowane wartości całkowite bez znaku na oś |
mhlo.async_done
(mhlo::AsyncDoneOp)
Operacja AsyncDone
Ta operacja jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie ta operacja blokuje się do końca obliczeń asynchronicznych. Zwraca końcowy wynik obliczeń asynchronicznych.
Aby uzyskać więcej informacji, zobacz dokumentację AsyncStart.
Interfejsy: InferTypeOpInterface
Operandy:
Operand | Opis |
---|---|
bundle | async_bundle z dowolną kombinacją tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita bez znaku lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku lub wartości tokenów |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku lub token lub zagnieżdżona krotka z dowolnym kombinacja tensora rangowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub uszeregowany tensor 2/4/8/16/32-bitów jednolicie skwantowana na liczba całkowita ze znakiem osi lub 2/4/8/16/32-bitowa jednolita kwantyzacja na każdą oś wartości całkowite bez znaku lub wartości tokenów |
mhlo.async_start
(mhlo::AsyncStartOp)
Operacja AsyncStart
Ta operacja jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie ta operacja rozpoczyna obliczenia asynchroniczne.
Jest to używane, gdy istnieją funkcje, które zawierają zarówno oczekiwania asynchroniczne (takie jak DMA), jak i obliczenia w wątku. Na przykład funkcja może składać się z obliczenia, DMA, innego obliczenia, drugiego DMA i obliczenia końcowego. Byłoby to reprezentowane jako async_start, po którym następują async_update i async_done. Async_start wykona pierwsze obliczenia w wątku, a następnie uruchomi DMA. Async_update będzie czekać na zakończenie DMA, jeśli nie zostało to jeszcze zrobione, następnie wykona drugie obliczenie w funkcji i uruchomi drugie DMA. Na koniec funkcja async_done zaczeka na ostatnie DMA, a następnie uruchomi ostatnie obliczenia, które należy wykonać w wątku, i zwróci wynik tego końcowego obliczenia.
operands
są przekazywane bezpośrednio do obliczeń. called_computation
to funkcja, która zostanie uruchomiona asynchronicznie. execution_thread
to nazwa wątku, w którym zostanie ona uruchomiona. Główny wątek nazywany jest „głównym”. Wszystkie wątki mają nazwy.
Zwraca to cały stan potrzebny między operacjami asynchronicznymi. Po przypisaniu bufora zwracane wartości reprezentują miejsce potrzebne do przechowywania danych wejściowych, wyników i wszelkich notatników potrzebnych lub edytowanych przez operację asynchroniczną.
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | atrybut odniesienia do symbolu płaskiego |
execution_thread | ::mlir::StringAttr | atrybut ciągu |
Operandy:
Operand | Opis |
---|---|
inputs | variadic tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita ze znakiem lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku lub token lub zagnieżdżona krotka z dowolnym kombinacja tensora rangowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (AKA boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/4/8 /16/32/64-bitowa liczba całkowita bez znaku lub typ złożony z 32-bitowymi lub 64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub uszeregowany tensor 2/4/8/16/32-bitów jednolicie skwantowana na liczba całkowita ze znakiem osi lub 2/4/8/16/32-bitowa jednolita kwantyzacja na każdą oś wartości całkowite bez znaku lub wartości tokenów |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | async_bundle z dowolną kombinacją tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita bez znaku lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku lub wartości tokenów |
mhlo.async_update
(mhlo::AsyncUpdateOp)
Operacja AsyncUpdate
Ta operacja jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie ta operacja blokuje obliczenia asynchroniczne aż do bariery synchronizacji. Zwraca bundle
po wykonaniu na nim operacji.
Aby uzyskać więcej informacji, zobacz dokumentację AsyncStart.
Interfejsy: InferTypeOpInterface
Operandy:
Operand | Opis |
---|---|
bundle | async_bundle z dowolną kombinacją tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita bez znaku lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku lub wartości tokenów |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | async_bundle z dowolną kombinacją tensora rankingowego typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typ f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub pred (inaczej boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita bez znaku lub 2/ 4/8/16/32/64-bitowa liczba całkowita bez znaku lub typ zespolony z 32-bitową liczbą zmiennoprzecinkową lub 64-bitowe elementy zmiennoprzecinkowe lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita bez znaku lub 2/4/8/16/32-bitowa jednolita kwantyzowane na oś liczba całkowita bez znaku lub 2/4/8/16/32-bitowe jednolite kwantowane na oś wartości całkowite bez znaku lub wartości tokenów |
mhlo.atan2
(mhlo::Atan2Op)
Operacja Atan2
Składnia:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Wykonuje elementarną operację atan2 na tensorze lhs
i rhs
i generuje tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Przykład:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Cechy: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
Operand | Opis |
---|---|
lhs | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub typ złożony z 32-bitowymi elementami float lub 64-bitowymi elementami float lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/ 4/8/16/32-bitowe, jednolicie skwantowane wartości całkowite bez znaku |
rhs | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub typ złożony z 32-bitowymi elementami float lub 64-bitowymi elementami float lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/ 4/8/16/32-bitowe, jednolicie skwantowane wartości całkowite bez znaku |
Wyniki:
Wynik | Opis |
---|---|
result | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowy float lub 32-bitowy float lub 64-bitowy float lub bfloat16 lub typ złożony z 32-bitowymi elementami float lub 64-bitowymi elementami float lub 2/4/8/16/32-bitowa jednolicie skwantowana liczba całkowita ze znakiem lub 2/ 4/8/16/32-bitowe, jednolicie skwantowane wartości całkowite bez znaku |
mhlo.batch_norm_grad
(mhlo::BatchNormGradOp)
Operacja BatchNormGrad
Oblicza gradienty kilku danych wejściowych BatchNormTrainingOp propagujące wstecznie z grad_output
i tworzy tensory grad_operand
, grad_scale
i grad_offset
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Przykład:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Cechy: AlwaysSpeculatableImplTrait
, InferTensorType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
epsilon | ::mlir::FloatAttr | 32-bitowy atrybut zmiennoprzecinkowy |
feature_index | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
Operandy:
Operand | Opis |
---|---|
operand | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
scale | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
mean | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
variance | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
grad_output | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
Wyniki:
Wynik | Opis |
---|---|
grad_operand | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
grad_scale | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
grad_offset | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
mhlo.batch_norm_inference
(mhlo::BatchNormInferenceOp)
Operacja BatchNormInference
Normalizuje tensor operand
we wszystkich wymiarach z wyjątkiem wymiaru feature_index
i tworzy tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Przykład:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Cechy: AlwaysSpeculatableImplTrait
, InferTensorType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
epsilon | ::mlir::FloatAttr | 32-bitowy atrybut zmiennoprzecinkowy |
feature_index | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
Operandy:
Operand | Opis |
---|---|
operand | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
scale | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
offset | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
mean | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
variance | Tensor 1D typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
Wyniki:
Wynik | Opis |
---|---|
result | tensor rankingowy typu f4E2M1FN lub typu f6E2M3FN lub typu f6E3M2FN lub typu f8E3M4 lub typu f8E4M3 lub typu f8E4M3FN lub typu f8E4M3FNUZ lub typu f8E4M3B11FNUZ lub typu f8E5M2 lub typu f8E5M2FNUZ lub typu f8E8M0FNU lub 16-bitowe wartości typu float lub 32-bitowe float lub 64-bitowe wartości typu float lub bfloat16 |
mhlo.batch_norm_training
(mhlo::BatchNormTrainingOp)
Operacja BatchNormTraining
Oblicza średnią i wariancję w wymiarach wsadowych i przestrzennych oraz normalizuje tensor operand
dla każdej funkcji w wymiarze feature_index
i tworzy tensory output
, batch_mean
i batch_var
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Przykład:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Cechy: AlwaysSpeculatableImplTrait
, InferTensorType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
epsilon | ::mlir::FloatAttr | 32-bitowy atrybut zmiennoprzecinkowy |
feature_index | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
Operandy:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy pływak lub 32-bitowy zmiennoprzemienny lub 64-bitowy typu pływak lub BFLOAT16 |
scale | 1d tensor typu F4E2M1fn lub typ F6E2M3FN lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN Type lub F8UZ typ lub F8Uz0fnU OR 16-bitowy pływak lub 32-bitowy zmiennoprzemienny lub 64-bitowy typu pływak lub BFLOAT16 |
offset | 1d tensor typu F4E2M1fn lub typ F6E2M3FN lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN Type lub F8UZ typ lub F8Uz0fnU OR 16-bitowy pływak lub 32-bitowy zmiennoprzemienny lub 64-bitowy typu pływak lub BFLOAT16 |
Wyniki:
Wynik | Opis |
---|---|
output | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy pływak lub 32-bitowy zmiennoprzemienny lub 64-bitowy typu pływak lub BFLOAT16 |
batch_mean | 1d tensor typu F4E2M1fn lub typ F6E2M3FN lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN Type lub F8UZ typ lub F8Uz0fnU OR 16-bitowy pływak lub 32-bitowy zmiennoprzemienny lub 64-bitowy typu pływak lub BFLOAT16 |
batch_var | 1d tensor typu F4E2M1fn lub typ F6E2M3FN lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN Type lub F8UZ typ lub F8Uz0fnU OR 16-bitowy pływak lub 32-bitowy zmiennoprzemienny lub 64-bitowy typu pływak lub BFLOAT16 |
mhlo.bitcast
(MHLO :: bitcastop)
Operacja bitccast
Składnia:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Ta operacja jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie operacja ta zmienia kształt danych wejściowych w sposób, w jaki fizyczny układ elementów pozostaje niezmieniony.
Ta operacja wymaga informacji o układzie, aby zrozumieć „fizyczne rozmieszczenie elementów”, a obsługa układu w MHLO jest obecnie w toku.
Przykład:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.bitcast_convert
(MHLO :: BitcastConvertop)
Operacja bitcastConvert
Składnia:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Wykonuje operację bitowanego w tensorze operand
i wytwarza tensor result
, w którym bity całego tensora operand
są ponownie interpretowane przy użyciu typu tensora result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Przykład:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.broadcast
(Mhlo :: Broadcastop)
Operacja transmisji
Ta operacja jest w drodze ze StableHlo, więc nie jest zawarta w specyfikacji: https://github.com/openxla/stablehlo/issues/3
Nieformalnie ta operacja robi to samo, co transmisja XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast
Przykład:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleimpltrait, InferTensorType
, SameOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
broadcast_sizes | :: mlir :: genseIntelementsAttr | 64-bitowy atrybut elementów liczb całkowitych |
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.broadcast_in_dim
(MHLO :: BroadcastIndimop)
Operacja transmisji
Rozszerza wymiary i/lub ranga tensor wejściowego poprzez powielanie danych w tensorze operand
i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Przykład:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Cechy: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
broadcast_dimensions | :: mlir :: genseIntelementsAttr | 64-bitowy atrybut elementów liczb całkowitych |
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Statycznie tensor typu F4E2M1FN lub typu F6E2M3FN lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN Type lub F8E4M3FNUZ lub F8E4M3B lub 16-bitowy pływak lub 32-bitowy pływak lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4// 8/16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.case
(Mhlo :: caseop)
Operacja sprawy
Wytwarza dane wyjściowe z wykonywania dokładnie jednej function
z branches
w zależności od wartości index
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Przykład:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Cechy: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfejsy: InferTypeOpInterface
Operands:
Operand | Opis |
---|---|
index | tensor 32-bitowych wartości liczb całkowitych |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | VariaDic of Ranked Tensor of F4E2M1FN Typ lub F6E2M3FN Typ lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN lub F8E4M3FNUZ Typ Typ f8e8m0fnu lub 16-bitowy zmiennoprzemien lub 32-bitowy pływak lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA BOOLEAN lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/ 4/8/16/32/64-bit niepodpisany lub typ złożony z 32-bitowym pływakiem lub 64-bitowe elementy pływakowe lub 2/4/8/16/32-bitowe jednolite kwantyzowana podpisana liczba całkowita lub 2/4/8/16/32-bit jednorodne kwantyzowane wartości całkowitej lub tensor rangi 2/4/8/16// 32-bitowy jednolity kwantyzowany na całą całą całą całą całość lub 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej lub token |
mhlo.cbrt
(Mhlo :: CBRTOP)
Operacja CBRT
Składnia:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje elementarne działanie korzeni sześciennych na tensor operand
i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Przykład:
%result = mhlo.cbrt %operand : tensor<4xf32>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleImpltrait, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy pływak lub 32-bitowy pływak lub 64-bitowy typ lub typ BFLOAT16 lub typ z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowymi jednorodnymi kwantyczonymi podpisaną całą całą całą całą całą całą całą samotnością lub 2/ 4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej niepodpisanej |
Wyniki:
Wynik | Opis |
---|---|
result | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy pływak lub 32-bitowy pływak lub 64-bitowy typ lub typ BFLOAT16 lub typ z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowymi jednorodnymi kwantyczonymi podpisaną całą całą całą całą całą całą całą samotnością lub 2/ 4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej niepodpisanej |
mhlo.ceil
(Mhlo :: Ceilop)
Operacja CEIL
Składnia:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje elementowy CEIL Tensor operand
i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Przykład:
%result = mhlo.ceil %operand : tensor<5xf32>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleImpltrait, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennopnie lub 32-bitowy zmiennoprzemienny lub 64-bitowy typ lub BFLOAT16 lub 2/4/8/16/32-bitowy jednolity kwantyzowany podpisany liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyzowana niepodpisana wartości całkowity |
Wyniki:
Wynik | Opis |
---|---|
result | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennopnie lub 32-bitowy zmiennoprzemienny lub 64-bitowy typ lub BFLOAT16 lub 2/4/8/16/32-bitowy jednolity kwantyzowany podpisany liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyzowana niepodpisana wartości całkowity |
mhlo.cholesky
(Mhlo :: Choleskyop)
Cholesky Operacja
Oblicza rozkład choleski partii macierzy.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Przykład:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleimpltrait, InferTensorType
, SameOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
lower | :: mlir :: boolattr | atrybut bool |
Operands:
Operand | Opis |
---|---|
a | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub typ BFLOAT16 lub typ z 32-bitowym lub 64-bitowym wartościami elementów pływakowych |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub typ BFLOAT16 lub typ z 32-bitowym lub 64-bitowym wartościami elementów pływakowych |
mhlo.clamp
(Mhlo :: Clampop)
Operacja zacisku
Składnia:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Zacisuje każdy element tensor operand
między minimalną a maksymalną wartością i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Przykład:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleImpltrait, HLO_BroadcastingElementwise
, InferTensorType
, SameOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
min | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
max | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
result | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.collective_broadcast
(MHLO :: CollectiveBroadcastop)
Operacja CollectiveBroadcast
W każdej grupie procesu w siatce procesowej wyślij wartość tensor operand
z procesu źródłowego do procesów docelowych i wytworzyć tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Przykład:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Cechy: CompatibleOperandsAndResultType
Interfejsy: InferShapedTypeOpInterface
, InferTypeOpInterface
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
replica_groups | :: mlir :: genseIntelementsAttr | 64-bitowy atrybut elementów liczb całkowitych |
channel_handle | :: mlir :: mhlo :: channelhandleattr | Dwa 64-bitowe „Uchwyt” i „Typ” |
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.collective_permute
(Mhlo :: CollectivePermuteop)
Działanie zbiorowe
W każdej grupie procesu w sieci procesowej wysyła wartość tensor operand
z procesu źródłowego do procesu docelowego i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Przykład:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleImpltrait, CompatibleOperandsAndResultType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
source_target_pairs | :: mlir :: genseIntelementsAttr | 64-bitowy atrybut elementów liczb całkowitych |
channel_handle | :: mlir :: mhlo :: channelhandleattr | Dwa 64-bitowe „Uchwyt” i „Typ” |
Operands:
Operand | Opis |
---|---|
operand | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.compare
(MHLO :: Compareop)
Porównaj operację
Składnia:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Wykonuje elementarne porównanie tensorów lhs
i rhs
zgodnie z comparison_direction
i compare_type
, i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compre
Przykład:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleimpltrait, Elementwise
, InferTensorType
, SameOperandsAndResultShape
, SameOperandsElementType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
comparison_direction | :: mlir :: mhlo :: porównanieDirectionAttr | Która operacja porównawcza wykonać. |
compare_type | :: mlir :: mhlo :: porównanieTypeattr | Który typ porównania do użycia. |
Operands:
Operand | Opis |
---|---|
lhs | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
rhs | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking Tensor of Pred (alias boolean lub 1-bitowa liczba całkowita) |
mhlo.complex
(MHLO :: Complexop)
Złożona operacja
Składnia:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Wykonuje elementarną konwersję na złożoną wartość z pary rzeczywistych i wyobrażonych wartości, lhs
i rhs
, i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Przykład:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleImpltrait, Elementwise
, SameOperandsAndResultShape
, SameOperandsElementType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | Ranking tensor 32-bitowych wartości pływakowych lub 64-bitowych wartości pływakowych |
rhs | Ranking tensor 32-bitowych wartości pływakowych lub 64-bitowych wartości pływakowych |
Wyniki:
Wynik | Opis |
---|---|
result | Ranking tensor typu złożonego z 32-bitowymi wartościami pływakowymi lub 64-bitowymi wartościami elementów pływakowych |
mhlo.composite
(MHLO :: compositeop)
Operacja złożona
Składnia:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Ekapsuluje wykonaną (skomponowaną) (skomponowane) innych operacji stabilnych, przyjmując inputs
i composite_attributes
oraz results
. Semantyka OP są wdrażane przez atrybut decomposition
. composite
OP można zastąpić rozkładem bez zmiany semantyki programowej. W przypadkach, w których inlinowanie rozkładu nie zapewnia takiej samej semantyki OP, wolą użyć custom_call
.
Pole version
(domyślnie do 0
) służy do oznaczenia, gdy zmienia się semantyka kompozytowa.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Przykład:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Interfejsy: SymbolUserOpInterface
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
name | :: mlir :: StringAttr | atrybut ciągu |
composite_attributes | :: mlir :: słownik | Słownik nazwanych wartości atrybutów |
decomposition | :: mlir :: flatsymbolrefattr | Atrybut odniesienia z płaskiego symbolu |
version | :: mlir :: Integerattr | 32-bitowy atrybut liczb całkowitych |
Operands:
Operand | Opis |
---|---|
inputs | VariaDic of Ranked Tensor of F4E2M1FN Typ lub F6E2M3FN Typ lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN lub F8E4M3FNUZ Typ Typ f8e8m0fnu lub 16-bitowy zmiennoprzemien lub 32-bitowy pływak lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA BOOLEAN lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/ 4/8/16/32/64-bit niepodpisany lub typ złożony z 32-bitowym pływakiem lub 64-bitowe elementy pływakowe lub 2/4/8/16/32-bitowe jednolite kwantyzowana podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita jednolita kwantyfikowana liczba całkowita podpisana na osi lub 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej lub token lub zagnieżdżone krople z dowolnym Połączenie typu f4e2m1fn typu F4E2M1fn lub typu F6E3M3FN lub typu F8E3M4 lub typu f8e4m3fn lub typu F8E4M3FNUZ lub typu F8E4M3B11FNUZ lub F8E5M2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednolite kwantyczne wartości całkowitej lub tensor rangi 2/4/8/16/32-bitowy jednolity kwantycznie kwantyzowany Per Per Podpisana osi liczba całkowita lub 2/4/8/16/32-bitowa jednolite kwantyzowane na osi niepodpisane wartości całkowite lub wartości tokena |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | VariaDic of Ranked Tensor of F4E2M1FN Typ lub F6E2M3FN Typ lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN lub F8E4M3FNUZ Typ Typ f8e8m0fnu lub 16-bitowy zmiennoprzemien lub 32-bitowy pływak lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA BOOLEAN lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/ 4/8/16/32/64-bit niepodpisany lub typ złożony z 32-bitowym pływakiem lub 64-bitowe elementy pływakowe lub 2/4/8/16/32-bitowe jednolite kwantyzowana podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita jednolita kwantyfikowana liczba całkowita podpisana na osi lub 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej lub token lub zagnieżdżone krople z dowolnym Połączenie typu f4e2m1fn typu F4E2M1fn lub typu F6E3M3FN lub typu F8E3M4 lub typu f8e4m3fn lub typu F8E4M3FNUZ lub typu F8E4M3B11FNUZ lub F8E5M2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednolite kwantyczne wartości całkowitej lub tensor rangi 2/4/8/16/32-bitowy jednolity kwantycznie kwantyzowany Per Per Podpisana osi liczba całkowita lub 2/4/8/16/32-bitowa jednolite kwantyzowane na osi niepodpisane wartości całkowite lub wartości tokena |
mhlo.concatenate
(Mhlo :: conatenateop)
Operacja związana
Łączy zmienadową liczbę tensorów w inputs
wzdłuż wymiaru dimension
w tej samej kolejności co podane argumenty i wytwarza tensor result
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Przykład:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Cechy: AlwaysSpeculatableImplTrait
spekulatibleimpltrait, SameOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
dimension | :: mlir :: Integerattr | 64-bitowy atrybut liczb całkowitych, którego wartość jest nie wymagająca |
Operands:
Operand | Opis |
---|---|
val | VariaDic of Ranked Tensor of F4E2M1FN Typ lub F6E2M3FN Typ lub F6E3M2FN Typ lub F8E3M4 Typ lub F8E4M3 Typ lub F8E4M3FN lub F8E4M3FNUZ Typ Typ f8e8m0fnu lub 16-bitowy zmiennoprzemien lub 32-bitowy pływak lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA BOOLEAN lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/ 4/8/16/32/64-bit niepodpisany lub typ złożony z 32-bitowym pływakiem lub 64-bitowe elementy pływakowe lub 2/4/8/16/32-bitowe jednolite kwantyzowana podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednolita kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolita jednolita kwantyzowane na całą całą całą całość lub 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | Ranking tensor typu F4E2M1FN lub typu F6E2M3FN lub typu F6E3M2FN lub typu F8E3M4 lub typu f8e4m3fn lub typu f8e4m3fnUz lub typ typu f8e4m3b11fnUZ lub f8e5m2 16-bitowy zmiennoprzemienny lub 32-bitowy Float lub 64-bitowy typ lub BFLOAT16 lub PRES (AKA Boolean lub 1-bitowa liczba całkowita) lub 2/4/8/16/32/64-bitowa liczba całkowita lub 2/4/8 /16/32/64-bit niepodpisany liczba całkowita lub złożona z 32-bitowym pływakiem lub 64-bitowymi elementami pływakowymi lub 2/4/8/16/32-bitowa jednolita kwantyczna podpisana liczba całkowita lub 2/4/8/16/32-bitowa jednorodna kwantyczna liczba całkowita lub 2/4/8/16/32-bitowa jednolity kwantycznie kwantyzowana liczba całkowita lub podpisana na osi lit. 2/4/8/16/32-bitowe jednolite kwantyzowane wartości całkowitej |
mhlo.constant
(Mhlo :: Constantop)
Stała operacja
Wytwarza tensor output
ze stałej value
.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Przykład:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Cechy: AlwaysSpeculatableImplTrait
ConstantLike
Interfejsy: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Atrybuty:
Atrybut | Typ MLIR | Opis |
---|---|---|
value | :: Mlir :: ElementsAttr | Atrybut stałego wektora/tensora |
Wyniki:
Wynik | Opis |
---|---|
output | statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convert
(mhlo::ConvertOp)
Convert operation
Składnia:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Przykład:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convolution
(mhlo::ConvolutionOp)
Convolution operation
Składnia:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs
and slices of rhs
and produces result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Przykład:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.copy
(mhlo::CopyOp)
Copy operation
Składnia:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand
. Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Przykład:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.cosine
(mhlo::CosineOp)
Cosine operation
Składnia:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Przykład:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.count_leading_zeros
(mhlo::ClzOp)
Clz operation
Składnia:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Przykład:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.create_token
(mhlo::CreateTokenOp)
CreateToken operation
Składnia:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Przykład:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Wyniki:
Wynik | Opis |
---|---|
output | znak |
mhlo.cross-replica-sum
(mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0
, use_global_device_ids = false
and computation
implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Przykład:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.custom_call
(mhlo::CustomCallOp)
CustomCall operation
Składnia:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name
that takes inputs
and called_computations
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Przykład:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
Operand | Opis |
---|---|
inputs | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.divide
(mhlo::DivOp)
Div operation
Składnia:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Przykład:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.domain
(mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.dot
(mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Przykład:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dot_general
(mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs
and slices of rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Przykład:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_broadcast_in_dim
(mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions
.
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Przykład:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_conv
(mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding
is specified dynamically via d_padding
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Przykład:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
d_padding | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_gather
(mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Przykład:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_iota
(mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Przykład:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Opis |
---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_pad
(mhlo::DynamicPadOp)
DynamicPad operation
Składnia:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand
, with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_reshape
(mhlo::DynamicReshapeOp)
DynamicReshape operation
Składnia:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Przykład:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_slice
(mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand
using dynamically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Przykład:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_update_slice
(mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Składnia:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result
tensor which is equal to the operand
tensor except that the slice starting at start_indices
is updated with the values in update
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Przykład:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
update | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.einsum
(mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Przykład:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.erf
(mhlo::ErfOp)
Erf operation
Składnia:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#erf
Przykład:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.exponential
(mhlo::ExpOp)
Exp operation
Składnia:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Przykład:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.exponential_minus_one
(mhlo::Expm1Op)
Expm1 operation
Składnia:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Przykład:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fft
(mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Przykład:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.floor
(mhlo::FloorOp)
Floor operation
Składnia:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Przykład:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fusion
(mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Wyniki:
Wynik | Opis |
---|---|
results | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.gather
(mhlo::GatherOp)
Gather operation
Gathers slices from operand
tensor from offsets specified in start_indices
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Przykład:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.get_dimension_size
(mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension
of the operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Przykład:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | tensor of 32-bit signless integer values |
mhlo.get_tuple_element
(mhlo::GetTupleElementOp)
GetTupleElement operation
Składnia:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index
position of the operand
tuple and produces a result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Przykład:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Opis |
---|---|
operand | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.if
(mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch
or false_branch
depending on the value of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
Operands:
Operand | Opis |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.imag
(mhlo::ImagOp)
Imag operation
Składnia:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Przykład:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.infeed
(mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Przykład:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
Operand | Opis |
---|---|
token | znak |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.iota
(mhlo::IotaOp)
Iota operation
Fills an output
tensor with values in increasing order starting from zero along the iota_dimension
dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Przykład:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Wyniki:
Wynik | Opis |
---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.is_finite
(mhlo::IsFiniteOp)
IsFinite operation
Składnia:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x
is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Przykład:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
x | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Wyniki:
Wynik | Opis |
---|---|
y | ranked tensor of pred (AKA boolean or 1-bit integer) values |
mhlo.log
(mhlo::LogOp)
Log operation
Składnia:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Przykład:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.log_plus_one
(mhlo::Log1pOp)
Log1p operation
Składnia:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Przykład:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.logistic
(mhlo::LogisticOp)
Logistic operation
Składnia:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Przykład:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.map
(mhlo::MapOp)
Map operation
Applies a map function computation
to inputs
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Przykład:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.maximum
(mhlo::MaxOp)
Max operation
Składnia:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Przykład:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum
(mhlo::MinOp)
Min operation
Składnia:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Przykład:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum_broadcast_shapes
(mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Składnia:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i
corresponds to output i
.
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
shapes | variadic of 1D tensor of index values |
Wyniki:
Wynik | Opis |
---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply
(mhlo::MulOp)
Mul operation
Składnia:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Przykład:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.negate
(mhlo::NegOp)
Neg operation
Składnia:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Przykład:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.not
(mhlo::NotOp)
Not operation
Składnia:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand
of type integer and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Przykład:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.optimization_barrier
(mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Składnia:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand
are executed before any operations that depend on the result
and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result
= operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Przykład:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Wyniki:
Wynik | Opis |
---|---|
result | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.or
(mhlo::OrOp)
Or operation
Składnia:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Przykład:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.outfeed
(mhlo::OutfeedOp)
Outfeed operation
Writes inputs
to the outfeed and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Przykład:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | znak |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | znak |
mhlo.pad
(mhlo::PadOp)
Pad operation
Expands operand
by padding around the tensor as well as between the elements of the tensor with the given padding_value
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Przykład:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.partition_id
(mhlo::PartitionIdOp)
PartitionId operation
Składnia:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Przykład:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt
(mhlo::PopulationCountOp)
PopulationCount operation
Składnia:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Przykład:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.power
(mhlo::PowOp)
Pow operation
Składnia:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs
tensor by rhs
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Przykład:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.real
(mhlo::RealOp)
Real operation
Składnia:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Przykład:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.real_dynamic_slice
(mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Składnia:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices
, limit_indices
and strides
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Przykład:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.recv
(mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Przykład:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type HOST_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 3>,
is_host_transfer = true
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Opis |
---|---|
token | znak |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.reduce
(mhlo::ReduceOp)
Reduce operation
Applies a reduction function body
to inputs
and init_values
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Przykład:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_precision
(mhlo::ReducePrecisionOp)
ReducePrecision operation
Składnia:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand
to another floating-point type that uses exponent_bits
and mantissa_bits
and back to the original floating-point type and produces an output
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Przykład:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Wyniki:
Wynik | Opis |
---|---|
output | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.reduce_scatter
(mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations
, over the values of the operand
tensor from each process, splits the reduction result along scatter_dimension
into parts, and scatters the split parts between the processes to produce the result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Przykład:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_window
(mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body
to windows of inputs
and init_values
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Przykład:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.remainder
(mhlo::RemOp)
Rem operation
Składnia:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Przykład:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.replica_id
(mhlo::ReplicaIdOp)
ReplicaId operation
Składnia:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Przykład:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape
(mhlo::ReshapeOp)
Reshape operation
Składnia:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand
tensor to a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Przykład:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.return
(mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return
$results attr-dict ( :
type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.rng
(mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution
algorithm and produces a result
tensor of a given shape shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Przykład:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
Operand | Opis |
---|---|
a | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
b | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rng_bit_generator
(mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output
filled with uniform random data and an updated output state output_state
given an initial state initial_state
using the pseudorandom number generator algorithm rng_algorithm
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Przykład:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
Operand | Opis |
---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Wyniki:
Wynik | Opis |
---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_afz
(mhlo::RoundOp)
Round operation
Składnia:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Przykład:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_even
(mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Składnia:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Przykład:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rsqrt
(mhlo::RsqrtOp)
Rsqrt operation
Składnia:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand
tensor and produces a result
tensor, implementing the rSqrt
operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Przykład:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.scatter
(mhlo::ScatterOp)
Scatter operation
Produces results
tensors which are equal to inputs
tensors except that several slices specified by scatter_indices
are updated with the values updates
using update_computation
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Przykład:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects
, SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select
(mhlo::SelectOp)
Select operation
Składnia:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result
tensor where each element is selected from on_true
or on_false
tensor based on the value of the corresponding element of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Przykład:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
on_true | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
on_false | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select_and_scatter
(mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source
tensor using scatter
based on the outcome of reduce_window
of the input
tensor using select
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Przykład:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
source | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.send
(mhlo::SendOp)
Send operation
Sends inputs
to a channel channel_id
and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Przykład:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_HOST>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 2>,
is_host_transfer = true
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | znak |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | znak |
mhlo.set_dimension_size
(mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Przykład:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
size | tensor of 32-bit signless integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.shift_left
(mhlo::ShiftLeftOp)
ShiftLeft operation
Składnia:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Przykład:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_arithmetic
(mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Składnia:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Przykład:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_logical
(mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Składnia:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Przykład:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.sign
(mhlo::SignOp)
Sign operation
Składnia:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand
element-wise and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Przykład:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.sine
(mhlo::SineOp)
Sine operation
Składnia:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Przykład:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.slice
(mhlo::SliceOp)
Slice operation
Extracts a slice from the operand
using statically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Przykład:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sort
(mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs
together, according to a custom comparator
, along the given dimension
and produces a variadic number of tensors as results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Przykład:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Opis |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sparse_dot
(mhlo::SparseDotOp)
Sparse dot operation
Similar to dot_general
operation, with one or both of the operands being sparse. An additional argument provides sparsity meta information. Disclaimer: this op is experimental / a work in progress.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
lhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
rhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
meta | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sqrt
(mhlo::SqrtOp)
Sqrt operation
Składnia:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Przykład:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.stochastic_convert
(mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.subtract
(mhlo::SubtractOp)
Subtract operation
Składnia:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Przykład:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.tan
(mhlo::TanOp)
Tan operation
Składnia:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand)
element-wise.
Przykład:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tanh
(mhlo::TanhOp)
Tanh operation
Składnia:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Przykład:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.topk
(mhlo::TopKOp)
TopK operation
Składnia:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k
values and their indices, along the last dimension of the operand if largest=true
or the bottom k
values if largest=false
.
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Przykład:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
values | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
indices | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.torch_index_select
(mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims
attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Przykład:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
index | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.trace
(mhlo::TraceOp)
Trace operation
Składnia:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Przykład:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.transpose
(mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand
tensor using permutation
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Przykład:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.triangular_solve
(mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Przykład:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
Operand | Opis |
---|---|
a | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
b | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tuple
(mhlo::TupleOp)
Tuple operation
Składnia:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result
tuple from values val
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Przykład:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
val | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Wyniki:
Wynik | Opis |
---|---|
result | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.uniform_dequantize
(mhlo::UniformDequantizeOp)
UniformDequantize operation
Składnia:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand
to a floating-point tensor result
according to the quantization parameters defined by the operand
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Przykład:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.uniform_quantize
(mhlo::UniformQuantizeOp)
UniformQuantize operation
Składnia:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand
to a quantized tensor result
according to the quantization parameters defined by the result
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Przykład:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.while
(mhlo::WhileOp)
While operation
Produces the output from executing body
function 0 or more times while the cond
function outputs true
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Przykład:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
, OpAsmOpInterface
Operands:
Operand | Opis |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.xla.rng_get_and_update_state
(mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Składnia:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Attributes:
Atrybut | MLIR Type | Opis |
---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Wyniki:
Wynik | Opis |
---|---|
"anonimowy" | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor
(mhlo::XorOp)
Xor operation
Składnia:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Przykład:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Opis |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
Wynik | Opis |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Attributes
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex
. The argTupleIndices
and resultTupleIndices
are used to index into nested tuples in operand and result respectively. If isMustAlias
is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1
may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parameters:
Parametr | C++ type | Opis |
---|---|---|
argTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
resultIndex | int64_t | |
resultTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
isMustAlias | bool |
ChannelHandleAttr
two 64-bit integers 'handle' and 'type'
Składnia:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parameters:
Parametr | C++ type | Opis |
---|---|---|
uchwyt | int64_t | |
typ | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Składnia:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Enum cases:
- EQ (
EQ
) - NE (
NE
) - GE (
GE
) - GT (
GT
) - LE (
LE
) - LT (
LT
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Składnia:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Enum cases:
- NOTYPE (
NOTYPE
) - FLOAT (
FLOAT
) - TOTALORDER (
TOTALORDER
) - SIGNED (
SIGNED
) - UNSIGNED (
UNSIGNED
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parameters:
Parametr | C++ type | Opis |
---|---|---|
inputBatchDimension | int64_t | |
inputFeatureDimension | int64_t | |
inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
kernelInputFeatureDimension | int64_t | |
kernelOutputFeatureDimension | int64_t | |
kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
outputBatchDimension | int64_t | |
outputFeatureDimension | int64_t | |
outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Składnia:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr
, parameter
tells us which argument of the main
function of the module is prefetched, and indices
is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices
is the shape achieved after indexing by each element of indices
in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>>
is tensor<i32>
.
An empty value for indices
means the whole shape is prefetched.
Na przykład,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0
tells us that the async copy of the 0
th parameter is a cross_program_prefetch
, while the index
of [0]
tells us that the 0
th element of the tuple is prefetched while the other element of the tuple is not.
Parameters:
Parametr | C++ type | Opis |
---|---|---|
parametr | int64_t | |
indeksy | ::llvm::ArrayRef<int64_t> | Wymiar |
zrównoważyć | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Składnia:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Enum cases:
- NONE (
NONE
) - LATEST (
LATEST
) - EARLIEST (
EARLIEST
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
Dequantization mode. Only MIN_COMBINED is supported.
Składnia:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Enum cases:
- MIN_COMBINED (
MIN_COMBINED
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Składnia:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Enum cases:
- sharding (
sharding
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Składnia:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parameters:
Parametr | C++ type | Opis |
---|---|---|
lhsPrecisionType | Type | |
rhsPrecisionType | Type | |
accumulationType | Type | |
lhsComponentCount | int64_t | |
rhsComponentCount | int64_t | |
numPrimitiveOperations | int64_t | |
allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parameters:
Parametr | C++ type | Opis |
---|---|---|
lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
FftTypeAttr
XLA fast fourier transform type.
Składnia:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Enum cases:
- FFT (
FFT
) - IFFT (
IFFT
) - RFFT (
RFFT
) - IRFFT (
IRFFT
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
fusion kind
Składnia:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Enum cases:
- kLoop (
kLoop
) - kInput (
kInput
) - kOutput (
kOutput
) - kCustom (
kCustom
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parameters:
Parametr | C++ type | Opis |
---|---|---|
offsetDims | ::llvm::ArrayRef<int64_t> | Wymiar |
collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Wymiar |
operandBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
startIndexMap | ::llvm::ArrayRef<int64_t> | Wymiar |
indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Składnia:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index
. The output_tuple_indices
and operand_tuple_indices
are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parameters:
Parametr | C++ type | Opis |
---|---|---|
outputTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
operandIndex | int64_t | |
operandTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Składnia:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - HIGH (
HIGH
) - HIGHEST (
HIGHEST
) - PACKED_NIBBLE (
PACKED_NIBBLE
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::Precision | an enum of type Precision |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Składnia:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - THREE_FRY (
THREE_FRY
) - PHILOX (
PHILOX
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Składnia:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Enum cases:
- UNIFORM (
UNIFORM
) - NORMAL (
NORMAL
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parameters:
Parametr | C++ type | Opis |
---|---|---|
updateWindowDims | ::llvm::ArrayRef<int64_t> | Wymiar |
insertedWindowDims | ::llvm::ArrayRef<int64_t> | Wymiar |
inputBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Wymiar |
indexVectorDim | int64_t |
SparsityDescriptorAttr
Describes structured (N:M) sparsity configuration
Składnia:
#mhlo.sparsity<
int64_t, # dimension
int64_t, # n
int64_t # m
>
This attribute is defined for a sparse dot operation with a structured sparse input tensor. With (N=2,M=4), every 4 consecutive logical elements have exactly 2 non-zero physical elements in the input tensor.
$dimension defines the index of the contracting dimension that is sparse (it has to be the most minor dimension). The additional metadata operand in the sparse dot operation defines which logical elements are zeroed out.
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wymiar | int64_t | |
N | int64_t | |
M | int64_t |
TransposeAttr
Transpose options
Składnia:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Enum cases:
- TRANSPOSE_INVALID (
TRANSPOSE_INVALID
) - NO_TRANSPOSE (
NO_TRANSPOSE
) - TRANSPOSE (
TRANSPOSE
) - ADJOINT (
ADJOINT
)
Parameters:
Parametr | C++ type | Opis |
---|---|---|
wartość | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Składnia:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding
field of the tensor type.
See HLO_BoundedAttrInterface
for documentation for bounds
.
Parameters:
Parametr | C++ type | Opis |
---|---|---|
miedza | ::llvm::ArrayRef<int64_t> |
Types
AsyncBundleType
Opaque collection of other types
Składnia:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parameters:
Parametr | C++ type | Opis |
---|---|---|
typy | ::llvm::ArrayRef<Type> |
Enums
ComparisonDirection
Which comparison operation to perform.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
EQ | 0 | EQ |
NE | 1 | NE |
GE | 2 | GE |
GT | 3 | GT |
LE | 4 | LE |
LT | 5 | LT |
ComparisonType
Which comparison type to use.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
NOTYPE | 0 | NOTYPE |
PLATFORMA | 1 | PLATFORMA |
TOTALORDER | 2 | TOTALORDER |
SIGNED | 3 | SIGNED |
UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
NIC | 0 | NIC |
NAJNOWSZY | 1 | NAJNOWSZY |
EARLIEST | 2 | EARLIEST |
DequantizeMode
Dequantization mode. Only MIN_COMBINED is supported.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
fragmentowanie | 0 | fragmentowanie |
FftType
XLA fast fourier transform type.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
FFT | 0 | FFT |
IFFT | 1 | IFFT |
RFFT | 2 | RFFT |
IRFFT | 3 | IRFFT |
FusionKind
fusion kind
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
kLoop | 0 | kLoop |
kInput | 1 | kInput |
kOutput | 2 | kOutput |
kCustom | 3 | kCustom |
Precyzja
XLA precision for an operand. Has backend specific meaning.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
DOMYŚLNY | 0 | DOMYŚLNY |
WYSOKI | 1 | WYSOKI |
NAJWYŻSZY | 2 | NAJWYŻSZY |
PACKED_NIBBLE | 3 | PACKED_NIBBLE |
RngAlgorithm
XLA PRNG algorithm to be used.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
DOMYŚLNY | 0 | DOMYŚLNY |
THREE_FRY | 1 | THREE_FRY |
PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
MUNDUR | 1 | MUNDUR |
NORMALNA | 2 | NORMALNA |
Transponować
Transpose options
Sprawy:
Symbol | Wartość | Smyczkowy |
---|---|---|
TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
NO_TRANSPOSE | 1 | NO_TRANSPOSE |
TRANSPONOWAĆ | 2 | TRANSPONOWAĆ |
ADJOINT | 3 | ADJOINT |