運営
mhlo.abs
(mhlo::AbsOp)
腹筋手術
構文:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
テンソルに対して要素ごとの abs 演算を実行し、 result
テンソルを生成します。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
例:
%result = mhlo.abs %operand : tensor<3xi32>
特性: AlwaysSpeculatableImplTrait
、 Elementwise
、 SameOperandsAndResultShape
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
operand | 2/4/8/16/32/64 ビットの符号なし整数のランク付きテンソル、または f4E2M1FN 型、f6E2M3FN 型、または f6E3M2FN 型、または f8E3M4 型、または f8E4M3 型、または f8E4M3FN 型、または f8E4M3FNUZ 型、または f8E4M3B11FNUZ 型、または f8E5M2 型、またはf8E5M2FNUZ 型、f8E8M0FNU 型、または 16 ビット float、32 ビット float、64 ビット float、または bfloat16 型、または 32 ビット float または 64 ビット float 要素の複合型、または 2/4/8/16/32 ビットuniform量子化された符号付き整数または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数または2/4/8/16/32 ビット均一量子化符号なし整数値、または軸ごとの 2/4/8/16/32 ビット均一量子化符号なし整数値 |
結果:
結果 | 説明 |
---|---|
result | 2/4/8/16/32/64 ビットの符号なし整数のランク付きテンソル、または f4E2M1FN 型、f6E2M3FN 型、または f6E3M2FN 型、または f8E3M4 型、または f8E4M3 型、または f8E4M3FN 型、または f8E4M3FNUZ 型、または f8E4M3B11FNUZ 型、または f8E5M2 型、またはf8E5M2FNUZ 型、f8E8M0FNU 型、または 16 ビット float、または 32 ビット float、または 64 ビット float、または bfloat16 型、または 2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32-軸ごとに均一に量子化されたビット、符号付き整数、または 2/4/8/16/32 ビット均一に量子化符号なし整数値または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値 |
mhlo.add
(mhlo::AddOp)
追加操作
構文:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
2 つのテンソルlhs
とrhs
の要素ごとの加算を実行し、 result
テンソルを生成します。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
例:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
特性: AlwaysSpeculatableImplTrait
、 Commutative
、 CompatibleOperandsAndResultType
、 Elementwise
、 SameOperandsAndResultShape
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
lhs | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8 /16/32/64 ビットの符号なし整数または 32 ビット浮動小数点数または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
rhs | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8 /16/32/64 ビットの符号なし整数または 32 ビット浮動小数点数または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
結果:
結果 | 説明 |
---|---|
result | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8 /16/32/64 ビットの符号なし整数または 32 ビット浮動小数点数または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
mhlo.add_dependency
(mhlo::AddDependencyOp)
AddDependency 操作
構文:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
この操作は XLA コンパイラーにプライベートなものであるため、まだ仕様がありません。
非公式には、この操作にはデータ オペランドとトークンの 2 つのオペランドがあります。演算の出力はデータ オペランドです。 AfterAll とともに使用すると、この操作により、副作用のない操作 (トークン値を生成しない操作) の順序付けが可能になります。
例:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
特性: AlwaysSpeculatableImplTrait
インターフェイス: ConditionallySpeculatable
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
operand | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8 /16/32/64 ビットの符号なし整数または 32 ビット浮動小数点数または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数値、または 2/4/8/16/32 ビット均一量子化のランク付きテンソル軸の符号付き整数値または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値またはトークン |
token | トークン |
結果:
結果 | 説明 |
---|---|
output | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8 /16/32/64 ビットの符号なし整数または 32 ビット浮動小数点数または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数値、または 2/4/8/16/32 ビット均一量子化のランク付きテンソル軸の符号付き整数値または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値またはトークン |
mhlo.after_all
(mhlo::AfterAllOp)
アフターオール操作
構文:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
inputs
生成する操作が、 result
に依存する操作の前に実行されるようにします。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
例:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
特性: AlwaysSpeculatableImplTrait
インターフェイス: ConditionallySpeculatable
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
inputs | トークンの可変個引数 |
結果:
結果 | 説明 |
---|---|
result | トークン |
mhlo.all_gather
(mhlo::AllGatherOp)
オールギャザー操作
プロセス グリッド内の各プロセス グループ内で、各プロセスからのオペランド テンソルの値をall_gather_dim
に沿って連結し、結果テンソルを生成します。 computation
operands
のオペランドごとに個別に適用され、オペランドごとに 1 つの結果が生成されます。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
例:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
特性: SameOperandsAndResultElementType
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
all_gather_dim | ::mlir::IntegerAttr | 値が負でない 64 ビットの符号なし整数属性 |
replica_groups | ::mlir::DenseIntElementsAttr | 64 ビット符号なし整数要素属性 |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | 2 つの 64 ビット整数「ハンドル」と「タイプ」 |
use_global_device_ids | ::mlir::UnitAttr | ユニット属性 |
オペランド:
オペランド | 説明 |
---|---|
operands | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
mhlo.all_reduce
(mhlo::AllReduceOp)
AllReduce 操作
プロセス グリッド内の各プロセス グループ内で、各プロセスからのオペランド テンソルの値にリダクション関数のcomputation
を適用し、結果テンソルを生成します。 computation
operands
のオペランドごとに個別に適用され、オペランドごとに 1 つの結果が生成されます。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
例:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
特性: InferTensorType
、 SingleBlockImplicitTerminator<ReturnOp>
、 SingleBlock
インターフェイス: InferShapedTypeOpInterface
、 InferTypeOpInterface
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64 ビット符号なし整数要素属性 |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | 2 つの 64 ビット整数「ハンドル」と「タイプ」 |
use_global_device_ids | ::mlir::UnitAttr | ユニット属性 |
オペランド:
オペランド | 説明 |
---|---|
operands | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
mhlo.all_to_all
(mhlo::AllToAllOp)
AllToAll 操作
プロセス グリッドの各プロセス グループ内で、 split_dimension
に沿ってoperand
テンソルの値を部分に分割し、分割した部分をプロセス間で分散させ、分散した部分をconcat_dimension
に沿って連結して、 result
テンソルを生成します。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
例:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
特性: AlwaysSpeculatableImplTrait
、 InferTensorType
、 SameOperandsElementType
、 SameOperandsShape
、 SameVariadicOperandSize
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
split_dimension | ::mlir::IntegerAttr | 値が負でない 64 ビットの符号なし整数属性 |
concat_dimension | ::mlir::IntegerAttr | 値が負でない 64 ビットの符号なし整数属性 |
split_count | ::mlir::IntegerAttr | 値が正の 64 ビットの符号なし整数属性 |
replica_groups | ::mlir::DenseIntElementsAttr | 64 ビット符号なし整数要素属性 |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | 2 つの 64 ビット整数「ハンドル」と「タイプ」 |
オペランド:
オペランド | 説明 |
---|---|
operand | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
mhlo.and
(mhlo::AndOp)
そして操作
構文:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
2 つのテンソルlhs
とrhs
の要素ごとの AND を実行し、 result
テンソルを生成します
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
例:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
特性: AlwaysSpeculatableImplTrait
、 Commutative
、 CompatibleOperandsAndResultType
、 Elementwise
、 SameOperandsAndResultShape
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
lhs | pred のランク付きテンソル (ブール値または 1 ビット整数)、2/4/8/16/32/64 ビットの符号なし整数、または 2/4/8/16/32/64 ビットの符号なし整数値 |
rhs | pred のランク付きテンソル (ブール値または 1 ビット整数)、2/4/8/16/32/64 ビットの符号なし整数、または 2/4/8/16/32/64 ビットの符号なし整数値 |
結果:
結果 | 説明 |
---|---|
result | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8 /16/32/64 ビットの符号なし整数または 32 ビット浮動小数点数または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または2/4/8/16/32 ビットの軸ごとに均一に量子化された符号なし整数値 |
mhlo.async_done
(mhlo::AsyncDoneOp)
非同期完了操作
この操作は XLA コンパイラーにプライベートなものであるため、まだ仕様がありません。
非公式には、この操作は非同期計算が終了するまでブロックされます。非同期計算の最終結果を返します。
詳細については、AsyncStart のドキュメントを参照してください。
インターフェイス: InferTypeOpInterface
オペランド:
オペランド | 説明 |
---|---|
bundle | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、または f8E5M2FNUZ 型のランク付けされたテンソルの任意の組み合わせを含む async_bundle またはf8E8M0FNU 型、16 ビット float、32 ビット float、64 ビット float、bfloat16 型、pred (ブール型または 1 ビット整数)、2/4/8/16/32/64 ビット符号なし整数、または 2/ 4/8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点または 64 ビットの複素数型float 要素または 2/4/8/16/32 ビット均一量子化符号付き整数または 2/4/8/16/32 ビット均一量子化符号なし整数または軸ごとの 2/4/8/16/32 ビット均一量子化符号付き整数値または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値またはトークン値 |
結果:
結果 | 説明 |
---|---|
«無名» | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値、トークン、またはランク付けされたテンソルの任意の組み合わせを含むネストされたタプルf4E2M1FNタイプ or f6E2M3FNタイプ or f6E3M2FNタイプ or f8E3M4タイプ or f8E4M3タイプ or f8E4M3FNタイプ or f8E4M3FNUZタイプ or f8E4M3B11FNUZタイプ or f8E5M2タイプ or f8E5M2FNUZタイプ or f8E8M0FNUタイプ or 16ビットfloatタイプ or 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8/16/32/ 64 ビット符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素、または 2/4/8/16/32 ビットを含む複合型均一量子化された符号付き整数または 2/4/8/16/32 ビット均一量子化された符号なし整数値または 2/4/8/16/32 ビットのランク付きテンソル 軸ごとに均一量子化された符号付き整数または 2/4/8/16 /軸ごとに均一に量子化された 32 ビットの符号なし整数値またはトークン値 |
mhlo.async_start
(mhlo::AsyncStartOp)
非同期開始操作
この操作は XLA コンパイラーにプライベートなものであるため、まだ仕様がありません。
非公式には、この操作により非同期計算が開始されます。
これは、非同期待機 (DMA など) とオンスレッド計算の両方を含む関数がある場合に使用されます。たとえば、関数は、計算、DMA、別の計算、2 番目の DMA、および最終計算で構成される場合があります。これは、async_start とそれに続く async_update および async_done として表されます。 async_start はスレッド上で最初の計算を実行し、その後 DMA を開始します。 async_update は、DMA がまだ完了していない場合は完了するまで待機し、関数内の 2 番目の計算を実行して、2 番目の DMA を開始します。最後に、async_done はこの最後の DMA を待機してから、スレッド上で実行する必要がある最後の計算を実行し、その最後の計算の結果を返します。
operands
計算に直接渡されますcalled_computation
非同期で実行される関数ですexecution_thread
実行されるスレッドの名前です。メインスレッドを「メイン」と呼びます。すべてのスレッドには名前があります。
これにより、非同期操作の間に必要なすべての状態が返されます。バッファ割り当て後の戻り値は、入力、結果、および非同期操作によって必要または編集されたスクラッチパッドを保持するために必要なスペースを表します。
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | フラット シンボル参照属性 |
execution_thread | ::mlir::StringAttr | 文字列属性 |
オペランド:
オペランド | 説明 |
---|---|
inputs | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、または f8E8M0FNU のランク付けされたテンソルの可変個数type または 16 ビット float または 32 ビット float または 64 ビット float または bfloat16 type または pred (別名ブール値または 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4 /8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素を含む複合型、または2/4/8/16/32 ビット均一量子化符号付き整数、または 2/4/8/16/32 ビット均一量子化符号なし整数、または 2/4/8/16/32 ビット均一量子化された軸ごとの符号付き整数、または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値、トークン、またはランク付けされたテンソルの任意の組み合わせを含むネストされたタプルf4E2M1FNタイプ or f6E2M3FNタイプ or f6E3M2FNタイプ or f8E3M4タイプ or f8E4M3タイプ or f8E4M3FNタイプ or f8E4M3FNUZタイプ or f8E4M3B11FNUZタイプ or f8E5M2タイプ or f8E5M2FNUZタイプ or f8E8M0FNUタイプ or 16ビットfloatタイプ or 32 ビット float または 64 ビット float または bfloat16 型または pred (別名ブールまたは 1 ビット整数) または 2/4/8/16/32/64 ビット符号なし整数または 2/4/8/16/32/ 64 ビット符号なし整数、または 32 ビット浮動小数点要素または 64 ビット浮動小数点要素、または 2/4/8/16/32 ビットを含む複合型均一量子化された符号付き整数または 2/4/8/16/32 ビット均一量子化された符号なし整数値または 2/4/8/16/32 ビットのランク付きテンソル 軸ごとに均一量子化された符号付き整数または 2/4/8/16 /軸ごとに均一に量子化された 32 ビットの符号なし整数値またはトークン値 |
結果:
結果 | 説明 |
---|---|
«無名» | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、または f8E5M2FNUZ 型のランク付けされたテンソルの任意の組み合わせを含む async_bundle またはf8E8M0FNU 型、16 ビット float、32 ビット float、64 ビット float、bfloat16 型、pred (ブール型または 1 ビット整数)、2/4/8/16/32/64 ビット符号なし整数、または 2/ 4/8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点または 64 ビットの複素数型float 要素または 2/4/8/16/32 ビット均一量子化符号付き整数または 2/4/8/16/32 ビット均一量子化符号なし整数または軸ごとの 2/4/8/16/32 ビット均一量子化符号付き整数値または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値またはトークン値 |
mhlo.async_update
(mhlo::AsyncUpdateOp)
非同期更新操作
この操作は XLA コンパイラーにプライベートなものであるため、まだ仕様がありません。
非公式には、この操作は同期バリアに達するまで非同期計算をブロックします。これにより、操作後にbundle
が返されます。
詳細については、AsyncStart のドキュメントを参照してください。
インターフェイス: InferTypeOpInterface
オペランド:
オペランド | 説明 |
---|---|
bundle | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、または f8E5M2FNUZ 型のランク付けされたテンソルの任意の組み合わせを含む async_bundle またはf8E8M0FNU 型、16 ビット float、32 ビット float、64 ビット float、bfloat16 型、pred (ブール型または 1 ビット整数)、2/4/8/16/32/64 ビット符号なし整数、または 2/ 4/8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点または 64 ビットの複素数型float 要素または 2/4/8/16/32 ビット均一量子化符号付き整数または 2/4/8/16/32 ビット均一量子化符号なし整数または軸ごとの 2/4/8/16/32 ビット均一量子化符号付き整数値または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値またはトークン値 |
結果:
結果 | 説明 |
---|---|
«無名» | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、または f8E5M2FNUZ 型のランク付けされたテンソルの任意の組み合わせを含む async_bundle またはf8E8M0FNU 型、16 ビット float、32 ビット float、64 ビット float、bfloat16 型、pred (ブール型または 1 ビット整数)、2/4/8/16/32/64 ビット符号なし整数、または 2/ 4/8/16/32/64 ビットの符号なし整数、または 32 ビット浮動小数点または 64 ビットの複素数型float 要素または 2/4/8/16/32 ビット均一量子化符号付き整数または 2/4/8/16/32 ビット均一量子化符号なし整数または軸ごとの 2/4/8/16/32 ビット均一量子化符号付き整数値または軸ごとに均一に量子化された 2/4/8/16/32 ビットの符号なし整数値またはトークン値 |
mhlo.atan2
(mhlo::Atan2Op)
Atan2の動作
構文:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
lhs
およびrhs
テンソルに対して要素ごとの atan2 演算を実行し、 result
テンソルを生成します。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
例:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
特性: AlwaysSpeculatableImplTrait
、 CompatibleOperandsAndResultType
、 Elementwise
、 SameOperandsAndResultShape
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
lhs | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型、または 32 ビット float または 64 ビット float 要素を含む複合型、または 2/4/8/16/32 ビット均一量子化符号付き整数または 2/ 4/8/16/32 ビットの均一量子化符号なし整数値 |
rhs | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型、または 32 ビット float または 64 ビット float 要素を含む複合型、または 2/4/8/16/32 ビット均一量子化符号付き整数または 2/ 4/8/16/32 ビットの均一量子化符号なし整数値 |
結果:
結果 | 説明 |
---|---|
result | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型、または 32 ビット float または 64 ビット float 要素を含む複合型、または 2/4/8/16/32 ビット均一量子化符号付き整数または 2/ 4/8/16/32 ビットの均一量子化符号なし整数値 |
mhlo.batch_norm_grad
(mhlo::BatchNormGradOp)
BatchNormGrad 操作
grad_output
から逆伝播する BatchNormTrainingOp のいくつかの入力の勾配を計算し、 grad_operand
、 grad_scale
、およびgrad_offset
テンソルを生成します。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
例:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
特性: AlwaysSpeculatableImplTrait
、 InferTensorType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
epsilon | ::mlir::FloatAttr | 32ビット浮動小数点属性 |
feature_index | ::mlir::IntegerAttr | 値が負でない 64 ビットの符号なし整数属性 |
オペランド:
オペランド | 説明 |
---|---|
operand | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
scale | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
mean | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型の値 |
variance | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型の値 |
grad_output | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型の値 |
結果:
結果 | 説明 |
---|---|
grad_operand | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
grad_scale | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
grad_offset | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
mhlo.batch_norm_inference
(mhlo::BatchNormInferenceOp)
BatchNormInference 操作
feature_index
次元を除くすべての次元にわたってoperand
テンソルを正規化し、 result
テンソルを生成します。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
例:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
特性: AlwaysSpeculatableImplTrait
、 InferTensorType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
epsilon | ::mlir::FloatAttr | 32ビット浮動小数点属性 |
feature_index | ::mlir::IntegerAttr | 値が負でない 64 ビットの符号なし整数属性 |
オペランド:
オペランド | 説明 |
---|---|
operand | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
scale | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
offset | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
mean | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float または 32 ビット float または 64 ビット float または bfloat16 型の値 |
variance | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型の 1D テンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
結果:
結果 | 説明 |
---|---|
result | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16 ビット float、32 ビット float、64 ビット float、または bfloat16 型の値 |
mhlo.batch_norm_training
(mhlo::BatchNormTrainingOp)
BatchNormTraining オペレーション
バッチ次元と空間次元にわたる平均と分散を計算し、 feature_index
次元の各特徴についてoperand
テンソルを正規化し、 output
、 batch_mean
テンソル、 batch_var
テンソルを生成します。
参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
例:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
特性: AlwaysSpeculatableImplTrait
、 InferTensorType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
エフェクト: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
epsilon | ::mlir::FloatAttr | 32ビット浮動小数点属性 |
feature_index | ::mlir::IntegerAttr | 値が負でない 64 ビットの符号なし整数属性 |
オペランド:
オペランド | 説明 |
---|---|
operand | f4E2M1FN 型、f6E2M3FN 型、f6E3M2FN 型、f8E3M4 型、f8E4M3 型、f8E4M3FN 型、f8E4M3FNUZ 型、f8E4M3B11FNUZ 型、f8E5M2 型、f8E5M2FNUZ 型、f8E8M0FNU 型のランク付けされたテンソル、または16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ値 |
scale | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E3M4タイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E3M4タイプまたはF8E3M4タイプの1Dテンソル16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ値 |
offset | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E3M4タイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E3M4タイプまたはF8E3M4タイプの1Dテンソル16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ値 |
結果:
結果 | 説明 |
---|---|
output | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ値 |
batch_mean | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E3M4タイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E3M4タイプまたはF8E3M4タイプの1Dテンソル16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ値 |
batch_var | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E3M4タイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E4M3FNタイプまたはF8E4M3FNタイプまたはF8E3M4タイプまたはF8E3M4タイプの1Dテンソル16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ値 |
mhlo.bitcast
(mhlo :: bitcastop)
ビットキャスト操作
構文:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
この操作はXLAコンパイラのプライベートであるため、まだ仕様がありません。
非公式には、この操作は、要素の物理的な配置が変化しないように入力の形状を変更します。
この操作には、「要素の物理的配置」を理解するためにレイアウト情報が必要であり、MHLOでのレイアウトサポートは現在進行中です。
例:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
特性: AlwaysSpeculatableImplTrait
インターフェイス: ConditionallySpeculatable
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.bitcast_convert
(mhlo :: bitcastconvertop)
BitCastConvert操作
構文:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
operand
テンソルでビットキャスト操作を実行し、 result
operand
のタイプを使用して再解釈されるresult
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
例:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
特性: AlwaysSpeculatableImplTrait
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.broadcast
(mhlo :: broadcastop)
ブロードキャスト操作
この操作はStablehloから出ているので、仕様には含まれていません:https: //github.com/openxla/stablehlo/issues/3
非公式には、この操作はXLAの放送と同じことをします: https://www.tensorflow.org/xla/operation_semantics#broadcast
例:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
特性: AlwaysSpeculatableImplTrait
yimpltrait、 InferTensorType
、 SameOperandsAndResultElementType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
broadcast_sizes | :: mlir :: denseintelementsatttr | 64ビットサインレス整数要素属性 |
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.broadcast_in_dim
(mhlo :: broadcastindimop)
broadcastindim操作
operand
テンソルのデータを複製することにより、入力テンソルの寸法および/またはランクを拡張し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
例:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
特性: AlwaysSpeculatableImplTrait
yimpltrait、 HLO_CompatibleOperandsAndResultElementType
インターフェイス: ConditionallySpeculatable
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
broadcast_dimensions | :: mlir :: denseintelementsatttr | 64ビットサインレス整数要素属性 |
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプタイプまたはF8E5M2タイプタイプまたはF8E5M2タイプタイプまたはF8E5M2タイプタイプまたはF8E5M2M0FNUZタイプまたはF8E5M2FNUZのタイプのF8E4M3型またはF8E4M3の静的な形状のテンソルタイプまたは16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPRED(別名ブールまたは1ビット整数)または2/4/8/16/32/64ビットのサインレス整数または2/4 /8/16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.case
(mhlo :: caseop)
ケース操作
index
の値に応じて、 branches
から正確に1つのfunction
を実行することから出力を生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#case
例:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
特性: RecursiveMemoryEffects
、 SingleBlockImplicitTerminator<ReturnOp>
、 SingleBlock
インターフェイス: InferTypeOpInterface
オペランド:
オペランド | 説明 |
---|---|
index | 32ビットのサインレス整数値のテンソル |
結果:
結果 | 説明 |
---|---|
«無名» | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZのタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZのタイプのF8E5M2NUZタイプまたはF8E5M2FNU5MUZ5MUZのタイプのランク付けされたテンソルのバリエイジックタイプまたは16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPRED(別名ブールまたは1ビット整数)または2/4/8/16/32/64ビットのサインレス整数または2/4 /8/16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized署名整数整数または2/4/8/16/32ビット均一な量子化されていない整数整数値またはランク付けされたテンソル2/4/8/16/32ビットの均一な均一な定量化軸に署名された整数または2/4/8/16/32ビット均一軸は署名されていない整数値またはトークンごとに量子化されています |
mhlo.cbrt
(mhlo :: cbrtop)
CBRT操作
構文:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
テンソルで要素ごとのキュービックルート操作を実行し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
例:
%result = mhlo.cbrt %operand : tensor<4xf32>
特性: AlwaysSpeculatableImplTrait
yimpltrait、 CompatibleOperandsAndResultType
、 Elementwise
、 SameOperandsAndResultShape
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ32ビットフロートまたは64ビットフロート要素、または2/4/8/16/16/32ビットの均一な量子化された標識整数または2/ 4/8/16/32ビット均一な量子化されていない整数整数値 |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプ32ビットフロートまたは64ビットフロート要素、または2/4/8/16/16/32ビットの均一な量子化された標識整数または2/ 4/8/16/32ビット均一な量子化されていない整数整数値 |
mhlo.ceil
(mhlo :: ceilop)
天井操作
構文:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
operand
テンソルの要素ごとの天井を実行し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
例:
%result = mhlo.ceil %operand : tensor<5xf32>
特性: AlwaysSpeculatableImplTrait
yimpltrait、 CompatibleOperandsAndResultType
、 Elementwise
、 SameOperandsAndResultShape
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたは2/4/8/16/32ビット均一量子化された署名整数または2/4/8/16/16/32ビット均一な量子化されていない整数整数整数整数整数整数整数整数整合値 |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたは2/4/8/16/32ビット均一量子化署名整数または2/4/8/16/16/32ビット均一な量子化されていない整数整数整数整数整数整数整数整数整数整数 |
mhlo.cholesky
(Mhlo :: Choleskyop)
コレスキー操作
マトリックスのバッチの軟骨の分解を計算します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
例:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
特性: AlwaysSpeculatableImplTrait
yimpltrait、 InferTensorType
、 SameOperandsAndResultElementType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
lower | :: MLIR :: BOOLATTR | ブール属性 |
オペランド:
オペランド | 説明 |
---|---|
a | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたは32ビットフロートまたは64ビットのフロート要素値を備えた複雑なタイプ |
結果:
結果 | 説明 |
---|---|
«無名» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたは32ビットフロートまたは64ビットのフロート要素値を備えた複雑なタイプ |
mhlo.clamp
(MHLo :: Clampop)
クランプ操作
構文:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
operand
テンソルのすべての要素を最小値と最大値の間でクランプし、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
例:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
特性: AlwaysSpeculatableImplTrait
speculatableimpltrait、 HLO_BroadcastingElementwise
、 InferTensorType
、 SameOperandsAndResultElementType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
min | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
max | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.collective_broadcast
(mhlo :: collectivebroadcastop)
CollectiveBroadcast Operation
プロセスグリッド内の各プロセスグループ内で、ソースプロセスからoperand
テンソルの値をターゲットプロセスに送信し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
例:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
特性: CompatibleOperandsAndResultType
インターフェイス: InferShapedTypeOpInterface
、 InferTypeOpInterface
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
replica_groups | :: mlir :: denseintelementsatttr | 64ビットサインレス整数要素属性 |
channel_handle | :: MLIR :: MHLO :: ChannelHandleattr | 2つの64ビット整数 'ハンドル'と「タイプ」 |
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.collective_permute
(mhlo :: collectivepermuteop)
CollectivePermute操作
プロセスグリッド内の各プロセスグループ内で、ソースプロセスからターゲットプロセスにoperand
テンソルの値を送信し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
例:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
特性: AlwaysSpeculatableImplTrait
、 CompatibleOperandsAndResultType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
source_target_pairs | :: mlir :: denseintelementsatttr | 64ビットサインレス整数要素属性 |
channel_handle | :: MLIR :: MHLO :: ChannelHandleattr | 2つの64ビット整数 'ハンドル'と「タイプ」 |
オペランド:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.compare
(mhlo :: compareop)
操作を比較します
構文:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
comparison_direction
とcompare_type
に従って、 lhs
とrhs
テンソルの要素ごとの比較を実行し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
例:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
特性: AlwaysSpeculatableImplTrait
、 Elementwise
、 InferTensorType
、 SameOperandsAndResultShape
、 SameOperandsElementType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
comparison_direction | :: mlir :: mhlo :: ComparisondirectionAttr | 実行する比較操作。 |
compare_type | :: mlir :: mhlo :: compationtypeattr | 使用する比較タイプ。 |
オペランド:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | pred(別名ブールまたは1ビット整数)値のランク付けされたテンソル |
mhlo.complex
(mhlo :: complexop)
複雑な操作
構文:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
実際の値と架空の値、 lhs
およびrhs
ペアから複雑な値への要素ごとの変換を実行し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
例:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
特性: AlwaysSpeculatableImplTrait
yimpltrait、 Elementwise
、 SameOperandsAndResultShape
、 SameOperandsElementType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
オペランド:
オペランド | 説明 |
---|---|
lhs | 32ビットフロートまたは64ビットフロート値のランク付けテンソル |
rhs | 32ビットフロートまたは64ビットフロート値のランク付けテンソル |
結果:
結果 | 説明 |
---|---|
result | 32ビットフロートまたは64ビットフロート要素の値を持つ複雑なタイプのランク付けされたテンソル |
mhlo.composite
(mhlo :: compositeop)
複合操作
構文:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
他の安定した操作で構成された(構成された)操作をカプセル化し、 inputs
とcomposite_attributes
を取得し、 results
を生成します。 OPのセマンティクスは、 decomposition
属性によって実装されます。 composite
OPは、プログラムセマンティクスを変更することなく、分解に置き換えることができます。分解が同じOPセマンティクスを提供しない場合、 custom_call
の使用を好みます。
version
フィールド(デフォルトは0
)を使用して、コンポジットのセマンティクスが変更されるときに示すために使用されます。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
例:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
インターフェイス: SymbolUserOpInterface
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
name | :: mlir :: stringattr | 文字列属性 |
composite_attributes | :: mlir :: dictionaryattr | 名前付き属性値の辞書 |
decomposition | :: mlir :: flatsymbolrefattr | フラットシンボル参照属性 |
version | :: mlir :: integerattr | 32ビットサインレス整数属性 |
オペランド:
オペランド | 説明 |
---|---|
inputs | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZのタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZのタイプのF8E5M2NUZタイプまたはF8E5M2FNU5MUZ5MUZのタイプのランク付けされたテンソルのバリエイジックタイプまたは16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPRED(別名ブールまたは1ビット整数)または2/4/8/16/32/64ビットのサインレス整数または2/4 /8/16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット軸ごとに量子化された均一な均一な整列整数値またはトークンまたはネストされたタプルのランク付けされたテンソルの組み合わせF4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E3M4タイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプ32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPRED(別名ブールまたは1ビット整数)または2/4/8/16/32/64ビットサインレス整数または2/4/8/16/16/32/ 32ビットフロートまたは64ビットフロート要素、または2/4/8/16/32ビットを備えた64ビットの非署名整数または複雑なタイプ均一な量子化された署名整数または2/4/8/16/32ビット均一均一な量子化されていない整数整数値またはランク付けされたテンソル2/4/8/16/32ビット均一均一標識整数または2/4/8/16 /軸ごとに32ビットの均一な量子化されていない整数整数値またはトークン値 |
結果:
結果 | 説明 |
---|---|
«無名» | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZのタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZのタイプのF8E5M2NUZタイプまたはF8E5M2FNU5MUZ5MUZのタイプのランク付けされたテンソルのバリエイジックタイプまたは16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPRED(別名ブールまたは1ビット整数)または2/4/8/16/32/64ビットのサインレス整数または2/4 /8/16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット軸ごとに量子化された均一な均一な整列整数値またはトークンまたはネストされたタプルのランク付けされたテンソルの組み合わせF4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E3M4タイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプ32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPRED(別名ブールまたは1ビット整数)または2/4/8/16/32/64ビットサインレス整数または2/4/8/16/16/32/ 32ビットフロートまたは64ビットフロート要素、または2/4/8/16/32ビットを備えた64ビットの非署名整数または複雑なタイプ均一な量子化された署名整数または2/4/8/16/32ビット均一均一な量子化されていない整数整数値またはランク付けされたテンソル2/4/8/16/32ビット均一均一標識整数または2/4/8/16 /軸ごとに32ビットの均一な量子化されていない整数整数値またはトークン値 |
mhlo.concatenate
(mhlo :: concatenateop)
連結動作
指定された引数と同じ順序で、 dimension
寸法に沿ったinputs
の変形数のテンソルを連結し、 result
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
例:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
特性: AlwaysSpeculatableImplTrait
、 SameOperandsAndResultElementType
インターフェイス: ConditionallySpeculatable
、 InferShapedTypeOpInterface
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
dimension | :: mlir :: integerattr | 値が非陰性である64ビットサインレス整数属性 |
オペランド:
オペランド | 説明 |
---|---|
val | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZ5MUZのタイプまたはF8E5M2FNUZ5MUZ5MUZ5MUZ5MUZのタイプのF8E5M2NUZタイプまたはF8E5M2FNU5MUZ5MUZのタイプのランク付けされたテンソルのバリエイジックタイプまたは16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPRED(別名ブールまたは1ビット整数)または2/4/8/16/32/64ビットのサインレス整数または2/4 /8/16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
結果:
結果 | 説明 |
---|---|
«無名» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16ビットフロートまたは32ビットフロートまたは64ビットフロートまたはBFLOAT16タイプまたはPred(別名ブールまたは1ビット整数)または2/4/8/16/64ビットサインレス整数または2/4/8 /16/32/64ビット32ビットフロートまたは64ビットフロート要素を備えた符号なし整数または複雑なタイプまたは2/4/8/16/32ビット均一均一Quantized Signed Signed Integerまたは2/4/8/16/32ビット均一Quantized Unsigned Unsigned Integerまたは2/4/8/16/16/32ビット均一な均一な均一な統合整数または整数または2/4/8/16/32ビット均一軸ごとに量子化されていない統一された整数整数値 |
mhlo.constant
(mhlo :: constantop)
一定の動作
一定のvalue
からoutput
テンソルを生成します。
参照:https: //github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
例:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
特性: AlwaysSpeculatableImplTrait
、 ConstantLike
インターフェイス: ConditionallySpeculatable
、 InferTypeOpInterface
、 NoMemoryEffect (MemoryEffectOpInterface)
効果: MemoryEffects::Effect{}
属性:
属性 | MLIRタイプ | 説明 |
---|---|---|
value | :: mlir :: elementaTtr | 定数ベクトル/テンソル属性 |
結果:
結果 | 説明 |
---|---|
output | F4E2M1FNタイプまたはF6E2M3FNタイプまたはF6E3M2FNタイプまたはF8E4M3タイプまたはF8E4M3FNタイプまたはF8E4M3FNUZタイプまたはF8E4M3B11FNUZタイプまたはF8E5M2タイプタイプまたはF8E5M2タイプタイプまたはF8E5M2タイプタイプまたはF8E5M2タイプタイプまたはF8E5M2M0FNUZタイプまたはF8E5M2FNU5FNUZタイプまたはF8E5M2FNUZPNU5FNUZタイプまたはF8E5M2FNUZのタイプの静的な形状のテンソル type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convert
(mhlo::ConvertOp)
Convert operation
構文:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
例:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convolution
(mhlo::ConvolutionOp)
Convolution operation
構文:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs
and slices of rhs
and produces result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
例:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.copy
(mhlo::CopyOp)
Copy operation
構文:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand
. Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
例:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.cosine
(mhlo::CosineOp)
Cosine operation
構文:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
例:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.count_leading_zeros
(mhlo::ClzOp)
Clz operation
構文:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
例:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.create_token
(mhlo::CreateTokenOp)
CreateToken operation
構文:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
例:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
結果:
結果 | 説明 |
---|---|
output | トークン |
mhlo.cross-replica-sum
(mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0
, use_global_device_ids = false
and computation
implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
例:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.custom_call
(mhlo::CustomCallOp)
CustomCall operation
構文:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name
that takes inputs
and called_computations
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
例:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.divide
(mhlo::DivOp)
Div operation
構文:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
例:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.domain
(mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.dot
(mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
例:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dot_general
(mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs
and slices of rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
例:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_broadcast_in_dim
(mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions
.
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
例:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_conv
(mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding
is specified dynamically via d_padding
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
例:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
d_padding | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_gather
(mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
例:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_iota
(mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
例:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
オペランド | 説明 |
---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_pad
(mhlo::DynamicPadOp)
DynamicPad operation
構文:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand
, with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_reshape
(mhlo::DynamicReshapeOp)
DynamicReshape operation
構文:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
例:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_slice
(mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand
using dynamically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
例:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_update_slice
(mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
構文:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result
tensor which is equal to the operand
tensor except that the slice starting at start_indices
is updated with the values in update
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
例:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
update | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.einsum
(mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
例:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.erf
(mhlo::ErfOp)
Erf operation
構文:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#erf
例:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.exponential
(mhlo::ExpOp)
Exp operation
構文:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
例:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.exponential_minus_one
(mhlo::Expm1Op)
Expm1 operation
構文:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
例:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fft
(mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
例:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.floor
(mhlo::FloorOp)
Floor operation
構文:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
例:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fusion
(mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
結果:
結果 | 説明 |
---|---|
results | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.gather
(mhlo::GatherOp)
Gather operation
Gathers slices from operand
tensor from offsets specified in start_indices
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
例:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.get_dimension_size
(mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension
of the operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
例:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element
(mhlo::GetTupleElementOp)
GetTupleElement operation
構文:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index
position of the operand
tuple and produces a result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
例:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
オペランド | 説明 |
---|---|
operand | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.if
(mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch
or false_branch
depending on the value of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
Operands:
オペランド | 説明 |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.imag
(mhlo::ImagOp)
Imag operation
構文:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
例:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.infeed
(mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
例:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
オペランド | 説明 |
---|---|
token | トークン |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.iota
(mhlo::IotaOp)
Iota operation
Fills an output
tensor with values in increasing order starting from zero along the iota_dimension
dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
例:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
結果:
結果 | 説明 |
---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.is_finite
(mhlo::IsFiniteOp)
IsFinite operation
構文:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x
is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
例:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
x | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
結果:
結果 | 説明 |
---|---|
y | ranked tensor of pred (AKA boolean or 1-bit integer) values |
mhlo.log
(mhlo::LogOp)
Log operation
構文:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
例:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.log_plus_one
(mhlo::Log1pOp)
Log1p operation
構文:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
例:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.logistic
(mhlo::LogisticOp)
Logistic operation
構文:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
例:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.map
(mhlo::MapOp)
Map operation
Applies a map function computation
to inputs
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
例:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.maximum
(mhlo::MaxOp)
Max operation
構文:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
例:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum
(mhlo::MinOp)
Min operation
構文:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
例:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum_broadcast_shapes
(mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
構文:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i
corresponds to output i
.
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
shapes | variadic of 1D tensor of index values |
結果:
結果 | 説明 |
---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply
(mhlo::MulOp)
Mul operation
構文:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
例:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.negate
(mhlo::NegOp)
Neg operation
構文:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
例:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.not
(mhlo::NotOp)
Not operation
構文:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand
of type integer and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
例:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.optimization_barrier
(mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
構文:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand
are executed before any operations that depend on the result
and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result
= operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
例:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
結果:
結果 | 説明 |
---|---|
result | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.or
(mhlo::OrOp)
Or operation
構文:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
例:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.outfeed
(mhlo::OutfeedOp)
Outfeed operation
Writes inputs
to the outfeed and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
例:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | トークン |
結果:
結果 | 説明 |
---|---|
«unnamed» | トークン |
mhlo.pad
(mhlo::PadOp)
Pad operation
Expands operand
by padding around the tensor as well as between the elements of the tensor with the given padding_value
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
例:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.partition_id
(mhlo::PartitionIdOp)
PartitionId operation
構文:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
例:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt
(mhlo::PopulationCountOp)
PopulationCount operation
構文:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
例:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.power
(mhlo::PowOp)
Pow operation
構文:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs
tensor by rhs
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
例:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.real
(mhlo::RealOp)
Real operation
構文:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
例:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.real_dynamic_slice
(mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
構文:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices
, limit_indices
and strides
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
例:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.recv
(mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
例:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type HOST_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 3>,
is_host_transfer = true
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
オペランド | 説明 |
---|---|
token | トークン |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.reduce
(mhlo::ReduceOp)
Reduce operation
Applies a reduction function body
to inputs
and init_values
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
例:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_precision
(mhlo::ReducePrecisionOp)
ReducePrecision operation
構文:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand
to another floating-point type that uses exponent_bits
and mantissa_bits
and back to the original floating-point type and produces an output
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
例:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
結果:
結果 | 説明 |
---|---|
output | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.reduce_scatter
(mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations
, over the values of the operand
tensor from each process, splits the reduction result along scatter_dimension
into parts, and scatters the split parts between the processes to produce the result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
例:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_window
(mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body
to windows of inputs
and init_values
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
例:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.remainder
(mhlo::RemOp)
Rem operation
構文:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
例:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.replica_id
(mhlo::ReplicaIdOp)
ReplicaId operation
構文:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
例:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape
(mhlo::ReshapeOp)
Reshape operation
構文:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand
tensor to a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
例:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.return
(mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return
$results attr-dict ( :
type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.rng
(mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution
algorithm and produces a result
tensor of a given shape shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
例:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
オペランド | 説明 |
---|---|
a | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
b | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rng_bit_generator
(mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output
filled with uniform random data and an updated output state output_state
given an initial state initial_state
using the pseudorandom number generator algorithm rng_algorithm
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
例:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
オペランド | 説明 |
---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
結果:
結果 | 説明 |
---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_afz
(mhlo::RoundOp)
Round operation
構文:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
例:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_even
(mhlo::RoundNearestEvenOp)
RoundNearestEven operation
構文:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
例:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rsqrt
(mhlo::RsqrtOp)
Rsqrt operation
構文:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand
tensor and produces a result
tensor, implementing the rSqrt
operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
例:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.scatter
(mhlo::ScatterOp)
Scatter operation
Produces results
tensors which are equal to inputs
tensors except that several slices specified by scatter_indices
are updated with the values updates
using update_computation
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
例:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects
, SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select
(mhlo::SelectOp)
Select operation
構文:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result
tensor where each element is selected from on_true
or on_false
tensor based on the value of the corresponding element of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
例:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
on_true | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
on_false | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select_and_scatter
(mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source
tensor using scatter
based on the outcome of reduce_window
of the input
tensor using select
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
例:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
source | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.send
(mhlo::SendOp)
Send operation
Sends inputs
to a channel channel_id
and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
例:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_HOST>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 2>,
is_host_transfer = true
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | トークン |
結果:
結果 | 説明 |
---|---|
«unnamed» | トークン |
mhlo.set_dimension_size
(mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
例:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
size | tensor of 32-bit signless integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.shift_left
(mhlo::ShiftLeftOp)
ShiftLeft operation
構文:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
例:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_arithmetic
(mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
構文:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
例:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_logical
(mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
構文:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
例:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.sign
(mhlo::SignOp)
Sign operation
構文:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand
element-wise and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
例:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.sine
(mhlo::SineOp)
Sine operation
構文:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
例:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.slice
(mhlo::SliceOp)
Slice operation
Extracts a slice from the operand
using statically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
例:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sort
(mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs
together, according to a custom comparator
, along the given dimension
and produces a variadic number of tensors as results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
例:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
オペランド | 説明 |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sparse_dot
(mhlo::SparseDotOp)
Sparse dot operation
Similar to dot_general
operation, with one or both of the operands being sparse. An additional argument provides sparsity meta information. Disclaimer: this op is experimental / a work in progress.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
lhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
rhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
meta | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sqrt
(mhlo::SqrtOp)
Sqrt operation
構文:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
例:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.stochastic_convert
(mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.subtract
(mhlo::SubtractOp)
Subtract operation
構文:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
例:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.tan
(mhlo::TanOp)
Tan operation
構文:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand)
element-wise.
例:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tanh
(mhlo::TanhOp)
Tanh operation
構文:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
例:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.topk
(mhlo::TopKOp)
TopK operation
構文:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k
values and their indices, along the last dimension of the operand if largest=true
or the bottom k
values if largest=false
.
See: https://www.tensorflow.org/xla/operation_semantics#top-k
例:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
values | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
indices | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.torch_index_select
(mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims
attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
例:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
index | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.trace
(mhlo::TraceOp)
Trace operation
構文:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
例:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.transpose
(mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand
tensor using permutation
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
例:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.triangular_solve
(mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
例:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
オペランド | 説明 |
---|---|
a | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
b | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
結果:
結果 | 説明 |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tuple
(mhlo::TupleOp)
Tuple operation
構文:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result
tuple from values val
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
例:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
val | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
結果:
結果 | 説明 |
---|---|
result | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.uniform_dequantize
(mhlo::UniformDequantizeOp)
UniformDequantize operation
構文:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand
to a floating-point tensor result
according to the quantization parameters defined by the operand
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
例:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.uniform_quantize
(mhlo::UniformQuantizeOp)
UniformQuantize operation
構文:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand
to a quantized tensor result
according to the quantization parameters defined by the result
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
例:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.while
(mhlo::WhileOp)
While operation
Produces the output from executing body
function 0 or more times while the cond
function outputs true
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
例:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
, OpAsmOpInterface
Operands:
オペランド | 説明 |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
結果:
結果 | 説明 |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.xla.rng_get_and_update_state
(mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
構文:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Attributes:
属性 | MLIR Type | 説明 |
---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
結果:
結果 | 説明 |
---|---|
«unnamed» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor
(mhlo::XorOp)
Xor operation
構文:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
例:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
オペランド | 説明 |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
結果:
結果 | 説明 |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Attributes
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex
. The argTupleIndices
and resultTupleIndices
are used to index into nested tuples in operand and result respectively. If isMustAlias
is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1
may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
argTupleIndices | ::llvm::ArrayRef<int64_t> | 寸法 |
resultIndex | int64_t | |
resultTupleIndices | ::llvm::ArrayRef<int64_t> | 寸法 |
isMustAlias | bool |
ChannelHandleAttr
two 64-bit integers 'handle' and 'type'
構文:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
ハンドル | int64_t | |
タイプ | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
構文:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Enum cases:
- EQ (
EQ
) - NE (
NE
) - GE (
GE
) - GT (
GT
) - LE (
LE
) - LT (
LT
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
構文:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Enum cases:
- NOTYPE (
NOTYPE
) - FLOAT (
FLOAT
) - TOTALORDER (
TOTALORDER
) - SIGNED (
SIGNED
) - UNSIGNED (
UNSIGNED
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
inputBatchDimension | int64_t | |
inputFeatureDimension | int64_t | |
inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | 寸法 |
kernelInputFeatureDimension | int64_t | |
kernelOutputFeatureDimension | int64_t | |
kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | 寸法 |
outputBatchDimension | int64_t | |
outputFeatureDimension | int64_t | |
outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | 寸法 |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
構文:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr
, parameter
tells us which argument of the main
function of the module is prefetched, and indices
is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices
is the shape achieved after indexing by each element of indices
in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>>
is tensor<i32>
.
An empty value for indices
means the whole shape is prefetched.
例えば、
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0
tells us that the async copy of the 0
th parameter is a cross_program_prefetch
, while the index
of [0]
tells us that the 0
th element of the tuple is prefetched while the other element of the tuple is not.
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
パラメータ | int64_t | |
インデックス | ::llvm::ArrayRef<int64_t> | 寸法 |
オフセット | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
構文:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Enum cases:
- NONE (
NONE
) - LATEST (
LATEST
) - EARLIEST (
EARLIEST
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
Dequantization mode. Only MIN_COMBINED is supported.
構文:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Enum cases:
- MIN_COMBINED (
MIN_COMBINED
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
構文:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Enum cases:
- sharding (
sharding
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
構文:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
lhsPrecisionType | Type | |
rhsPrecisionType | Type | |
accumulationType | Type | |
lhsComponentCount | int64_t | |
rhsComponentCount | int64_t | |
numPrimitiveOperations | int64_t | |
allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | 寸法 |
rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | 寸法 |
lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | 寸法 |
rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | 寸法 |
FftTypeAttr
XLA fast fourier transform type.
構文:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Enum cases:
- FFT (
FFT
) - IFFT (
IFFT
) - RFFT (
RFFT
) - IRFFT (
IRFFT
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
fusion kind
構文:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Enum cases:
- kLoop (
kLoop
) - kInput (
kInput
) - kOutput (
kOutput
) - kCustom (
kCustom
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
offsetDims | ::llvm::ArrayRef<int64_t> | 寸法 |
collapsedSliceDims | ::llvm::ArrayRef<int64_t> | 寸法 |
operandBatchingDims | ::llvm::ArrayRef<int64_t> | 寸法 |
startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | 寸法 |
startIndexMap | ::llvm::ArrayRef<int64_t> | 寸法 |
indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
構文:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index
. The output_tuple_indices
and operand_tuple_indices
are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
outputTupleIndices | ::llvm::ArrayRef<int64_t> | 寸法 |
operandIndex | int64_t | |
operandTupleIndices | ::llvm::ArrayRef<int64_t> | 寸法 |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
構文:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - HIGH (
HIGH
) - HIGHEST (
HIGHEST
) - PACKED_NIBBLE (
PACKED_NIBBLE
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::Precision | an enum of type Precision |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
構文:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - THREE_FRY (
THREE_FRY
) - PHILOX (
PHILOX
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
構文:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Enum cases:
- UNIFORM (
UNIFORM
) - NORMAL (
NORMAL
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
updateWindowDims | ::llvm::ArrayRef<int64_t> | 寸法 |
insertedWindowDims | ::llvm::ArrayRef<int64_t> | 寸法 |
inputBatchingDims | ::llvm::ArrayRef<int64_t> | 寸法 |
scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | 寸法 |
scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | 寸法 |
indexVectorDim | int64_t |
SparsityDescriptorAttr
Describes structured (N:M) sparsity configuration
構文:
#mhlo.sparsity<
int64_t, # dimension
int64_t, # n
int64_t # m
>
This attribute is defined for a sparse dot operation with a structured sparse input tensor. With (N=2,M=4), every 4 consecutive logical elements have exactly 2 non-zero physical elements in the input tensor.
$dimension defines the index of the contracting dimension that is sparse (it has to be the most minor dimension). The additional metadata operand in the sparse dot operation defines which logical elements are zeroed out.
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
寸法 | int64_t | |
n | int64_t | |
メートル | int64_t |
TransposeAttr
Transpose options
構文:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Enum cases:
- TRANSPOSE_INVALID (
TRANSPOSE_INVALID
) - NO_TRANSPOSE (
NO_TRANSPOSE
) - TRANSPOSE (
TRANSPOSE
) - ADJOINT (
ADJOINT
)
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
価値 | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
構文:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding
field of the tensor type.
See HLO_BoundedAttrInterface
for documentation for bounds
.
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
bounds | ::llvm::ArrayRef<int64_t> |
種類
AsyncBundleType
Opaque collection of other types
構文:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parameters:
Parameter | C++ type | 説明 |
---|---|---|
種類 | ::llvm::ArrayRef<Type> |
Enums
ComparisonDirection
Which comparison operation to perform.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
EQ | 0 | EQ |
北東 | 1 | 北東 |
GE | 2 | GE |
GT | 3 | GT |
ル | 4 | ル |
LT | 5 | LT |
ComparisonType
Which comparison type to use.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
NOTYPE | 0 | NOTYPE |
フロート | 1 | フロート |
TOTALORDER | 2 | TOTALORDER |
SIGNED | 3 | SIGNED |
UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Cases:
シンボル | 価値 | 弦 |
---|---|---|
API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
なし | 0 | なし |
最新 | 1 | 最新 |
EARLIEST | 2 | EARLIEST |
DequantizeMode
Dequantization mode. Only MIN_COMBINED is supported.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
シャーディング | 0 | シャーディング |
FftType
XLA fast fourier transform type.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
FFT | 0 | FFT |
IFFT | 1 | IFFT |
RFFT | 2 | RFFT |
IRFFT | 3 | IRFFT |
FusionKind
fusion kind
Cases:
シンボル | 価値 | 弦 |
---|---|---|
kLoop | 0 | kLoop |
kInput | 1 | kInput |
kOutput | 2 | kOutput |
kCustom | 3 | kCustom |
精度
XLA precision for an operand. Has backend specific meaning.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
デフォルト | 0 | デフォルト |
高い | 1 | 高い |
最高 | 2 | 最高 |
PACKED_NIBBLE | 3 | PACKED_NIBBLE |
RngAlgorithm
XLA PRNG algorithm to be used.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
デフォルト | 0 | デフォルト |
THREE_FRY | 1 | THREE_FRY |
PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Cases:
シンボル | 価値 | 弦 |
---|---|---|
UNIFORM | 1 | UNIFORM |
普通 | 2 | 普通 |
転置
Transpose options
Cases:
シンボル | 価値 | 弦 |
---|---|---|
TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
NO_TRANSPOSE | 1 | NO_TRANSPOSE |
転置 | 2 | 転置 |
ADJOINT | 3 | ADJOINT |