Operazioni
mhlo.abs
(mhlo::AbsOp)
Operazione dell'ABS
Sintassi:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue l'operazione ABS per elemento sul tensore operand
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Esempio:
%result = mhlo.abs %operand : tensor<3xi32>
Caratteristiche: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
operand | tensore classificato di intero senza segno a 2/4/8/16/32/64 bit o tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 o tipo complesso con elementi float a 32 bit o float a 64 bit o 2/4/8/16/32 Intero con segno quantizzato uniforme a bit o quantizzato uniforme a 2/4/8/16/32 bit per asse intero con segno o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse valori interi senza segno |
Risultati:
Risultato | Descrizione |
---|---|
result | tensore classificato di intero senza segno a 2/4/8/16/32/64 bit o tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o 2/4/8/16 /Intero con segno quantizzato uniforme a 32 bit per asse o Intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit per asse |
mhlo.add
(mhlo::AddOp)
Aggiungi operazione
Sintassi:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Esegue l'addizione per elemento di due tensori lhs
e rhs
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Esempio:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Caratteristiche: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
lhs | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
rhs | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
Risultati:
Risultato | Descrizione |
---|---|
result | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
mhlo.add_dependency
(mhlo::AddDependencyOp)
Operazione AddDependency
Sintassi:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Questa operazione è privata per il compilatore XLA, quindi non ha ancora una specifica.
Informalmente, questa operazione ha due operandi: un operando dati e un token. L'output dell'operazione è l'operando dati. Se utilizzata con AfterAll, questa operazione consente di ordinare operazioni senza effetti collaterali (quelle che non producono valori token).
Esempio:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
operand | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit o tensore classificato di 2/4/8/16/ Quantizzato uniforme a 32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per valori interi senza segno o token dell'asse |
token | gettone |
Risultati:
Risultato | Descrizione |
---|---|
output | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit o tensore classificato di 2/4/8/16/ Quantizzato uniforme a 32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per valori interi senza segno o token dell'asse |
mhlo.after_all
(mhlo::AfterAllOp)
Operazione AfterAll
Sintassi:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Garantisce che le operazioni che producono gli inputs
vengano eseguite prima di qualsiasi operazione che dipenda da result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Esempio:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
inputs | variadica di token |
Risultati:
Risultato | Descrizione |
---|---|
result | gettone |
mhlo.all_gather
(mhlo::AllGatherOp)
Operazione AllGather
All'interno di ciascun gruppo di processi nella griglia dei processi, concatena i valori del tensore dell'operando di ciascun processo lungo all_gather_dim
e produce un tensore del risultato. Il computation
viene applicato separatamente per ciascun operando in operands
, producendo un risultato per operando.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Esempio:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Caratteristiche: SameOperandsAndResultElementType
Attributi:
Attributo | Tipo MLIR | Descrizione |
---|---|---|
all_gather_dim | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore non è negativo |
replica_groups | ::mlir::DenseIntElementsAttr | Attributo degli elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
use_global_device_ids | ::mlir::UnitAttr | attributo unitario |
Operandi:
Operando | Descrizione |
---|---|
operands | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
Risultati:
Risultato | Descrizione |
---|---|
«senza nome» | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
mhlo.all_reduce
(mhlo::AllReduceOp)
Operazione AllReduce
All'interno di ciascun gruppo di processi nella griglia dei processi, applica un computation
della funzione di riduzione ai valori di un tensore dell'operando di ciascun processo e produce un tensore del risultato. Il computation
viene applicato separatamente per ciascun operando in operands
, producendo un risultato per operando.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Esempio:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Caratteristiche: InferTensorType
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfacce: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | Tipo MLIR | Descrizione |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Attributo degli elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
use_global_device_ids | ::mlir::UnitAttr | attributo unitario |
Operandi:
Operando | Descrizione |
---|---|
operands | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
Risultati:
Risultato | Descrizione |
---|---|
«senza nome» | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
mhlo.all_to_all
(mhlo::AllToAllOp)
Operazione AllToAll
All'interno di ciascun gruppo di processi nella griglia dei processi, divide i valori del tensore operand
lungo split_dimension
in parti, distribuisce le parti divise tra i processi, concatena le parti sparse lungo concat_dimension
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Esempio:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Caratteristiche: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsElementType
, SameOperandsShape
, SameVariadicOperandSize
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo MLIR | Descrizione |
---|---|---|
split_dimension | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore non è negativo |
concat_dimension | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore non è negativo |
split_count | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore è positivo |
replica_groups | ::mlir::DenseIntElementsAttr | Attributo degli elementi interi senza segno a 64 bit |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | due interi a 64 bit 'handle' e 'type' |
Operandi:
Operando | Descrizione |
---|---|
operand | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
Risultati:
Risultato | Descrizione |
---|---|
«senza nome» | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
mhlo.and
(mhlo::AndOp)
E funzionamento
Sintassi:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Esegue l'AND per elemento di due tensori lhs
e rhs
e produce un tensore result
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Esempio:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Caratteristiche: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
lhs | tensore classificato di pred (AKA booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o valori interi senza segno a 2/4/8/16/32/64 bit |
rhs | tensore classificato di pred (AKA booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o valori interi senza segno a 2/4/8/16/32/64 bit |
Risultati:
Risultato | Descrizione |
---|---|
result | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o valore intero senza segno quantizzato uniforme a 2/4/8/16/32 bit per asse |
mhlo.async_done
(mhlo::AsyncDoneOp)
Operazione AsyncDone
Questa operazione è privata per il compilatore XLA, quindi non ha ancora una specifica.
Informalmente, questa operazione si blocca fino alla fine di un calcolo asincrono. Restituisce il risultato finale del calcolo asincrono.
Per ulteriori informazioni, consultare la documentazione di AsyncStart.
Interfacce: InferTypeOpInterface
Operandi:
Operando | Descrizione |
---|---|
bundle | async_bundle con qualsiasi combinazione di tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o intero senza segno o tipo complesso a 2/4/8/16/32/64 bit con elementi float a 32 bit o elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o 2/4/8/ Quantizzato uniforme a 16/32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per valori interi senza segno dell'asse o valori token |
Risultati:
Risultato | Descrizione |
---|---|
«senza nome» | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o uniforme a 2/4/8/16/32 bit quantizzato per asse valori interi senza segno o token o tupla annidata con qualsiasi combinazione di valori ordinati tensore di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o Float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 o pred (AKA booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/4/8 /Intero senza segno a 16/32/64 bit o tipo complesso con elementi float a 32 bit o float a 64 bit oppure Intero con segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit o tensore classificato di quantizzato uniforme a 2/4/8/16/32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per asse valori interi senza segno o valori token |
mhlo.async_start
(mhlo::AsyncStartOp)
Operazione AsyncStart
Questa operazione è privata per il compilatore XLA, quindi non ha ancora una specifica.
Informalmente, questa operazione dà il via ad un calcolo asincrono.
Viene utilizzato quando sono presenti funzioni che contengono sia attese asincrone (come DMA) che calcoli sul thread. Ad esempio, una funzione potrebbe consistere in un calcolo, un DMA, un altro calcolo, un secondo DMA e un calcolo finale. Questo verrebbe rappresentato come async_start seguito da async_update e async_done. async_start eseguirà il primo calcolo sul thread e quindi avvierà il DMA. Async_update attenderebbe il completamento del DMA se non fosse ancora stato completato, quindi eseguirebbe il secondo calcolo nella funzione e avvierebbe il secondo DMA. Infine, async_done attenderà quest'ultimo DMA, quindi eseguirà l'ultimo calcolo che deve essere eseguito sul thread e restituirà il risultato di quel calcolo finale.
operands
vengono passati direttamente al calcolo called_computation
è la funzione che verrà eseguita in modo asincrono execution_thread
è il nome del thread in cui verrà eseguita. Il thread principale si chiama "main". Tutti i thread hanno nomi.
Ciò restituisce tutto lo stato necessario tra le operazioni asincrone. Dopo l'assegnazione del buffer, i valori restituiti rappresentano lo spazio necessario per contenere l'input, i risultati e gli eventuali appunti necessari o modificati dall'operazione asincrona.
Attributi:
Attributo | Tipo MLIR | Descrizione |
---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | attributo di riferimento del simbolo piatto |
execution_thread | ::mlir::StringAttr | attributo stringa |
Operandi:
Operando | Descrizione |
---|---|
inputs | variadica del tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/ Intero senza segno a 4/8/16/32/64 bit o tipo complesso con virgola mobile a 32 bit o Elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o uniforme a 2/4/8/16/32 bit quantizzato per asse intero con segno o uniforme a 2/4/8/16/32 bit quantizzato per asse valori interi senza segno o token o tupla annidata con qualsiasi combinazione di valori ordinati tensore di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o Float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 o pred (AKA booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o 2/4/8 /Intero senza segno a 16/32/64 bit o tipo complesso con elementi float a 32 bit o float a 64 bit oppure Intero con segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit o tensore classificato di quantizzato uniforme a 2/4/8/16/32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per asse valori interi senza segno o valori token |
Risultati:
Risultato | Descrizione |
---|---|
«senza nome» | async_bundle con qualsiasi combinazione di tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o intero senza segno o tipo complesso a 2/4/8/16/32/64 bit con elementi float a 32 bit o elementi float a 64 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o 2/4/8/ Quantizzato uniforme a 16/32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per valori interi senza segno dell'asse o valori token |
mhlo.async_update
(mhlo::AsyncUpdateOp)
Operazione AsyncUpdate
Questa operazione è privata per il compilatore XLA, quindi non ha ancora una specifica.
Informalmente, questa operazione si blocca su un calcolo asincrono fino a quando non si incontra una barriera di sincronizzazione. Questo restituisce bundle
dopo aver operato su di esso.
Per ulteriori informazioni, consultare la documentazione di AsyncStart.
Interfacce: InferTypeOpInterface
Operandi:
Operando | Descrizione |
---|---|
bundle | async_bundle con qualsiasi combinazione di tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o intero senza segno o tipo complesso a 2/4/8/16/32/64 bit con elementi float a 32 bit o elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o 2/4/8/ Quantizzato uniforme a 16/32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per valori interi senza segno dell'asse o valori token |
Risultati:
Risultato | Descrizione |
---|---|
«senza nome» | async_bundle con qualsiasi combinazione di tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o virgola mobile a 16 bit o virgola mobile a 32 bit o virgola mobile a 64 bit o tipo bfloat16 o pred (ovvero booleano o intero a 1 bit) o intero senza segno a 2/4/8/16/32/64 bit o intero senza segno o tipo complesso a 2/4/8/16/32/64 bit con elementi float a 32 bit o elementi float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o intero senza segno quantizzato uniforme a 2/4/8/16/32 bit o 2/4/8/ Quantizzato uniforme a 16/32 bit per intero con segno dell'asse o quantizzato uniforme a 2/4/8/16/32 bit per valori interi senza segno dell'asse o valori token |
mhlo.atan2
(mhlo::Atan2Op)
Operazione Atan2
Sintassi:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Esegue l'operazione atan2 a livello di elemento sui tensori lhs
e rhs
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Esempio:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Caratteristiche: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
lhs | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 o tipo complesso con elementi float a 32 bit o float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit |
rhs | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 o tipo complesso con elementi float a 32 bit o float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit |
Risultati:
Risultato | Descrizione |
---|---|
result | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 o tipo complesso con elementi float a 32 bit o float a 64 bit o intero con segno quantizzato uniforme a 2/4/8/16/32 bit o valori interi senza segno quantizzati uniformi a 2/4/8/16/32 bit |
mhlo.batch_norm_grad
(mhlo::BatchNormGradOp)
Operazione BatchNormGrad
Calcola i gradienti di diversi input di BatchNormTrainingOp propaganti all'indietro da grad_output
e produce tensori grad_operand
, grad_scale
e grad_offset
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Esempio:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Caratteristiche: AlwaysSpeculatableImplTrait
, InferTensorType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo MLIR | Descrizione |
---|---|---|
epsilon | ::mlir::FloatAttr | Attributo float a 32 bit |
feature_index | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore non è negativo |
Operandi:
Operando | Descrizione |
---|---|
operand | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
scale | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
mean | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
variance | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
grad_output | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
Risultati:
Risultato | Descrizione |
---|---|
grad_operand | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
grad_scale | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
grad_offset | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
mhlo.batch_norm_inference
(mhlo::BatchNormInferenceOp)
Operazione BatchNormInference
Normalizza il tensore operand
su tutte le dimensioni ad eccezione della dimensione feature_index
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Esempio:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Caratteristiche: AlwaysSpeculatableImplTrait
, InferTensorType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo MLIR | Descrizione |
---|---|---|
epsilon | ::mlir::FloatAttr | Attributo float a 32 bit |
feature_index | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore non è negativo |
Operandi:
Operando | Descrizione |
---|---|
operand | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o valori di tipo bfloat16 |
scale | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
offset | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
mean | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
variance | Tensore 1D di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
Risultati:
Risultato | Descrizione |
---|---|
result | tensore classificato di tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o Valori di tipo f8E8M0FNU o float a 16 bit o float a 32 bit o float a 64 bit o tipo bfloat16 |
mhlo.batch_norm_training
(mhlo::BatchNormTrainingOp)
Operazione BatchNormTraining
Calcola la media e la varianza tra le dimensioni batch e spaziali e normalizza il tensore operand
per ciascuna caratteristica nella dimensione feature_index
e produce tensori output
, batch_mean
e batch_var
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Esempio:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Caratteristiche: AlwaysSpeculatableImplTrait
, InferTensorType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo MLIR | Descrizione |
---|---|---|
epsilon | ::mlir::FloatAttr | Attributo float a 32 bit |
feature_index | ::mlir::IntegerAttr | Attributo intero senza segno a 64 bit il cui valore non è negativo |
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Valori di tipo |
scale | TENSOR 1D di tipo F4e2m1fn o tipo F6e2m3fn o tipo F6e3m2fn o tipo F8E3M4 o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8e4M3B11fnUZ TIPO o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Valori di tipo |
offset | TENSOR 1D di tipo F4e2m1fn o tipo F6e2m3fn o tipo F6e3m2fn o tipo F8E3M4 o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8e4M3B11fnUZ TIPO o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Valori di tipo |
Risultati:
Risultato | Descrizione |
---|---|
output | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Valori di tipo |
batch_mean | TENSOR 1D di tipo F4e2m1fn o tipo F6e2m3fn o tipo F6e3m2fn o tipo F8E3M4 o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8e4M3B11fnUZ TIPO o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Valori di tipo |
batch_var | TENSOR 1D di tipo F4e2m1fn o tipo F6e2m3fn o tipo F6e3m2fn o tipo F8E3M4 o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8e4M3B11fnUZ TIPO o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Valori di tipo |
mhlo.bitcast
(mhlo :: bitcastop)
Operazione bitcast
Sintassi:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Questa operazione è privata per il compilatore XLA, quindi non ha ancora una specifica.
Informalmente, questa operazione cambia la forma dell'input nel modo in cui la disposizione fisica degli elementi è invariata.
Questa operazione necessita di informazioni sul layout per dare un senso alla "disposizione fisica degli elementi" e il supporto del layout in MHLO è attualmente un lavoro in corso.
Esempio:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.bitcast_convert
(mhlo :: bitcastConvertop)
Operazione BitcastConvert
Sintassi:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Esegui un'operazione bitcast sul tensore operand
e produce un tensore result
in cui i bit dell'intero tensore operand
vengono reinterpretati usando il tipo di tensore del result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Esempio:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Tratti: AlwaysSpeculatableImplTrait
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.broadcast
(MHLO :: Broadcastop)
Operazione di trasmissione
Questa operazione è uscita da StableHLO, quindi non è inclusa nella specifica: https://github.com/openxla/stablehlo/issues/3
Informalmente, questa operazione fa la stessa cosa della trasmissione di XLA: https://www.tensorflow.org/xla/operation_semantics#Broadcast
Esempio:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Tratti: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
broadcast_sizes | :: mlir :: denseintelementsattr | Attributo intero senza segno a 64 bit |
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.broadcast_in_dim
(MHLO :: BroadcastInDimop)
Operazione di trasmissione
Espande le dimensioni e/o il rango di un tensore di input duplicando i dati nel tensore operand
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Esempio:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Tratti: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfacce: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
broadcast_dimensions | :: mlir :: denseintelementsattr | Attributo intero senza segno a 64 bit |
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE STATICAMENTO STATICHE DI TIPO F4E2M1FN o tipo F6E2M3FN o tipo F6E3M2fn o tipo F8E3M4 o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o tipo F8E4M3B11fnuz o tipo F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.case
(mhlo :: caseop)
Operazione del caso
Produce l'output dall'esecuzione esattamente di una function
dai branches
a seconda del valore index
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Esempio:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Tratti: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfacce: InferTypeOpInterface
Operandi:
Operando | Descrizione |
---|---|
index | Tensor di valori interi senza segno a 32 bit |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | Variadico del tensore classificato di tipo F4e2m1fn o F6e2m3fn Type o f6e3m2fn tipo o f8e3m4 tipo o f8e4m3 tipo o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz type o f8e5m2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32-bit un numero intero firmato quantizzato o 2/4/8/8/16/32 bit valori interi non firmati quantizzati o un tensore classificato di 2/4/8/16/ Uniforme a 32 bit quantificata per asse intero firmato o uniforme 2/4/8/16/32 bit quantizzati per asse non firmato i valori interi o token |
mhlo.cbrt
(mhlo :: cbrtop)
Funzionamento CBRT
Sintassi:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue il funzionamento della radice cubica a livello di elemento sul tensore operand
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Esempio:
%result = mhlo.cbrt %operand : tensor<4xf32>
Tratti: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
operandsandResultType, Elementwise
, SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 F8e8m0fnu Tipo o galleggiante a 16 bit o galleat a 32 bit o a galleggiante a 64 bit o bfloat16 Tipo o tipo complesso con float a 32 bit o elementi galleggianti a 64 bit o 2/4/8/8/16/16/32 bit INTEGER firmato quantizzato quantizzato o valori interi non firmati 2/4/8/16/16/32 bit |
Risultati:
Risultato | Descrizione |
---|---|
result | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 F8e8m0fnu Tipo o galleggiante a 16 bit o galleat a 32 bit o a galleggiante a 64 bit o bfloat16 Tipo o tipo complesso con float a 32 bit o elementi galleggianti a 64 bit o 2/4/8/8/16/16/32 bit INTEGER firmato quantizzato quantizzato o valori interi non firmati 2/4/8/16/16/32 bit |
mhlo.ceil
(mhlo :: ceilop)
Funzionamento del CEIL
Sintassi:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Esegue il tetto del tessore operand
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Esempio:
%result = mhlo.ceil %operand : tensor<5xf32>
Tratti: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
operandsandResultType, Elementwise
, SameOperandsAndResultShape
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 F8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Tipo o 2/4/8/16/32-bit Uniforme quantizzato Intero firmato o 2/4/8/16/16/32 bit quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato Valori interi non firmati |
Risultati:
Risultato | Descrizione |
---|---|
result | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 F8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Tipo o 2/4/8/16/32-bit Uniforme quantizzato Intero firmato o 2/4/8/16/16/32 bit quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato quantizzato Valori interi non firmati |
mhlo.cholesky
(mhlo :: choleskyop)
Operazione Cholesky
Calcola la decomposizione di Cholesky di un lotto di matrici.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Esempio:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Tratti: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
lower | :: mlir :: boolattr | attributo bool |
Operandi:
Operando | Descrizione |
---|---|
a | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 F8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Tipo o tipo complesso con valori di galleat a 32 bit o ad 64 bit |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 F8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o galleat a 64 bit o bfloat16 Tipo o tipo complesso con valori di galleat a 32 bit o ad 64 bit |
mhlo.clamp
(MHLO :: CLAMPOP)
Operazione di morsetto
Sintassi:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Brampia ogni elemento del tensore operand
e un valore minimo e massimo e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Esempio:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Tratti: AlwaysSpeculatableImplTrait
SpeculableImplTrait, HLO_BroadcastingElementwise
, InferTensorType
, SameOperandsAndResultElementType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
min | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
max | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
result | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.collective_broadcast
(MHLO :: CollectiveBroadcastop)
Operazione collettiva di roadcast
All'interno di ciascun gruppo di processo nella griglia di processo, inviare il valore del tensore operand
dal processo di origine ai processi target e produrre un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Esempio:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Tratti: CompatibleOperandsAndResultType
Interfacce: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
replica_groups | :: mlir :: denseintelementsattr | Attributo intero senza segno a 64 bit |
channel_handle | :: mlir :: mhlo :: canalehandleattr | Due numeri interi a 64 bit "Handle" e "Type" |
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.collective_permute
(mhlo :: collettivopermuteop)
Operazione collettiva permute
All'interno di ciascun gruppo di processo nella griglia di processo, invia il valore del tensore operand
dal processo di origine al processo target e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Esempio:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Tratti: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
source_target_pairs | :: mlir :: denseintelementsattr | Attributo intero senza segno a 64 bit |
channel_handle | :: mlir :: mhlo :: canalehandleattr | Due numeri interi a 64 bit "Handle" e "Type" |
Operandi:
Operando | Descrizione |
---|---|
operand | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.compare
(MHLO :: ConfrontaP)
Confronta l'operazione
Sintassi:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Esegue il confronto a livello di elemento di tensori lhs
e rhs
secondo comparison_direction
e compare_type
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Esempio:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Tratti: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
, SameOperandsElementType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
comparison_direction | :: mlir :: mhlo :: confrontisondirectattr | Quale operazione di confronto per eseguire. |
compare_type | :: mlir :: mhlo :: confrontoTypeattr | Quale tipo di confronto da utilizzare. |
Operandi:
Operando | Descrizione |
---|---|
lhs | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
rhs | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSOR CLASSATO DEI VALORI PRED (AKA BOOLEANO O INTERGER 1 BIT) |
mhlo.complex
(MHLO :: Complessop)
Operazione complessa
Sintassi:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Esegue la conversione da elemento in un valore complesso da una coppia di valori reali e immaginari, lhs
e rhs
e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Esempio:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Tratti: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
, SameOperandsElementType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Operandi:
Operando | Descrizione |
---|---|
lhs | Tensore classificato di valori galleggianti galleggianti a 32 bit o a 64 bit |
rhs | Tensore classificato di valori galleggianti galleggianti a 32 bit o a 64 bit |
Risultati:
Risultato | Descrizione |
---|---|
result | Tensore di tipo complesso con valori di elementi galleggianti a 32 bit a 32 bit a 64 bit |
mhlo.composite
(MHLO :: Compositeop)
Operazione composita
Sintassi:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Incapsula un'operazione costituita (composta) di altre operazioni di Stablehlo, prendendo inputs
e composite_attributes
e producendo results
. La semantica dell'OP è implementata dall'attributo decomposition
. L'OP composite
può essere sostituito con la sua decomposizione senza modificare la semantica del programma. Nei casi in cui in linea la decomposizione non fornisce la stessa semantica OP, preferisci l'uso di custom_call
.
Il campo version
(impostazione predefinita su 0
) viene utilizzato per indicare quando la semantica di una composita cambia.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Esempio:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Interfacce: SymbolUserOpInterface
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
name | :: mlir :: Stringattr | attributo stringa |
composite_attributes | :: Mlir :: Dictionaryattr | Dizionario dei valori degli attributi nominati |
decomposition | :: Mlir :: Flatsymbolrefattr | attributo di riferimento a simbolo piatto |
version | :: mlir :: integerittr | Attributo intero senza segno a 32 bit |
Operandi:
Operando | Descrizione |
---|---|
inputs | Variadico del tensore classificato di tipo F4e2m1fn o F6e2m3fn Type o f6e3m2fn tipo o f8e3m4 tipo o f8e4m3 tipo o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz type o f8e5m2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quansizzato per asse intero firmato o uniforme 2/4/8/16/32 bit quantificata per asse non firmato i valori interi o token o tupla nidificata con qualsiasi combinazione di classificata Tensor di tipo F4e2m1fn o tipo F6e2m3fn o f6e3m2fn o tipo F8e3m4 o f8e4m3 tipi o tipo F8e4m3fn o tipo F8e4m3fnuz o F8e4m. Float a 16 bit o float a 32 bit o float a 64 bit o bfloat16 Tipo o Pred (aka intero booleano o a 1 bit) o 2/4/8/16/16/32/64-bit Integer senza segno o 2/4/8 /16/32/64 bit senza firma o tipo complesso con elementi galleggianti galleggianti a 32 bit o a 64 bit o 2/4/8/16/16/32-bit uniforme quantizzata intera firmata o 2/4/8/16/32 bit valori interi non firmati quantizzati o un tensore classificato di 2/4/8/16/16/32 bit quantizzato quantizzato Asse firmato intero o uniforme 2/4/8/16/32 bit quantificata per asse non firmato Valori interi o valori token |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | Variadico del tensore classificato di tipo F4e2m1fn o F6e2m3fn Type o f6e3m2fn tipo o f8e3m4 tipo o f8e4m3 tipo o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz type o f8e5m2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quansizzato per asse intero firmato o uniforme 2/4/8/16/32 bit quantificata per asse non firmato i valori interi o token o tupla nidificata con qualsiasi combinazione di classificata Tensor di tipo F4e2m1fn o tipo F6e2m3fn o f6e3m2fn o tipo F8e3m4 o f8e4m3 tipi o tipo F8e4m3fn o tipo F8e4m3fnuz o F8e4m. Float a 16 bit o float a 32 bit o float a 64 bit o bfloat16 Tipo o Pred (aka intero booleano o a 1 bit) o 2/4/8/16/16/32/64-bit Integer senza segno o 2/4/8 /16/32/64 bit senza firma o tipo complesso con elementi galleggianti galleggianti a 32 bit o a 64 bit o 2/4/8/16/16/32-bit uniforme quantizzata intera firmata o 2/4/8/16/32 bit valori interi non firmati quantizzati o un tensore classificato di 2/4/8/16/16/32 bit quantizzato quantizzato Asse firmato intero o uniforme 2/4/8/16/32 bit quantificata per asse non firmato Valori interi o valori token |
mhlo.concatenate
(MHLO :: ConcateNateop)
Operazione concatenata
Concatena un numero variadico di tensori negli inputs
lungo la dimensione dimension
nello stesso ordine degli argomenti indicati e produce un tensore result
.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Esempio:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Tratti: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfacce: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effetti: MemoryEffects::Effect{}
Attributi:
Attributo | Tipo mlir | Descrizione |
---|---|---|
dimension | :: mlir :: integerittr | Attributo intero senza segno a 64 bit il cui valore non è negativo |
Operandi:
Operando | Descrizione |
---|---|
val | Variadico del tensore classificato di tipo F4e2m1fn o F6e2m3fn Type o f6e3m2fn tipo o f8e3m4 tipo o f8e4m3 tipo o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz type o f8e5m2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
Risultati:
Risultato | Descrizione |
---|---|
«Senza nome» | TENSORE CLASSATO DI F4E2M1FN TIPO o F6E2M3FN TIPO O F6E3M2FN TIPO O F8E3M4 Tipo o tipo F8E4M3 o tipo F8E4M3fn o tipo F8E4M3fnuz o F8E4M3B11FNUZ Tipo o F8E5M2 f8e8m0fnu tipo o galleggiante a 16 bit o galleat a 32 bit o a 64 bit o bfloat16 tipo o pred (aka intero booleano o a 1 bit) o 2/4/8/8/16/32/64 bit intero senza segno o 2/2/2/2/2/2/ 4/8/16/32/64 bit senza segno o tipo complesso con galleggiante a 32 bit o Elementi galleggianti a 64 bit o 2/4/8/16/32 bit INTERGER firmato quantizzato o uniforme da 2/4/8/8/16/16/32 bit Quasized per asse intero firmato o uniforme 2/4/8/16/32 bit quantificati per asse non firmato Valori interi |
mhlo.constant
(MHLO :: Constantop)
Operazione costante
Produce un tensore output
da un value
costante.
Vedi: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Esempio:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Tratti: AlwaysSpeculatableImplTrait
, ConstantLike
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Results:
Risultato | Descrizione |
---|---|
output | statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convert
(mhlo::ConvertOp)
Convert operation
Sintassi:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Esempio:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.convolution
(mhlo::ConvolutionOp)
Convolution operation
Sintassi:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs
and slices of rhs
and produces result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Esempio:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.copy
(mhlo::CopyOp)
Copy operation
Sintassi:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand
. Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Esempio:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.cosine
(mhlo::CosineOp)
Cosine operation
Sintassi:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Esempio:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.count_leading_zeros
(mhlo::ClzOp)
Clz operation
Sintassi:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Esempio:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.create_token
(mhlo::CreateTokenOp)
CreateToken operation
Sintassi:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Esempio:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Results:
Risultato | Descrizione |
---|---|
output | gettone |
mhlo.cross-replica-sum
(mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0
, use_global_device_ids = false
and computation
implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Esempio:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.custom_call
(mhlo::CustomCallOp)
CustomCall operation
Sintassi:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name
that takes inputs
and called_computations
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Esempio:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.divide
(mhlo::DivOp)
Div operation
Sintassi:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Esempio:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.domain
(mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.dot
(mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Esempio:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dot_general
(mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs
and slices of rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Esempio:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_broadcast_in_dim
(mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions
.
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Esempio:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_conv
(mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding
is specified dynamically via d_padding
: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Esempio:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
d_padding | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_gather
(mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Esempio:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_iota
(mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Esempio:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Descrizione |
---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_pad
(mhlo::DynamicPadOp)
DynamicPad operation
Sintassi:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand
, with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_reshape
(mhlo::DynamicReshapeOp)
DynamicReshape operation
Sintassi:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Esempio:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_slice
(mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand
using dynamically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Esempio:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.dynamic_update_slice
(mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Sintassi:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result
tensor which is equal to the operand
tensor except that the slice starting at start_indices
is updated with the values in update
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Esempio:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
update | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.einsum
(mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Esempio:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.erf
(mhlo::ErfOp)
Erf operation
Sintassi:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#erf
Esempio:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.exponential
(mhlo::ExpOp)
Exp operation
Sintassi:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Esempio:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.exponential_minus_one
(mhlo::Expm1Op)
Expm1 operation
Sintassi:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Esempio:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fft
(mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Esempio:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.floor
(mhlo::FloorOp)
Floor operation
Sintassi:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Esempio:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.fusion
(mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Results:
Risultato | Descrizione |
---|---|
results | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.gather
(mhlo::GatherOp)
Gather operation
Gathers slices from operand
tensor from offsets specified in start_indices
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Esempio:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.get_dimension_size
(mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension
of the operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Esempio:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | tensor of 32-bit signless integer values |
mhlo.get_tuple_element
(mhlo::GetTupleElementOp)
GetTupleElement operation
Sintassi:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index
position of the operand
tuple and produces a result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Esempio:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Descrizione |
---|---|
operand | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.if
(mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch
or false_branch
depending on the value of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
Operands:
Operand | Descrizione |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.imag
(mhlo::ImagOp)
Imag operation
Sintassi:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Esempio:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.infeed
(mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Esempio:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
Operand | Descrizione |
---|---|
token | gettone |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.iota
(mhlo::IotaOp)
Iota operation
Fills an output
tensor with values in increasing order starting from zero along the iota_dimension
dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Esempio:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Results:
Risultato | Descrizione |
---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.is_finite
(mhlo::IsFiniteOp)
IsFinite operation
Sintassi:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x
is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Esempio:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
x | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Results:
Risultato | Descrizione |
---|---|
y | ranked tensor of pred (AKA boolean or 1-bit integer) values |
mhlo.log
(mhlo::LogOp)
Log operation
Sintassi:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Esempio:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.log_plus_one
(mhlo::Log1pOp)
Log1p operation
Sintassi:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Esempio:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.logistic
(mhlo::LogisticOp)
Logistic operation
Sintassi:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Esempio:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.map
(mhlo::MapOp)
Map operation
Applies a map function computation
to inputs
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Esempio:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.maximum
(mhlo::MaxOp)
Max operation
Sintassi:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Esempio:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum
(mhlo::MinOp)
Min operation
Sintassi:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Esempio:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.minimum_broadcast_shapes
(mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Sintassi:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i
corresponds to output i
.
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
shapes | variadic of 1D tensor of index values |
Results:
Risultato | Descrizione |
---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply
(mhlo::MulOp)
Mul operation
Sintassi:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Esempio:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.negate
(mhlo::NegOp)
Neg operation
Sintassi:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Esempio:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.not
(mhlo::NotOp)
Not operation
Sintassi:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand
of type integer and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Esempio:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.optimization_barrier
(mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Sintassi:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand
are executed before any operations that depend on the result
and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result
= operand
.
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Esempio:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait
, HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Results:
Risultato | Descrizione |
---|---|
result | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.or
(mhlo::OrOp)
Or operation
Sintassi:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Esempio:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.outfeed
(mhlo::OutfeedOp)
Outfeed operation
Writes inputs
to the outfeed and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Esempio:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | gettone |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | gettone |
mhlo.pad
(mhlo::PadOp)
Pad operation
Expands operand
by padding around the tensor as well as between the elements of the tensor with the given padding_value
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Esempio:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
padding_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.partition_id
(mhlo::PartitionIdOp)
PartitionId operation
Sintassi:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Esempio:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt
(mhlo::PopulationCountOp)
PopulationCount operation
Sintassi:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Esempio:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.power
(mhlo::PowOp)
Pow operation
Sintassi:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs
tensor by rhs
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Esempio:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.real
(mhlo::RealOp)
Real operation
Sintassi:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Esempio:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.real_dynamic_slice
(mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Sintassi:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices
, limit_indices
and strides
are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Esempio:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.recv
(mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Esempio:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type HOST_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 3>,
is_host_transfer = true
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrizione |
---|---|
token | gettone |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.reduce
(mhlo::ReduceOp)
Reduce operation
Applies a reduction function body
to inputs
and init_values
along the dimensions
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Esempio:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_precision
(mhlo::ReducePrecisionOp)
ReducePrecision operation
Sintassi:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand
to another floating-point type that uses exponent_bits
and mantissa_bits
and back to the original floating-point type and produces an output
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Esempio:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Results:
Risultato | Descrizione |
---|---|
output | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.reduce_scatter
(mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations
, over the values of the operand
tensor from each process, splits the reduction result along scatter_dimension
into parts, and scatters the split parts between the processes to produce the result
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Esempio:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.reduce_window
(mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body
to windows of inputs
and init_values
and produces results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Esempio:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType
, RecursiveMemoryEffects
, SameVariadicOperandSize
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_values | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.remainder
(mhlo::RemOp)
Rem operation
Sintassi:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs
and divisor rhs
tensors and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Esempio:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.replica_id
(mhlo::ReplicaIdOp)
ReplicaId operation
Sintassi:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id
of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Esempio:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape
(mhlo::ReshapeOp)
Reshape operation
Sintassi:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand
tensor to a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Esempio:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.return
(mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return
$results attr-dict ( :
type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.rng
(mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution
algorithm and produces a result
tensor of a given shape shape
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Esempio:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
Operand | Descrizione |
---|---|
a | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
b | 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rng_bit_generator
(mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output
filled with uniform random data and an updated output state output_state
given an initial state initial_state
using the pseudorandom number generator algorithm rng_algorithm
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Esempio:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
Operand | Descrizione |
---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Results:
Risultato | Descrizione |
---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
output | statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_afz
(mhlo::RoundOp)
Round operation
Sintassi:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Esempio:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.round_nearest_even
(mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Sintassi:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Esempio:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.rsqrt
(mhlo::RsqrtOp)
Rsqrt operation
Sintassi:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand
tensor and produces a result
tensor, implementing the rSqrt
operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Esempio:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.scatter
(mhlo::ScatterOp)
Scatter operation
Produces results
tensors which are equal to inputs
tensors except that several slices specified by scatter_indices
are updated with the values updates
using update_computation
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Esempio:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects
, SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select
(mhlo::SelectOp)
Select operation
Sintassi:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result
tensor where each element is selected from on_true
or on_false
tensor based on the value of the corresponding element of pred
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Esempio:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_BroadcastingElementwise
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
pred | ranked tensor of pred (AKA boolean or 1-bit integer) values |
on_true | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
on_false | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.select_and_scatter
(mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source
tensor using scatter
based on the outcome of reduce_window
of the input
tensor using select
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Esempio:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
source | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
init_value | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.send
(mhlo::SendOp)
Send operation
Sends inputs
to a channel channel_id
and produces a result
token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Esempio:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_HOST>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 2>,
is_host_transfer = true
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
token | gettone |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | gettone |
mhlo.set_dimension_size
(mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Esempio:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
size | tensor of 32-bit signless integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.shift_left
(mhlo::ShiftLeftOp)
ShiftLeft operation
Sintassi:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Esempio:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_arithmetic
(mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Sintassi:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Esempio:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.shift_right_logical
(mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Sintassi:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs
tensor by rhs
number of bits and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Esempio:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
mhlo.sign
(mhlo::SignOp)
Sign operation
Sintassi:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand
element-wise and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Esempio:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.sine
(mhlo::SineOp)
Sine operation
Sintassi:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Esempio:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.slice
(mhlo::SliceOp)
Slice operation
Extracts a slice from the operand
using statically-computed starting indices and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Esempio:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sort
(mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs
together, according to a custom comparator
, along the given dimension
and produces a variadic number of tensors as results
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Esempio:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
, SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrizione |
---|---|
inputs | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sparse_dot
(mhlo::SparseDotOp)
Sparse dot operation
Similar to dot_general
operation, with one or both of the operands being sparse. An additional argument provides sparsity meta information. Disclaimer: this op is experimental / a work in progress.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
lhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
rhs_sparsity | ::mlir::mhlo::SparsityDescriptorAttr | Describes structured (N:M) sparsity configuration |
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
meta | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.sqrt
(mhlo::SqrtOp)
Sqrt operation
Sintassi:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Esempio:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.stochastic_convert
(mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait
, Elementwise
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.subtract
(mhlo::SubtractOp)
Subtract operation
Sintassi:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Esempio:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.tan
(mhlo::TanOp)
Tan operation
Sintassi:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand)
element-wise.
Esempio:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tanh
(mhlo::TanhOp)
Tanh operation
Sintassi:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand
tensor and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Esempio:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values |
mhlo.topk
(mhlo::TopKOp)
TopK operation
Sintassi:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k
values and their indices, along the last dimension of the operand if largest=true
or the bottom k
values if largest=false
.
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Esempio:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType
, RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface
, InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
values | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
indices | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.torch_index_select
(mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims
attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Esempio:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
index | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.trace
(mhlo::TraceOp)
Trace operation
Sintassi:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Esempio:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.transpose
(mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand
tensor using permutation
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Esempio:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
, HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.triangular_solve
(mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Esempio:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
Operand | Descrizione |
---|---|
a | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
b | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values |
mhlo.tuple
(mhlo::TupleOp)
Tuple operation
Sintassi:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result
tuple from values val
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Esempio:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
val | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
Results:
Risultato | Descrizione |
---|---|
result | nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values |
mhlo.uniform_dequantize
(mhlo::UniformDequantizeOp)
UniformDequantize operation
Sintassi:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand
to a floating-point tensor result
according to the quantization parameters defined by the operand
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Esempio:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, InferTensorType
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values |
mhlo.uniform_quantize
(mhlo::UniformQuantizeOp)
UniformQuantize operation
Sintassi:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand
to a quantized tensor result
according to the quantization parameters defined by the result
type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Esempio:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
operand | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
mhlo.while
(mhlo::WhileOp)
While operation
Produces the output from executing body
function 0 or more times while the cond
function outputs true
.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Esempio:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects
, SingleBlockImplicitTerminator<ReturnOp>
, SingleBlock
Interfaces: InferTypeOpInterface
, OpAsmOpInterface
Operands:
Operand | Descrizione |
---|---|
operand | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token |
mhlo.xla.rng_get_and_update_state
(mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Sintassi:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Attributi:
Attributo | MLIR Type | Descrizione |
---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Results:
Risultato | Descrizione |
---|---|
«unnamed» | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor
(mhlo::XorOp)
Xor operation
Sintassi:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs
and rhs
and produces a result
tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Esempio:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait
, Commutative
, CompatibleOperandsAndResultType
, Elementwise
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
Operand | Descrizione |
---|---|
lhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
rhs | ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values |
Results:
Risultato | Descrizione |
---|---|
result | ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Attributes
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex
. The argTupleIndices
and resultTupleIndices
are used to index into nested tuples in operand and result respectively. If isMustAlias
is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1
may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
argTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
resultIndex | int64_t | |
resultTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
isMustAlias | bool |
ChannelHandleAttr
two 64-bit integers 'handle' and 'type'
Sintassi:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
maniglia | int64_t | |
tipo | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Sintassi:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Enum cases:
- EQ (
EQ
) - NE (
NE
) - GE (
GE
) - GT (
GT
) - LE (
LE
) - LT (
LT
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Sintassi:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Enum cases:
- NOTYPE (
NOTYPE
) - FLOAT (
FLOAT
) - TOTALORDER (
TOTALORDER
) - SIGNED (
SIGNED
) - UNSIGNED (
UNSIGNED
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
inputBatchDimension | int64_t | |
inputFeatureDimension | int64_t | |
inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
kernelInputFeatureDimension | int64_t | |
kernelOutputFeatureDimension | int64_t | |
kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
outputBatchDimension | int64_t | |
outputFeatureDimension | int64_t | |
outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Sintassi:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr
, parameter
tells us which argument of the main
function of the module is prefetched, and indices
is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices
is the shape achieved after indexing by each element of indices
in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>>
is tensor<i32>
.
An empty value for indices
means the whole shape is prefetched.
Per esempio,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0
tells us that the async copy of the 0
th parameter is a cross_program_prefetch
, while the index
of [0]
tells us that the 0
th element of the tuple is prefetched while the other element of the tuple is not.
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
parametro | int64_t | |
indici | ::llvm::ArrayRef<int64_t> | Dimensione |
offset | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Sintassi:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Enum cases:
- NONE (
NONE
) - LATEST (
LATEST
) - EARLIEST (
EARLIEST
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
Dequantization mode. Only MIN_COMBINED is supported.
Sintassi:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Enum cases:
- MIN_COMBINED (
MIN_COMBINED
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Sintassi:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Enum cases:
- sharding (
sharding
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Sintassi:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
lhsPrecisionType | Type | |
rhsPrecisionType | Type | |
accumulationType | Type | |
lhsComponentCount | int64_t | |
rhsComponentCount | int64_t | |
numPrimitiveOperations | int64_t | |
allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimensione |
FftTypeAttr
XLA fast fourier transform type.
Sintassi:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Enum cases:
- FFT (
FFT
) - IFFT (
IFFT
) - RFFT (
RFFT
) - IRFFT (
IRFFT
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
fusion kind
Sintassi:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Enum cases:
- kLoop (
kLoop
) - kInput (
kInput
) - kOutput (
kOutput
) - kCustom (
kCustom
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
offsetDims | ::llvm::ArrayRef<int64_t> | Dimensione |
collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Dimensione |
operandBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
startIndexMap | ::llvm::ArrayRef<int64_t> | Dimensione |
indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Sintassi:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index
. The output_tuple_indices
and operand_tuple_indices
are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
outputTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
operandIndex | int64_t | |
operandTupleIndices | ::llvm::ArrayRef<int64_t> | Dimensione |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Sintassi:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - HIGH (
HIGH
) - HIGHEST (
HIGHEST
) - PACKED_NIBBLE (
PACKED_NIBBLE
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::Precision | an enum of type Precision |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Sintassi:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Enum cases:
- DEFAULT (
DEFAULT
) - THREE_FRY (
THREE_FRY
) - PHILOX (
PHILOX
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Sintassi:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Enum cases:
- UNIFORM (
UNIFORM
) - NORMAL (
NORMAL
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
updateWindowDims | ::llvm::ArrayRef<int64_t> | Dimensione |
insertedWindowDims | ::llvm::ArrayRef<int64_t> | Dimensione |
inputBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimensione |
scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Dimensione |
indexVectorDim | int64_t |
SparsityDescriptorAttr
Describes structured (N:M) sparsity configuration
Sintassi:
#mhlo.sparsity<
int64_t, # dimension
int64_t, # n
int64_t # m
>
This attribute is defined for a sparse dot operation with a structured sparse input tensor. With (N=2,M=4), every 4 consecutive logical elements have exactly 2 non-zero physical elements in the input tensor.
$dimension defines the index of the contracting dimension that is sparse (it has to be the most minor dimension). The additional metadata operand in the sparse dot operation defines which logical elements are zeroed out.
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
dimensione | int64_t | |
N | int64_t | |
M | int64_t |
TransposeAttr
Transpose options
Sintassi:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Enum cases:
- TRANSPOSE_INVALID (
TRANSPOSE_INVALID
) - NO_TRANSPOSE (
NO_TRANSPOSE
) - TRANSPOSE (
TRANSPOSE
) - ADJOINT (
ADJOINT
)
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
valore | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Sintassi:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding
field of the tensor type.
See HLO_BoundedAttrInterface
for documentation for bounds
.
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
limiti | ::llvm::ArrayRef<int64_t> |
Types
AsyncBundleType
Opaque collection of other types
Sintassi:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
parametri:
Parametro | C++ type | Descrizione |
---|---|---|
tipi | ::llvm::ArrayRef<Type> |
Enums
ComparisonDirection
Which comparison operation to perform.
Cases:
Simbolo | Valore | Corda |
---|---|---|
EQ | 0 | EQ |
NE | 1 | NE |
GE | 2 | GE |
GT | 3 | GT |
LE | 4 | LE |
LT | 5 | LT |
ComparisonType
Which comparison type to use.
Cases:
Simbolo | Valore | Corda |
---|---|---|
NOTYPE | 0 | NOTYPE |
GALLEGGIANTE | 1 | GALLEGGIANTE |
TOTALORDER | 2 | TOTALORDER |
FIRMATO | 3 | FIRMATO |
UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Cases:
Simbolo | Valore | Corda |
---|---|---|
API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Cases:
Simbolo | Valore | Corda |
---|---|---|
NESSUNO | 0 | NESSUNO |
ULTIMO | 1 | ULTIMO |
EARLIEST | 2 | EARLIEST |
DequantizeMode
Dequantization mode. Only MIN_COMBINED is supported.
Cases:
Simbolo | Valore | Corda |
---|---|---|
MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Cases:
Simbolo | Valore | Corda |
---|---|---|
sharding | 0 | sharding |
FftType
XLA fast fourier transform type.
Cases:
Simbolo | Valore | Corda |
---|---|---|
FFT | 0 | FFT |
IFFT | 1 | IFFT |
RFFT | 2 | RFFT |
IRFFT | 3 | IRFFT |
FusionKind
fusion kind
Cases:
Simbolo | Valore | Corda |
---|---|---|
kLoop | 0 | kLoop |
kInput | 1 | kInput |
kOutput | 2 | kOutput |
kCustom | 3 | kCustom |
Precisione
XLA precision for an operand. Has backend specific meaning.
Cases:
Simbolo | Valore | Corda |
---|---|---|
PREDEFINITO | 0 | PREDEFINITO |
ALTO | 1 | ALTO |
PIÙ ALTO | 2 | PIÙ ALTO |
PACKED_NIBBLE | 3 | PACKED_NIBBLE |
RngAlgorithm
XLA PRNG algorithm to be used.
Cases:
Simbolo | Valore | Corda |
---|---|---|
PREDEFINITO | 0 | PREDEFINITO |
THREE_FRY | 1 | THREE_FRY |
PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Cases:
Simbolo | Valore | Corda |
---|---|---|
UNIFORME | 1 | UNIFORME |
NORMALE | 2 | NORMALE |
Trasporre
Transpose options
Cases:
Simbolo | Valore | Corda |
---|---|---|
TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
NO_TRANSPOSE | 1 | NO_TRANSPOSE |
TRASPORRE | 2 | TRASPORRE |
ADJOINT | 3 | ADJOINT |