'mhlo' Dialecto

Operaciones

mhlo.abs (mhlo::AbsOp)

operación de abdominales

Sintaxis:

operation ::= `mhlo.abs` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Realiza una operación abs por elementos en el tensor operand y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs

Ejemplo:

%result = mhlo.abs %operand : tensor<3xi32>

Rasgos: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operandos:

Operando Descripción
operand tensor clasificado de entero sin signo de 2/4/8/16/32/64 bits o tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o Tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o uniforme de 2/4/8/16/32 bits entero cuantificado con signo o uniforme de 2/4/8/16/32 bits cuantificado por eje entero con signo o Entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o valores enteros sin signo cuantificados uniformemente de 2/4/8/16/32 bits por eje

Resultados:

Resultado Descripción
result tensor clasificado de entero sin signo de 2/4/8/16/32/64 bits o tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o entero con signo cuantificado uniforme de 2/4/8/16/32 bits o 2/4/8/16/32- bits cuantificados uniformemente por eje entero con signo o 2/4/8/16/32 bits cuantificados uniformemente sin signo entero o valores enteros sin signo cuantificados uniformemente por eje de 2/4/8/16/32 bits

mhlo.add (mhlo::AddOp)

Agregar operación

Sintaxis:

operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Realiza la suma por elementos de dos tensores lhs y rhs y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add

Ejemplo:

%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>

Rasgos: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operandos:

Operando Descripción
lhs tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje
rhs tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

Resultados:

Resultado Descripción
result tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

mhlo.add_dependency (mhlo::AddDependencyOp)

Operación Agregar Dependencia

Sintaxis:

operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)

Esta operación es privada del compilador XLA, por lo que aún no tiene una especificación.

De manera informal, esta operación tiene dos operandos: un operando de datos y un token. La salida de la operación es el operando de datos. Cuando se usa con AfterAll, esta operación permite ordenar operaciones sin efectos secundarios (aquellas que no producen valores simbólicos).

Ejemplo:

%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>

Rasgos: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operandos:

Operando Descripción
operand tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o valores enteros cuantificados uniformemente sin signo de 2/4/8/16/32 bits o tensor clasificado de entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16 /Valores enteros sin signo o token cuantificados uniformemente de 32 bits por eje
token simbólico

Resultados:

Resultado Descripción
output tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o valores enteros cuantificados uniformemente sin signo de 2/4/8/16/32 bits o tensor clasificado de entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16 /Valores enteros sin signo o token cuantificados uniformemente de 32 bits por eje

mhlo.after_all (mhlo::AfterAllOp)

Operación después de todo

Sintaxis:

operation ::= `mhlo.after_all` $inputs attr-dict
              `:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))

Garantiza que las operaciones que producen las inputs se ejecuten antes que cualquier operación que dependa del result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

Ejemplo:

%result = mhlo.after_all %input0, %input1 : !mhlo.token

Rasgos: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operandos:

Operando Descripción
inputs variadic de token

Resultados:

Resultado Descripción
result simbólico

mhlo.all_gather (mhlo::AllGatherOp)

Operación AllGather

Dentro de cada grupo de procesos en la cuadrícula de procesos, concatena los valores del tensor de operando de cada proceso a lo largo de all_gather_dim y produce un tensor de resultado. El computation se aplica por separado para cada operando en operands , produciendo un resultado por operando.

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather

Ejemplo:

%result = "mhlo.all_gather"(%operand) {
  all_gather_dim = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
  // use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>

Rasgos: SameOperandsAndResultElementType

Atributos:

Atributo Tipo MLIR Descripción
all_gather_dim ::mlir::IntegerAttr Atributo entero sin signo de 64 bits cuyo valor no es negativo
replica_groups ::mlir::DenseIntElementsAttr Atributo de elementos enteros sin signo de 64 bits
channel_handle ::mlir::mhlo::ChannelHandleAttr dos enteros de 64 bits 'identificar' y 'escribir'
use_global_device_ids ::mlir::AtributoUnidad atributo de unidad

Operandos:

Operando Descripción
operands variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

Resultados:

Resultado Descripción
"sin nombre" variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

mhlo.all_reduce (mhlo::AllReduceOp)

Operación AllReduce

Dentro de cada grupo de procesos en la cuadrícula de procesos, aplica un computation de función de reducción a los valores de un tensor de operando de cada proceso y produce un tensor de resultado. El computation se aplica por separado para cada operando en operands , produciendo un resultado por operando.

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

Ejemplo:

%result = "mhlo.all_reduce"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
    %0 = mhlo.add %arg1, %arg2 : tensor<f32>
    mhlo.return %0 : tensor<f32>
}) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>

Rasgos: InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atributos:

Atributo Tipo MLIR Descripción
replica_groups ::mlir::DenseIntElementsAttr Atributo de elementos enteros sin signo de 64 bits
channel_handle ::mlir::mhlo::ChannelHandleAttr dos enteros de 64 bits 'identificar' y 'escribir'
use_global_device_ids ::mlir::AtributoUnidad atributo de unidad

Operandos:

Operando Descripción
operands variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

Resultados:

Resultado Descripción
"sin nombre" variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

mhlo.all_to_all (mhlo::AllToAllOp)

Operación todo a todo

Dentro de cada grupo de procesos en la cuadrícula de procesos, divide los valores del tensor operand a lo largo de split_dimension en partes, dispersa las partes divididas entre los procesos, concatena las partes dispersas a lo largo de concat_dimension y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all

Ejemplo:

%result = "mhlo.all_to_all"(%operand) {
  split_dimension = 1 : i64,
  concat_dimension = 0 : i64,
  split_count = 2 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>

Rasgos: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo MLIR Descripción
split_dimension ::mlir::IntegerAttr Atributo entero sin signo de 64 bits cuyo valor no es negativo
concat_dimension ::mlir::IntegerAttr Atributo entero sin signo de 64 bits cuyo valor no es negativo
split_count ::mlir::IntegerAttr Atributo entero sin signo de 64 bits cuyo valor es positivo
replica_groups ::mlir::DenseIntElementsAttr Atributo de elementos enteros sin signo de 64 bits
channel_handle ::mlir::mhlo::ChannelHandleAttr dos enteros de 64 bits 'identificar' y 'escribir'

Operandos:

Operando Descripción
operand variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

Resultados:

Resultado Descripción
"sin nombre" variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

mhlo.and (mhlo::AndOp)

y operación

Sintaxis:

operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Realiza AND por elementos de dos tensores lhs y rhs y produce un tensor result

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and

Ejemplo:

%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>

Rasgos: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operandos:

Operando Descripción
lhs tensor clasificado de pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o valores enteros sin signo de 2/4/8/16/32/64 bits
rhs tensor clasificado de pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o valores enteros sin signo de 2/4/8/16/32/64 bits

Resultados:

Resultado Descripción
result tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje

mhlo.async_done (mhlo::AsyncDoneOp)

Operación asíncrona

Esta operación es privada del compilador XLA, por lo que aún no tiene una especificación.

De manera informal, esta operación se bloquea hasta el final de un cálculo asincrónico. Devuelve el resultado final del cálculo asincrónico.

Consulte la documentación de AsyncStart para obtener más información.

Interfaces: InferTypeOpInterface

Operandos:

Operando Descripción
bundle async_bundle con cualquier combinación de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o Flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8 /Entero sin signo de 16/32/64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o Entero con signo cuantificado uniforme de 2/4/8/16/32 bits o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o Valores simbólicos o enteros sin signo cuantificados uniformemente de 2/4/8/16/32 bits por eje

Resultados:

Resultado Descripción
"sin nombre" variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje o token o tupla anidada con cualquier combinación de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (También conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o entero sin signo de 2/4/8/16/32/64 bits o tipo complejo con flotante de 32 bits o Elementos flotantes de 64 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente o tensor clasificado de 2/4/8/16/32 bits enteros con signo cuantificados uniformemente por eje o valores enteros sin signo cuantificados uniformemente por eje de 2/4/8/16/32 bits o valores simbólicos

mhlo.async_start (mhlo::AsyncStartOp)

Operación de inicio asíncrono

Esta operación es privada del compilador XLA, por lo que aún no tiene una especificación.

De manera informal, esta operación inicia un cálculo asincrónico.

Esto se utiliza cuando hay funciones que contienen esperas asincrónicas (como DMA) y cálculos en subprocesos. Por ejemplo, una función podría consistir en un cálculo, un DMA, otro cálculo, un segundo DMA y un cálculo final. Esto se representaría como async_start seguido de async_update y async_done. async_start haría el primer cálculo en el subproceso y luego iniciaría el DMA. async_update esperaría a que se complete el DMA si aún no se ha hecho, luego ejecutará el segundo cálculo en la función e iniciará el segundo DMA. Finalmente, async_done esperaría en este último DMA y luego ejecutaría el último cálculo que debe ejecutarse en el subproceso y devolvería el resultado de ese cálculo final.

operands se pasan al cálculo directamente called_computation es la función que se ejecutará de forma asincrónica execution_thread es el nombre del hilo en el que se ejecutará. El hilo principal se llama "principal". Todos los hilos tienen nombres.

Esto devuelve todo el estado necesario entre operaciones asíncronas. Después de la asignación del búfer, los valores devueltos representan el espacio necesario para contener la entrada, los resultados y cualquier bloc de notas necesario o editado por la operación asíncrona.

Atributos:

Atributo Tipo MLIR Descripción
called_computation ::mlir::FlatSymbolRefAttr atributo de referencia de símbolo plano
execution_thread ::mlir::StringAttr atributo de cadena

Operandos:

Operando Descripción
inputs variadic de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8/16/32/ Entero sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o 2/4/8/16/32 bits Entero cuantificado uniforme con signo o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente por eje o token o tupla anidada con cualquier combinación de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (También conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o entero sin signo de 2/4/8/16/32/64 bits o tipo complejo con flotante de 32 bits o Elementos flotantes de 64 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits o 2/4/8/16/32 bits valores enteros sin signo cuantificados uniformemente o tensor clasificado de 2/4/8/16/32 bits enteros con signo cuantificados uniformemente por eje o valores enteros sin signo cuantificados uniformemente por eje de 2/4/8/16/32 bits o valores simbólicos

Resultados:

Resultado Descripción
"sin nombre" async_bundle con cualquier combinación de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o Flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8 /Entero sin signo de 16/32/64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o Entero con signo cuantificado uniforme de 2/4/8/16/32 bits o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o Valores simbólicos o enteros sin signo cuantificados uniformemente de 2/4/8/16/32 bits por eje

mhlo.async_update (mhlo::AsyncUpdateOp)

Operación de actualización asíncrona

Esta operación es privada del compilador XLA, por lo que aún no tiene una especificación.

De manera informal, esta operación se bloquea en un cálculo asincrónico hasta una barrera de sincronización. Este bundle devuelve después de operarlo.

Consulte la documentación de AsyncStart para obtener más información.

Interfaces: InferTypeOpInterface

Operandos:

Operando Descripción
bundle async_bundle con cualquier combinación de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o Flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8 /Entero sin signo de 16/32/64 bits o tipo complejo con elementos flotantes de 32 bits o de 64 bits o Entero con signo cuantificado uniforme de 2/4/8/16/32 bits o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o Valores simbólicos o enteros sin signo cuantificados uniformemente de 2/4/8/16/32 bits por eje

Resultados:

Resultado Descripción
"sin nombre" async_bundle con cualquier combinación de tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o Flotante de 16 bits o flotante de 32 bits o flotante de 64 bits o tipo bfloat16 o pred (también conocido como booleano o entero de 1 bit) o ​​entero sin signo de 2/4/8/16/32/64 bits o 2/4/8 /Entero sin signo de 16/32/64 bits o tipo complejo con elementos flotantes de 32 bits o flotantes de 64 bits o Entero con signo cuantificado uniforme de 2/4/8/16/32 bits o entero sin signo cuantificado uniforme de 2/4/8/16/32 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits por eje o Valores simbólicos o enteros sin signo cuantificados uniformemente de 2/4/8/16/32 bits por eje

mhlo.atan2 (mhlo::Atan2Op)

operación atan2

Sintaxis:

operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Realiza la operación atan2 por elementos en los tensores lhs y rhs y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2

Ejemplo:

%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>

Rasgos: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operandos:

Operando Descripción
lhs tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Tipo flotante de 32 bits o flotante de 64 bits o bfloat16 o tipo complejo con elementos flotantes de 32 bits o de 64 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits o 2/4/8/16 /Valores enteros sin signo cuantificados uniformes de 32 bits
rhs tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Tipo flotante de 32 bits o flotante de 64 bits o bfloat16 o tipo complejo con elementos flotantes de 32 bits o de 64 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits o 2/4/8/16 /Valores enteros sin signo cuantificados uniformes de 32 bits

Resultados:

Resultado Descripción
result tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Tipo flotante de 32 bits o flotante de 64 bits o bfloat16 o tipo complejo con elementos flotantes de 32 bits o de 64 bits o entero con signo cuantificado uniforme de 2/4/8/16/32 bits o 2/4/8/16 /Valores enteros sin signo cuantificados uniformes de 32 bits

mhlo.batch_norm_grad (mhlo::BatchNormGradOp)

Operación BatchNormGrad

Calcula los gradientes de varias entradas de BatchNormTrainingOp que se propagan hacia atrás desde grad_output y produce tensores grad_operand , grad_scale y grad_offset .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad

Ejemplo:

%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
    tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

Rasgos: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo MLIR Descripción
epsilon ::mlir::FloatAttr atributo flotante de 32 bits
feature_index ::mlir::IntegerAttr Atributo entero sin signo de 64 bits cuyo valor no es negativo

Operandos:

Operando Descripción
operand tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
scale Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
mean Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
variance Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
grad_output tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16

Resultados:

Resultado Descripción
grad_operand tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
grad_scale Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
grad_offset Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16

mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)

Operación BatchNormInference

Normaliza el tensor operand en todas las dimensiones excepto en la dimensión feature_index y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference

Ejemplo:

%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>

Rasgos: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo MLIR Descripción
epsilon ::mlir::FloatAttr atributo flotante de 32 bits
feature_index ::mlir::IntegerAttr Atributo entero sin signo de 64 bits cuyo valor no es negativo

Operandos:

Operando Descripción
operand tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
scale Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
offset Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
mean Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16
variance Tensor 1D de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16

Resultados:

Resultado Descripción
result tensor clasificado de tipo f4E2M1FN o tipo f6E2M3FN o tipo f6E3M2FN o tipo f8E3M4 o tipo f8E4M3 o tipo f8E4M3FN o tipo f8E4M3FNUZ o tipo f8E4M3B11FNUZ o tipo f8E5M2 o tipo f8E5M2FNUZ o tipo f8E8M0FNU o flotante de 16 bits o Valores de tipo flotante de 32 bits o flotante de 64 bits o bfloat16

mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)

Operación de entrenamiento BatchNorm

Calcula la media y la varianza entre dimensiones espaciales y por lotes y normaliza el tensor operand para cada característica en la dimensión feature_index y produce tensores output , batch_mean y batch_var .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training

Ejemplo:

%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

Rasgos: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo MLIR Descripción
epsilon ::mlir::FloatAttr atributo flotante de 32 bits
feature_index ::mlir::IntegerAttr Atributo entero sin signo de 64 bits cuyo valor no es negativo

Operandos:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Valores de tipo flotante de 32 bits o 64 bits o bfloat16
scale Tensor 1D de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz tipo o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz type o Valores de tipo flotante de 32 bits o 64 bits o bfloat16
offset Tensor 1D de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz tipo o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz type o Valores de tipo flotante de 32 bits o 64 bits o bfloat16

Resultados:

Resultado Descripción
output tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Valores de tipo flotante de 32 bits o 64 bits o bfloat16
batch_mean Tensor 1D de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz tipo o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz type o Valores de tipo flotante de 32 bits o 64 bits o bfloat16
batch_var Tensor 1D de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz tipo o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz type o Valores de tipo flotante de 32 bits o 64 bits o bfloat16

mhlo.bitcast (mhlo :: bitcastop)

Operación de bitcastado

Sintaxis:

operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)

Esta operación es privada para el compilador XLA, por lo que aún no tiene una especificación.

Informalmente, esta operación cambia la forma de la entrada en la forma en que la disposición física de los elementos no cambia.

Esta operación necesita información de diseño para dar sentido a la "disposición física de los elementos", y el soporte de diseño en MHLO es actualmente un trabajo en progreso.

Ejemplo:

%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>

Rasgos: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.bitcast_convert (mhlo :: bitcastConvertop)

Operación de concentraduras de bits

Sintaxis:

operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)

Realiza una operación de bitcast en el tensor operand y produce un tensor result donde los bits de todo el tensor operand se reinterpretan utilizando el tipo de tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert

Ejemplo:

%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>

Rasgos: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.broadcast (mhlo :: transmiscop)

Operación de transmisión

Esta operación está saliendo de Stablehlo, por lo que no está incluida en la especificación: https://github.com/openxla/stablehlo/issues/3

Informalmente, esta operación hace lo mismo que la transmisión de XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast

Ejemplo:

%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>

Rasgos: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo mlir Descripción
broadcast_sizes :: mlir :: denseintelementsattr Atributo de elementos enteros de 64 bits Signless Integer

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.broadcast_in_dim (mhlo :: broadcastIndimop)

Operación de transmisión

Expande las dimensiones y/o rango de un tensor de entrada al duplicar los datos en el tensor operand y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim

Ejemplo:

%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>

Rasgos: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo mlir Descripción
broadcast_dimensions :: mlir :: denseintelementsattr Atributo de elementos enteros de 64 bits Signless Integer

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" tensor en forma de estado de tipo de tipo f4e2m1fn o tipo f6e2m3fn o tipo f6e3m2fn o f8e3m4 o f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz type o f8e5m2 type o f8e5m2fnuz o f8e8m flota o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.case (mhlo :: caseop)

Operación de caja

Produce la salida al ejecutar exactamente una function de branches dependiendo del valor del index .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case

Ejemplo:

%result0, %result1 = "mhlo.case"(%index) ({
  mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
  mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)

Rasgos: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface

Operands:

Operando Descripción
index Tensor de valores enteros sin signos de 32 bits

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Uniforme entero cuantizado firmado o valores enteros sin firmar cuantificados uniformes de 2/4/8/16/32 bits cuantificados por entero firmado o 2/4/8/16 /32 bits cuantificados por eje valores de enteros o tokens sin firmar

mhlo.cbrt (mhlo :: cbrtop)

Operación CBRT

Sintaxis:

operation ::= `mhlo.cbrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Realiza el funcionamiento de la raíz cúbica en forma de elemento en el tensor operand y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt

Ejemplo:

%result = mhlo.cbrt %operand : tensor<4xf32>

Rasgos: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o tipo flotante de 64 bits o tipo BFLOAT16 o tipo complejo con flotador de 32 bits o elementos flotantes de 64 bits o 2/4/8/8/16/32 bits enteros firmados cuantizados o 2/4/8/16 /Valores de entero sin firmar cuantificados uniformes uniformes de 32 bits

Resultados:

Resultado Descripción
result tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o tipo flotante de 64 bits o tipo BFLOAT16 o tipo complejo con flotador de 32 bits o elementos flotantes de 64 bits o 2/4/8/8/16/32 bits enteros firmados cuantizados o 2/4/8/16 /Valores de entero sin firmar cuantificados uniformes uniformes de 32 bits

mhlo.ceil (Mhlo :: Ceilop)

Operación de techo

Sintaxis:

operation ::= `mhlo.ceil` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Realiza un techo de elementos de tensor operand y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil

Ejemplo:

%result = mhlo.ceil %operand : tensor<5xf32>

Rasgos: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o 64 bits o bfloat16 tipo o 2/4/8/8/16/32 bits enteros firmados cuantizados o 2/4/8/16/32 bits valores de entero cuantificados uniformes sin firmar

Resultados:

Resultado Descripción
result tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o 64 bits o bfloat16 tipo o 2/4/8/8/16/32 bits enteros firmados cuantizados o 2/4/8/16/32 bits valores de entero cuantificados uniformes sin firmar

mhlo.cholesky (mhlo :: choleskyop)

Operación de Cholesky

Calcula la descomposición de Cholesky de un lote de matrices.

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky

Ejemplo:

%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>

Rasgos: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo mlir Descripción
lower :: mlir :: boolattr atributo bool

Operands:

Operando Descripción
a tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Tipo o tipo complejo de 32 bits o de 64 bits o tipo bfloat16 con valores de flotación de 32 bits o elementos flotantes de 64 bits

Resultados:

Resultado Descripción
"sin nombre" tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Tipo o tipo complejo de 32 bits o de 64 bits o tipo bfloat16 con valores de flotación de 32 bits o elementos flotantes de 64 bits

mhlo.clamp (Mhlo :: Clampop)

Operación de sujeción

Sintaxis:

operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
              `:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))

Agua cada elemento del tensor operand entre un valor mínimo y máximo y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp

Ejemplo:

%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>

Rasgos: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operands:

Operando Descripción
min tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar
max tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
result tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.collective_broadcast (mhlo :: colectiveBroadcastop)

Operación colectiva de transmisión

Dentro de cada grupo de proceso en la cuadrícula de proceso, envíe el valor del tensor operand desde el proceso de origen a los procesos de destino y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast

Ejemplo:

%result = "mhlo.collective_broadcast"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>

Rasgos: CompatibleOperandsAndResultType

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atributos:

Atributo Tipo mlir Descripción
replica_groups :: mlir :: denseintelementsattr Atributo de elementos enteros de 64 bits Signless Integer
channel_handle :: mlir :: mhlo :: ChannelHandLeattr Dos enteros de 64 bits 'mango' y 'tipo'

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.collective_permute (mhlo :: colectivepermuteop)

Operación colectiva por periódico

Dentro de cada grupo de proceso en la cuadrícula de proceso, envía el valor del tensor de operand desde el proceso de origen al proceso de destino y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute

Ejemplo:

%result = "mhlo.collective_permute"(%operand) {
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>

Rasgos: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo mlir Descripción
source_target_pairs :: mlir :: denseintelementsattr Atributo de elementos enteros de 64 bits Signless Integer
channel_handle :: mlir :: mhlo :: ChannelHandLeattr Dos enteros de 64 bits 'mango' y 'tipo'

Operands:

Operando Descripción
operand tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.compare (mhlo :: compareop)

Comparar operación

Sintaxis:

operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
              attr-dict `:` functional-type(operands, results)

Realiza la comparación de elementos de los tensores lhs y rhs de acuerdo con comparison_direction y compare_type , y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare

Ejemplo:

%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>

Rasgos: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo mlir Descripción
comparison_direction :: mlir :: mhlo :: comparisondirectionattr Qué operación de comparación realizar.
compare_type :: mlir :: mhlo :: comparación typeattr Que tipo de comparación usar.

Operands:

Operando Descripción
lhs tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar
rhs tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" Tensor clasificado de los valores de Pred (también conocido como Boolean o 1 bit Integer)

mhlo.complex (mhlo :: compleP)

Operación compleja

Sintaxis:

operation ::= `mhlo.complex` operands attr-dict
              `:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))

Realiza una conversión de elementos a un valor complejo de un par de valores reales e imaginarios, lhs y rhs , y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex

Ejemplo:

%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>

Rasgos: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape , SameOperandsElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Operands:

Operando Descripción
lhs Tensor clasificado de 32 bits flotante o valores de flotación de 64 bits
rhs Tensor clasificado de 32 bits flotante o valores de flotación de 64 bits

Resultados:

Resultado Descripción
result Tensor clasificado de tipo complejo con valores de elementos flotantes de 32 bits o flotadores de 64 bits

mhlo.composite (mhlo :: compositelop)

Operación compuesta

Sintaxis:

operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)

Encapsula una operación compuesta (compuesta) de otras operaciones de Stablehlo, tomando inputs y composite_attributes y produciendo results . La semántica del OP se implementa mediante el atributo decomposition . El OP composite se puede reemplazar con su descomposición sin cambiar la semántica del programa. En los casos en que en la descomposición no proporciona la misma semántica OP, prefiera usar custom_call .

El campo version (predeterminado se usa a 0 ) se usa para denotar cuando cambia la semántica de un compuesto.

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composit.

Ejemplo:

%results = mhlo.composite "my.op" %arg0, %arg1 {
  decomposition = @my_op,
  composite_attributes = { my_attribute = "my_value" },
  version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>

Interfaces: SymbolUserOpInterface

Atributos:

Atributo Tipo mlir Descripción
name :: mlir :: stringattr atributo de cadena
composite_attributes :: mlir :: diccionaryattr Diccionario de valores de atributos nombrados
decomposition :: mlir :: platsymbolrefattr Atributo de referencia de símbolo plano
version :: mlir :: integerattr Atributo Integer de Signless de 32 bits

Operands:

Operando Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros o de token o tuple anidado con cualquier combinación de tensor clasificado de tipo F4E2M1FN o tipo F6E2M3FN o tipo f6e3m2fn o tipo f8e3m4 o tipo f8e4m3 o f8e4m3fn o f8e4m3fnuz o f8e4m3b11fnuz tipo o tipo f8e5m2 tipo o f8e5m2fnuz tipo o f8e8m0fnu type o 16 bit float o 32 bit float o float o float o float o float o float o float o bfloat o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o F8E. (También conocido como entero booleano o de 1 bits) o 2/4/8/16/32/64 bits entero sin signos o 2/4/8/16/32/64 bits entero o tipo complejo con flotación de 32 bits o flotante o flotante o Elementos flotantes de 64 bits o 2/4/8/16/16/32 bits entero cuantificado firmado o 2/4/8/16/32 bits Valores de entero sin firmar cuantificados uniformes o tensor clasificado de 2/4/8/16/16/32 bits cuantificados por eje entero firmado o 2/4/8/16/32 bits cuantificados por eje sin firmar valores de entero o valores de token token

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros o de token o tuple anidado con cualquier combinación de tensor clasificado de tipo F4E2M1FN o tipo F6E2M3FN o tipo f6e3m2fn o tipo f8e3m4 o tipo f8e4m3 o f8e4m3fn o f8e4m3fnuz o f8e4m3b11fnuz tipo o tipo f8e5m2 tipo o f8e5m2fnuz tipo o f8e8m0fnu type o 16 bit float o 32 bit float o float o float o float o float o float o float o bfloat o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o float o F8E. (También conocido como entero booleano o de 1 bits) o 2/4/8/16/32/64 bits entero sin signos o 2/4/8/16/32/64 bits entero o tipo complejo con flotación de 32 bits o flotante o flotante o Elementos flotantes de 64 bits o 2/4/8/16/16/32 bits entero cuantificado firmado o 2/4/8/16/32 bits Valores de entero sin firmar cuantificados uniformes o tensor clasificado de 2/4/8/16/16/32 bits cuantificados por eje entero firmado o 2/4/8/16/32 bits cuantificados por eje sin firmar valores de entero o valores de token token

mhlo.concatenate (mhlo :: concatenateop)

Concatenato de operación

Concatena un número variádico de tensores en inputs a lo largo de la dimensión dimension en el mismo orden que los argumentos dados y produce un tensor result .

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate

Ejemplo:

%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>

Rasgos: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo mlir Descripción
dimension :: mlir :: integerattr Atributo entero sin signos de 64 bits cuyo valor no es negativo

Operands:

Operando Descripción
val variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

Resultados:

Resultado Descripción
"sin nombre" tensor clasificado de tipo f4e2m1fn o tipo f6e2m3fn o f6e3m2fn o f8e3m4 o tipo f8e4m3 o f8e4m3fn type o f8e4m3fnuz type o f8e4m3b11fnuz tipo o f8e5m2 type o f8e5m2fnUz o Flotador de 32 bits o flotador de 64 bits o bfloat16 o pred (también conocido como entero booleano o 1 bits) o 2/4/8/16/16/32/64 bits entero sin signos o 2/4/8/16/32/32/32/32 Integer sin signo de 64 bits o tipo complejo con elementos flotantes de 32 bits o 64 bits o 2/4/8/16/32 bits Integer firmado cuantificado uniforme o 2/4/18/16/32 bits Uniformes uniformes sin signo sin signo o 2/4/8/8/16/32 bits cuantificados por eje firmado o 2/4/8/16/32 bits Uniformes cuantizados por eje sin firmar valores enteros sin firmar

mhlo.constant (mhlo :: constantop)

Operación constante

Produce un tensor output a partir de un value constante.

Ver: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant

Ejemplo:

%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>

Rasgos: AlwaysSpeculatableImplTrait , ConstantLike

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efectos: MemoryEffects::Effect{}

Atributos:

Atributo Tipo mlir Descripción
value :: mlir :: Elementsattr atributo de vector constante/tensor

Resultados:

Resultado Descripción
output statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.convert (mhlo::ConvertOp)

Convert operation

Sintaxis:

operation ::= `mhlo.convert` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert

Ejemplo:

%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.convolution (mhlo::ConvolutionOp)

Convolution operation

Sintaxis:

operation ::= `mhlo.convolution` `(`operands`)`
              `dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
              `window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
              $lhs_dilation, $rhs_dilation,
              $window_reversal) `}`
              attr-dict `:` functional-type(operands, results)

Computes dot products between windows of lhs and slices of rhs and produces result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

Ejemplo:

%result = "mhlo.convolution"(%lhs, %rhs) {
  window_strides = dense<4> : tensor<2xi64>,
  padding = dense<0> : tensor<2x2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
batch_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.copy (mhlo::CopyOp)

Copy operation

Sintaxis:

operation ::= `mhlo.copy` operands attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.

Ejemplo:

%0 = mhlo.copy %arg0 : tensor<f32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
cross_program_prefetch_index ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.cosine (mhlo::CosineOp)

Cosine operation

Sintaxis:

operation ::= `mhlo.cosine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise cosine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine

Ejemplo:

%result = mhlo.cosine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.count_leading_zeros (mhlo::ClzOp)

Clz operation

Sintaxis:

operation ::= `mhlo.count_leading_zeros` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros

Ejemplo:

%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.create_token (mhlo::CreateTokenOp)

CreateToken operation

Sintaxis:

operation ::= `mhlo.create_token` attr-dict `:` type(results)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

Ejemplo:

%output = mhlo.create_token : !mhlo.token

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Resultados:

Resultado Descripción
output simbólico

mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)

CrossReplicaSum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

Ejemplo:

%result = "mhlo.cross-replica-sum"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.custom_call (mhlo::CustomCallOp)

CustomCall operation

Sintaxis:

operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
              attr-dict `:` functional-type(operands, results)

Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call

Ejemplo:

%results = "mhlo.custom_call"(%input0) {
  call_target_name = "foo",
  has_side_effect = false,
  backend_config = "bar",
  api_version = 1 : i32,
  called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>

A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.

If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.

Depending on the API version there are two ways to pass extra bits of static
information to the external function:

1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
   dictionary attribute, that will be encoded according to the custom call
   calling convention and passed to the external function as the attributes
   argument. External code is expected to use declarative bindings (see
   `xla/runtime/custom_call.h`) to decode them at run time. These custom
   calls are only supported if XLA uses XLA runtime.

2. For previous API versions it is the user responsibility to encode extra
   bits of static information as a string `backend_config` attribute, and
   decode it at run time.

Interfaces: MemoryEffectOpInterface

Attributes:

Atributo MLIR Type Descripción
call_target_name ::mlir::StringAttr string attribute
has_side_effect ::mlir::BoolAttr bool attribute
backend_config ::mlir::Attribute string attribute or dictionary of named attribute values
api_version ::mlir::mhlo::CustomCallApiVersionAttr Custom call API version
called_computations ::mlir::ArrayAttr flat symbol ref array attribute
custom_call_schedule ::mlir::mhlo::CustomCallScheduleAttr Specifies the desired schedule for the custom-call.
operand_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
result_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of CustomCall

Operands:

Operand Descripción
inputs variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Resultados:

Resultado Descripción
"sin nombre" variadic of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.divide (mhlo::DivOp)

Div operation

Sintaxis:

operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide

Ejemplo:

%result = mhlo.divide %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.domain (mhlo::DomainOp)

Domain operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:

  • Prevent unintentionally optimizing instructions across domains.
  • Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
kind ::mlir::mhlo::DomainKindAttr Kind of domain metatdata attached to an HLO domain.
entry_metadata ::mlir::StringAttr string attribute
exit_metadata ::mlir::StringAttr string attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.dot (mhlo::DotOp)

Dot operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot

Ejemplo:

%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dot_general (mhlo::DotGeneralOp)

DotGeneral operation

Computes dot products between slices of lhs and slices of rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general

Ejemplo:

%result = "mhlo.dot_general"(%lhs, %rhs) {
  dot_dimension_numbers = #mhlo.dot<
    lhs_batching_dimensions = [0],
    rhs_batching_dimensions = [0],
    lhs_contracting_dimensions = [2],
    rhs_contracting_dimensions = [1]
  >,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
dot_dimension_numbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
precision_config ::mlir::ArrayAttr Precision Config attribute
algorithm ::mlir::mhlo::DotAlgorithmAttr Attribute that models the algorithm constraints to use for computing dot.

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)

DynamicBroadcastInDim operation

This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .

It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim

Ejemplo:

%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
  broadcast_dimensions = array<i64: 2, 1>,
  known_expanding_dimensions = array<i64: 0>,
  known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
broadcast_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_expanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_nonexpanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
output_dimensions 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_conv (mhlo::DynamicConvOp)

DynamicConv operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

Ejemplo:

%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
  window_strides = dense<4> : tensor<2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
batch_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
d_padding ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_gather (mhlo::DynamicGatherOp)

DynamicGather operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

Ejemplo:

%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
  dimension_numbers = #mhlo.gather<
    offset_dims = [2, 3],
    collapsed_slice_dims = [0],
    start_index_map = [0, 2],
    index_vector_dim = 2>,
  indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
indices_are_sorted ::mlir::BoolAttr bool attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
slice_sizes statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_iota (mhlo::DynamicIotaOp)

DynamicIota operation

This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota

Ejemplo:

%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
iota_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

Operand Descripción
output_shape 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_pad (mhlo::DynamicPadOp)

DynamicPad operation

Sintaxis:

operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)

Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
padding_value ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
edge_padding_low 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
edge_padding_high 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
interior_padding 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)

DynamicReshape operation

Sintaxis:

operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)

This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape

Ejemplo:

%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
output_shape 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_slice (mhlo::DynamicSliceOp)

DynamicSlice operation

Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice

Ejemplo:

%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
  : (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)

DynamicUpdateSlice operation

Sintaxis:

operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)

Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice

Ejemplo:

%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
  : (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
update ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.einsum (mhlo::EinsumOp)

Einsum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum

Ejemplo:

%result = "mhlo.einsum"(%lhs, %rhs) {
  einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
einsum_config ::mlir::StringAttr string attribute

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.erf (mhlo::ErfOp)

Erf operation

Sintaxis:

operation ::= `mhlo.erf` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise erf operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#erf

Ejemplo:

%result = mhlo.erf %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.exponential (mhlo::ExpOp)

Exp operation

Sintaxis:

operation ::= `mhlo.exponential` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential

Ejemplo:

%result = mhlo.exponential %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.exponential_minus_one (mhlo::Expm1Op)

Expm1 operation

Sintaxis:

operation ::= `mhlo.exponential_minus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one

Ejemplo:

%result = mhlo.exponential_minus_one %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.fft (mhlo::FftOp)

Fft operation

Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft

Ejemplo:

%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
fft_type ::mlir::mhlo::FftTypeAttr XLA fast fourier transform type.
fft_length ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.floor (mhlo::FloorOp)

Floor operation

Sintaxis:

operation ::= `mhlo.floor` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise floor of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor

Ejemplo:

%result = mhlo.floor %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.fusion (mhlo::FusionOp)

Fusion operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.

Attributes:

Atributo MLIR Type Descripción
fusion_kind ::mlir::mhlo::FusionKindAttr fusion kind
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of Fusion

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Resultados:

Resultado Descripción
results variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.gather (mhlo::GatherOp)

Gather operation

Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

Ejemplo:

%result = "mhlo.gather"(%operand, %start_indices) {
  dimension_numbers = #stablehlo.gather<
    offset_dims = [3, 4],
    collapsed_slice_dims = [1],
    operand_batching_dims = [0],
    start_indices_batching_dims = [1],
    start_index_map = [2, 1],
    index_vector_dim = 3>,
  slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
  indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
indices_are_sorted ::mlir::BoolAttr bool attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)

GetDimensionSize operation

Produces the size of the given dimension of the operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size

Ejemplo:

%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" tensor of 32-bit signless integer values

mhlo.get_tuple_element (mhlo::GetTupleElementOp)

GetTupleElement operation

Sintaxis:

operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)

Extracts element at index position of the operand tuple and produces a result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element

Ejemplo:

%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
index ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operands:

Operand Descripción
operand nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.if (mhlo::IfOp)

If operation

Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if

Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor ) -> () }, { "mhlo.return"(%result_false_branch) : (tensor ) -> () }) : (tensor ) -> tensor

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface

Operands:

Operand Descripción
pred ranked tensor of pred (AKA boolean or 1-bit integer) values

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.imag (mhlo::ImagOp)

Imag operation

Sintaxis:

operation ::= `mhlo.imag` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the imaginary part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag

Ejemplo:

%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.infeed (mhlo::InfeedOp)

Infeed operation

Reads data from the infeed and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed

Ejemplo:

%results:2 = "mhlo.infeed"(%token) {
  infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)

Attributes:

Atributo MLIR Type Descripción
infeed_config ::mlir::StringAttr string attribute
layout ::mlir::ArrayAttr array attribute

Operands:

Operand Descripción
token simbólico

Resultados:

Resultado Descripción
"sin nombre" variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.iota (mhlo::IotaOp)

Iota operation

Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota

Ejemplo:

%output = mhlo.iota dim = 0 : tensor<4x5xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
iota_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Resultados:

Resultado Descripción
output statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

mhlo.is_finite (mhlo::IsFiniteOp)

IsFinite operation

Sintaxis:

operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)

Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite

Ejemplo:

%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
x ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Resultados:

Resultado Descripción
y ranked tensor of pred (AKA boolean or 1-bit integer) values

mhlo.log (mhlo::LogOp)

Log operation

Sintaxis:

operation ::= `mhlo.log` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log

Ejemplo:

%result = mhlo.log %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.log_plus_one (mhlo::Log1pOp)

Log1p operation

Sintaxis:

operation ::= `mhlo.log_plus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one

Ejemplo:

%result = mhlo.log_plus_one %operand : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.logistic (mhlo::LogisticOp)

Logistic operation

Sintaxis:

operation ::= `mhlo.logistic` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logistic operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic

Ejemplo:

%result = mhlo.logistic %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.map (mhlo::MapOp)

Map operation

Applies a map function computation to inputs along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map

Ejemplo:

%result = "mhlo.map"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.maximum (mhlo::MaxOp)

Max operation

Sintaxis:

operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum

Ejemplo:

%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.minimum (mhlo::MinOp)

Min operation

Sintaxis:

operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum

Ejemplo:

%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)

Minimizes the rank of two or more shapes to be broadcasted

Sintaxis:

operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)

Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .

The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.

The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.

Here is an example with two input shapes:

mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
                                 [1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]

The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
shapes variadic of 1D tensor of index values

Resultados:

Resultado Descripción
results variadic of 1D tensor of index values

mhlo.multiply (mhlo::MulOp)

Mul operation

Sintaxis:

operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise product of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply

Ejemplo:

%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.negate (mhlo::NegOp)

Neg operation

Sintaxis:

operation ::= `mhlo.negate` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise negation of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate

Ejemplo:

%result = mhlo.negate %operand : tensor<2x3xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.not (mhlo::NotOp)

Not operation

Sintaxis:

operation ::= `mhlo.not` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise NOT of tensor operand of type integer and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not

Ejemplo:

%result = mhlo.not %operand : tensor<5x3x1xi1>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)

OptimizationBarrier operation

Sintaxis:

operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?

Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier

Ejemplo:

%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>

Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Resultados:

Resultado Descripción
result variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.or (mhlo::OrOp)

Or operation

Sintaxis:

operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or

Ejemplo:

%result = mhlo.or %lhs, %rhs : tensor<2xi1>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.outfeed (mhlo::OutfeedOp)

Outfeed operation

Writes inputs to the outfeed and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed

Ejemplo:

%result = "mhlo.outfeed"(%input0, %token) {
  outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
outfeed_config ::mlir::StringAttr string attribute

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
token simbólico

Resultados:

Resultado Descripción
"sin nombre" simbólico

mhlo.pad (mhlo::PadOp)

Pad operation

Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad

Ejemplo:

%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
  : (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
edge_padding_low ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
edge_padding_high ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
interior_padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
padding_value ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.partition_id (mhlo::PartitionIdOp)

PartitionId operation

Sintaxis:

operation ::= `mhlo.partition_id` attr-dict `:` type(results)

Produces partition_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id

Ejemplo:

%result = mhlo.partition_id : tensor<ui32>

Interfaces: InferTypeOpInterface

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of 32-bit unsigned integer values

mhlo.popcnt (mhlo::PopulationCountOp)

PopulationCount operation

Sintaxis:

operation ::= `mhlo.popcnt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt

Ejemplo:

%result = mhlo.popcnt %operand : tensor<4xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.power (mhlo::PowOp)

Pow operation

Sintaxis:

operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power

Ejemplo:

%result = mhlo.power %lhs, %rhs : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.real (mhlo::RealOp)

Real operation

Sintaxis:

operation ::= `mhlo.real` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the real part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real

Ejemplo:

%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)

RealDynamicSlice operation

Sintaxis:

operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

Ejemplo:

%result = mhlo.real_dynamic_slice %operand,
            %start_indices, %limit_indices, %strides
       : (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
start_indices 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
limit_indices 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
strides 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.recv (mhlo::RecvOp)

Recv operation

Receives data from a channel with channel_id and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv

Ejemplo:

%results:2 = "mhlo.recv"(%token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type HOST_TO_DEVICE>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 3>,
  is_host_transfer = true
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)

Attributes:

Atributo MLIR Type Descripción
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute

Operands:

Operand Descripción
token simbólico

Resultados:

Resultado Descripción
"sin nombre" variadic of statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.reduce (mhlo::ReduceOp)

Reduce operation

Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce

Ejemplo:

%result = "mhlo.reduce"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
init_values variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.reduce_precision (mhlo::ReducePrecisionOp)

ReducePrecision operation

Sintaxis:

operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
              attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))

Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision

Ejemplo:

%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
exponent_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
mantissa_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Resultados:

Resultado Descripción
output ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.reduce_scatter (mhlo::ReduceScatterOp)

ReduceScatter operation

Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter

Ejemplo:

%result = "mhlo.reduce_scatter"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
  %0 = mhlo.add %arg0, %arg1 : tensor<f32>
  mhlo.return %0 : tensor<f32>
}) {
  scatter_dimension = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>

Attributes:

Atributo MLIR Type Descripción
scatter_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
use_global_device_ids ::mlir::UnitAttr unit attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.reduce_window (mhlo::ReduceWindowOp)

ReduceWindow operation

Applies a reduction function body to windows of inputs and init_values and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window

Ejemplo:

%result = "mhlo.reduce_window"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  window_dimensions = dense<[2, 1]> : tensor<2xi64>,
  window_strides = dense<[4, 1]> : tensor<2xi64>,
  base_dilations = dense<[2, 1]> : tensor<2xi64>,
  window_dilations = dense<[3, 1]> : tensor<2xi64>,
  padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
base_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
init_values variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.remainder (mhlo::RemOp)

Rem operation

Sintaxis:

operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder

Ejemplo:

%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.replica_id (mhlo::ReplicaIdOp)

ReplicaId operation

Sintaxis:

operation ::= `mhlo.replica_id` attr-dict `:` type(results)

Produces replica_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id

Ejemplo:

%result = mhlo.replica_id : tensor<ui32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of 32-bit unsigned integer values

mhlo.reshape (mhlo::ReshapeOp)

Reshape operation

Sintaxis:

operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)

Performs reshape of operand tensor to a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape

Ejemplo:

%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" statically shaped tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.return (mhlo::ReturnOp)

_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425

Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.

Example:

    ```mlir
    %result = "mhlo.reduce"(%input, %init_value) ({
      ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
        %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
        "mhlo.return"(%0) : (tensor<i32>) -> ()
    }) {
      dimensions = dense<1> : tensor<1xi64>
    } : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
    ```_


Syntax:

```

operation ::= mhlo.return $results attr-dict ( : type($results)^)?



Traits: `AlwaysSpeculatableImplTrait`, `Terminator`

Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`

Effects: `MemoryEffects::Effect{}`

#### Operands:

| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values


### `mhlo.reverse` (mhlo::ReverseOp)

_Reverse operation_

Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.

See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>

Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.rng (mhlo::RngOp)

Rng operation

Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng

Ejemplo:

%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>

Traits: InferTensorType

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
rng_distribution ::mlir::mhlo::RngDistributionAttr XLA PRNG distribution to be used.

Operands:

Operand Descripción
a 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
b 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
shape 1D tensor of index or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)

RngBitGenerator operation

Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator

Ejemplo:

%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
rng_algorithm ::mlir::mhlo::RngAlgorithmAttr XLA PRNG algorithm to be used.

Operands:

Operand Descripción
initial_state ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Resultados:

Resultado Descripción
output_state ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
output statically shaped tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.round_nearest_afz (mhlo::RoundOp)

Round operation

Sintaxis:

operation ::= `mhlo.round_nearest_afz` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz

Ejemplo:

%result = mhlo.round_nearest_afz %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)

RoundNearestEven operation

Sintaxis:

operation ::= `mhlo.round_nearest_even` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even

Ejemplo:

%result = mhlo.round_nearest_even %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.rsqrt (mhlo::RsqrtOp)

Rsqrt operation

Sintaxis:

operation ::= `mhlo.rsqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt

Ejemplo:

%result = mhlo.rsqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.scatter (mhlo::ScatterOp)

Scatter operation

Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter

Ejemplo:

%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  scatter_dimension_numbers = #mhlo.scatter<
    update_window_dims = [3, 4],
    inserted_window_dims = [1],
    input_batching_dims = [0],
    scatter_indices_batching_dims = [1],
    scatter_dims_to_operand_dims = [2, 1],
    index_vector_dim = 3>,
  indices_are_sorted = false,
  unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>

Traits: RecursiveMemoryEffects , SameVariadicOperandSize

Interfaces: InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
scatter_dimension_numbers ::mlir::mhlo::ScatterDimensionNumbersAttr Attribute that models the dimension information for scatter
indices_are_sorted ::mlir::BoolAttr bool attribute
unique_indices ::mlir::BoolAttr bool attribute

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
scatter_indices ranked tensor of integer or index values
updates variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.select (mhlo::SelectOp)

Select operation

Sintaxis:

operation ::= `mhlo.select` operands attr-dict `:`
              custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))

Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select

Ejemplo:

%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
pred ranked tensor of pred (AKA boolean or 1-bit integer) values
on_true ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
on_false ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.select_and_scatter (mhlo::SelectAndScatterOp)

SelectAndScatter operation

Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter

Ejemplo:

%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GE>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  window_dimensions = dense<[3, 1]> : tensor<2xi64>,
  window_strides = dense<[2, 1]> : tensor<2xi64>,
  padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>

Traits: RecursiveMemoryEffects

Interfaces: InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
source ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
init_value ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.send (mhlo::SendOp)

Send operation

Sends inputs to a channel channel_id and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send

Ejemplo:

%result = "mhlo.send"(%operand, %token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type DEVICE_TO_HOST>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 2>,
  is_host_transfer = true
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
token simbólico

Resultados:

Resultado Descripción
"sin nombre" simbólico

mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)

SetDimensionSize operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize

Ejemplo:

%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
size tensor of 32-bit signless integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.shift_left (mhlo::ShiftLeftOp)

ShiftLeft operation

Sintaxis:

operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left

Ejemplo:

%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)

ShiftRightArithmetic operation

Sintaxis:

operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic

Ejemplo:

%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)

ShiftRightLogical operation

Sintaxis:

operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical

Ejemplo:

%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

mhlo.sign (mhlo::SignOp)

Sign operation

Sintaxis:

operation ::= `mhlo.sign` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Returns the sign of the operand element-wise and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign

Ejemplo:

%result = mhlo.sign %operand : tensor<7xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.sine (mhlo::SineOp)

Sine operation

Sintaxis:

operation ::= `mhlo.sine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise sine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine

Ejemplo:

%result = mhlo.sine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.slice (mhlo::SliceOp)

Slice operation

Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

Ejemplo:

%result = "mhlo.slice" (%operand) {
  start_indices = dense<[1, 2]> : tensor<2xi64>,
  limit_indices = dense<[3, 4]> : tensor<2xi64>,
  strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
start_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
limit_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.sort (mhlo::SortOp)

Sort operation

Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort

Ejemplo:

%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
    %predicate = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GT>
      } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
  dimension = 0 : i64,
  is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
dimension ::mlir::IntegerAttr 64-bit signless integer attribute
is_stable ::mlir::BoolAttr bool attribute

Operands:

Operand Descripción
inputs variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.sparse_dot (mhlo::SparseDotOp)

Sparse dot operation

Similar to dot_general operation, with one or both of the operands being sparse. An additional argument provides sparsity meta information. Disclaimer: this op is experimental / a work in progress.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
lhs_sparsity ::mlir::mhlo::SparsityDescriptorAttr Describes structured (N:M) sparsity configuration
rhs_sparsity ::mlir::mhlo::SparsityDescriptorAttr Describes structured (N:M) sparsity configuration
dot_dimension_numbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

Operand Descripción
lhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
meta variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.sqrt (mhlo::SqrtOp)

Sqrt operation

Sintaxis:

operation ::= `mhlo.sqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise square root operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt

Ejemplo:

%result = mhlo.sqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.stochastic_convert (mhlo::StochasticConvertOp)

StochasticConvert operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295

Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.

Traits: AlwaysSpeculatableImplTrait , Elementwise

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values
random ranked tensor of 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.subtract (mhlo::SubtractOp)

Subtract operation

Sintaxis:

operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract

Ejemplo:

%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
rhs ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.tan (mhlo::TanOp)

Tan operation

Sintaxis:

operation ::= `mhlo.tan` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954

Informally, this operation returns Tan(operand) element-wise.

Ejemplo:

%0 = mhlo.tan %arg0 : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

mhlo.tanh (mhlo::TanhOp)

Tanh operation

Sintaxis:

operation ::= `mhlo.tanh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh

Ejemplo:

%result = mhlo.tanh %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values

mhlo.topk (mhlo::TopKOp)

TopK operation

Sintaxis:

operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
              type($operand) `->` `(`type($values)`,` type($indices)`)`

Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .

See: https://www.tensorflow.org/xla/operation_semantics#top-k

Ejemplo:

%values, %indices = mhlo.topk(%operand, k=5, largest=true)
  : tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)

Traits: InferTensorType , RecursiveMemoryEffects

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
k ::mlir::IntegerAttr 64-bit signless integer attribute
largest ::mlir::BoolAttr bool attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
values ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
indices ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.torch_index_select (mhlo::TorchIndexSelectOp)

TorchIndexSelect operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html

The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.

Ejemplo:

%result = "mhlo.torch_index_select"(%operand, %index) {
  dim = 2 : i64,
  batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
dim ::mlir::IntegerAttr 64-bit signless integer attribute
batch_dims ::mlir::IntegerAttr 64-bit signless integer attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values
index ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.trace (mhlo::TraceOp)

Trace operation

Sintaxis:

operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604

It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.

Ejemplo:

mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>

Attributes:

Atributo MLIR Type Descripción
tag ::mlir::StringAttr string attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.transpose (mhlo::TransposeOp)

Transpose operation

Permutes the dimensions of operand tensor using permutation and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose

Ejemplo:

%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
permutation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.triangular_solve (mhlo::TriangularSolveOp)

TriangularSolve operation

Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve

Ejemplo:

%result = "mhlo.triangular_solve"(%a, %b) {
  left_side = true,
  lower = true,
  unit_diagonal = false,
  transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Atributo MLIR Type Descripción
left_side ::mlir::BoolAttr bool attribute
lower ::mlir::BoolAttr bool attribute
unit_diagonal ::mlir::BoolAttr bool attribute
transpose_a ::mlir::mhlo::TransposeAttr Transpose options

Operands:

Operand Descripción
a ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values
b ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

Resultados:

Resultado Descripción
"sin nombre" ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements values

mhlo.tuple (mhlo::TupleOp)

Tuple operation

Sintaxis:

operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))

Produces a result tuple from values val .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple

Ejemplo:

%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
val variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token or nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

Resultados:

Resultado Descripción
result nested tuple with any combination of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token values

mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)

UniformDequantize operation

Sintaxis:

operation ::= `mhlo.uniform_dequantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize

Ejemplo:

%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values

mhlo.uniform_quantize (mhlo::UniformQuantizeOp)

UniformQuantize operation

Sintaxis:

operation ::= `mhlo.uniform_quantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize

Ejemplo:

%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
operand ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

mhlo.while (mhlo::WhileOp)

While operation

Produces the output from executing body function 0 or more times while the cond function outputs true .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while

Ejemplo:

%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction LT>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface , OpAsmOpInterface

Operands:

Operand Descripción
operand variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

Resultados:

Resultado Descripción
"sin nombre" variadic of ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or ranked tensor of 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values or token

mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)

XlaRngGetAndUpdateState operation

Sintaxis:

operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.

The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.

Interfaces: InferTypeOpInterface

Attributes:

Atributo MLIR Type Descripción
delta ::mlir::IntegerAttr 64-bit signless integer attribute

Resultados:

Resultado Descripción
"sin nombre" statically shaped tensor of 64-bit unsigned integer values

mhlo.xor (mhlo::XorOp)

Xor operation

Sintaxis:

operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor

Ejemplo:

%result = mhlo.xor %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand Descripción
lhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values
rhs ranked tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer values

Resultados:

Resultado Descripción
result ranked tensor of f4E2M1FN type or f6E2M3FN type or f6E3M2FN type or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or f8E8M0FNU type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Atributos

ArgResultAliasAttr

Attribute that models the alias relationship of entry function argument

This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.

This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.

func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
    mhlo.result_alias<result_index = [2], ...>}
  ) -> tensor<2xf32>, tensor<3xf32> {
  // function body ...
}

Parámetros:

Parámetro C++ type Descripción
argTupleIndices ::llvm::ArrayRef<int64_t> Dimensión
resultIndex int64_t
resultTupleIndices ::llvm::ArrayRef<int64_t> Dimensión
isMustAlias bool

ChannelHandleAttr

two 64-bit integers 'handle' and 'type'

Sintaxis:

#mhlo.channel_handle<
  int64_t,   # handle
  int64_t   # type
>

Parámetros:

Parámetro C++ type Descripción
manejar int64_t
tipo int64_t

ComparisonDirectionAttr

Which comparison operation to perform.

Sintaxis:

#mhlo.comparison_direction<
  ::mlir::mhlo::ComparisonDirection   # value
>

Enum cases:

  • EQ ( EQ )
  • NE ( NE )
  • GE ( GE )
  • GT ( GT )
  • LE ( LE )
  • LT ( LT )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::ComparisonDirection an enum of type ComparisonDirection

ComparisonTypeAttr

Which comparison type to use.

Sintaxis:

#mhlo.comparison_type<
  ::mlir::mhlo::ComparisonType   # value
>

Enum cases:

  • NOTYPE ( NOTYPE )
  • FLOAT ( FLOAT )
  • TOTALORDER ( TOTALORDER )
  • SIGNED ( SIGNED )
  • UNSIGNED ( UNSIGNED )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::ComparisonType an enum of type ComparisonType

ConvDimensionNumbersAttr

Structure of dimension information for conv op

Parámetros:

Parámetro C++ type Descripción
inputBatchDimension int64_t
inputFeatureDimension int64_t
inputSpatialDimensions ::llvm::ArrayRef<int64_t> Dimensión
kernelInputFeatureDimension int64_t
kernelOutputFeatureDimension int64_t
kernelSpatialDimensions ::llvm::ArrayRef<int64_t> Dimensión
outputBatchDimension int64_t
outputFeatureDimension int64_t
outputSpatialDimensions ::llvm::ArrayRef<int64_t> Dimensión

CrossProgramPrefetchAttr

Argument that is prefetched from another program

Sintaxis:

#mhlo.cross_program_prefetch<
  int64_t,   # parameter
  ::llvm::ArrayRef<int64_t>,   # indices
  std::optional<int64_t>   # offset
>

This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.

A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .

An empty value for indices means the whole shape is prefetched.

Por ejemplo,

module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
  func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
    return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
  func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
    %2 = "mhlo.async_done"(%1) {called_computation=@copy}
    return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
}

The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.

Parámetros:

Parámetro C++ type Descripción
parámetro int64_t
índices ::llvm::ArrayRef<int64_t> Dimensión
compensar std::optional<int64_t>

CustomCallScheduleAttr

Specifies the desired schedule for the custom-call.

Sintaxis:

#mhlo.custom_call_schedule<
  ::mlir::mhlo::CustomCallSchedule   # value
>

Enum cases:

  • NONE ( NONE )
  • LATEST ( LATEST )
  • EARLIEST ( EARLIEST )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::CustomCallSchedule an enum of type CustomCallSchedule

DequantizeModeAttr

Dequantization mode. Only MIN_COMBINED is supported.

Sintaxis:

#mhlo.dequantize_mode<
  ::mlir::mhlo::DequantizeMode   # value
>

Enum cases:

  • MIN_COMBINED ( MIN_COMBINED )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::DequantizeMode an enum of type DequantizeMode

DomainKindAttr

Kind of domain metatdata attached to an HLO domain.

Sintaxis:

#mhlo.kind<
  ::mlir::mhlo::DomainKind   # value
>

Enum cases:

  • sharding ( sharding )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::DomainKind an enum of type DomainKind

DotAlgorithmAttr

Attribute that models the algorithm constraints to use for computing dot.

Sintaxis:

#mhlo.dot_algorithm<
  Type,   # lhsPrecisionType
  Type,   # rhsPrecisionType
  Type,   # accumulationType
  int64_t,   # lhsComponentCount
  int64_t,   # rhsComponentCount
  int64_t,   # numPrimitiveOperations
  bool   # allowImpreciseAccumulation
>

Parámetros:

Parámetro C++ type Descripción
lhsPrecisionType Type
rhsPrecisionType Type
accumulationType Type
lhsComponentCount int64_t
rhsComponentCount int64_t
numPrimitiveOperations int64_t
allowImpreciseAccumulation bool

DotDimensionNumbersAttr

Attribute that models the dimension information for dot.

Parámetros:

Parámetro C++ type Descripción
lhsBatchingDimensions ::llvm::ArrayRef<int64_t> Dimensión
rhsBatchingDimensions ::llvm::ArrayRef<int64_t> Dimensión
lhsContractingDimensions ::llvm::ArrayRef<int64_t> Dimensión
rhsContractingDimensions ::llvm::ArrayRef<int64_t> Dimensión

FftTypeAttr

XLA fast fourier transform type.

Sintaxis:

#mhlo.fft_type<
  ::mlir::mhlo::FftType   # value
>

Enum cases:

  • FFT ( FFT )
  • IFFT ( IFFT )
  • RFFT ( RFFT )
  • IRFFT ( IRFFT )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::FftType an enum of type FftType

FusionKindAttr

fusion kind

Sintaxis:

#mhlo.fusion_kind<
  ::mlir::mhlo::FusionKind   # value
>

Enum cases:

  • kLoop ( kLoop )
  • kInput ( kInput )
  • kOutput ( kOutput )
  • kCustom ( kCustom )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::FusionKind an enum of type FusionKind

GatherDimensionNumbersAttr

Attribute that models the dimension information for gather

Parámetros:

Parámetro C++ type Descripción
offsetDims ::llvm::ArrayRef<int64_t> Dimensión
collapsedSliceDims ::llvm::ArrayRef<int64_t> Dimensión
operandBatchingDims ::llvm::ArrayRef<int64_t> Dimensión
startIndicesBatchingDims ::llvm::ArrayRef<int64_t> Dimensión
startIndexMap ::llvm::ArrayRef<int64_t> Dimensión
indexVectorDim int64_t

OutputOperandAliasAttr

Attribute that models the alias relationship of output and operand of a CustomCall op

Sintaxis:

#mhlo.output_operand_alias<
  ::llvm::ArrayRef<int64_t>,   # outputTupleIndices
  int64_t,   # operandIndex
  ::llvm::ArrayRef<int64_t>   # operandTupleIndices
>

This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.

See https://www.tensorflow.org/xla/aliasing

Example when used as array with in mhlo.custom-call:

%0 = "mhlo.custom_call"(%arg0, %arg1) {
  // other attributes
  output_operand_alias = [
    #mhlo.output_operand_alias<output_tuple_indices = [0],
                               operand_index = 0,
                               operand_tuple_indices = [1]>
  ]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>

The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.

Parámetros:

Parámetro C++ type Descripción
outputTupleIndices ::llvm::ArrayRef<int64_t> Dimensión
operandIndex int64_t
operandTupleIndices ::llvm::ArrayRef<int64_t> Dimensión

PrecisionAttr

XLA precision for an operand. Has backend specific meaning.

Sintaxis:

#mhlo.precision<
  ::mlir::mhlo::Precision   # value
>

Enum cases:

  • DEFAULT ( DEFAULT )
  • HIGH ( HIGH )
  • HIGHEST ( HIGHEST )
  • PACKED_NIBBLE ( PACKED_NIBBLE )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::Precision an enum of type Precision

RngAlgorithmAttr

XLA PRNG algorithm to be used.

Sintaxis:

#mhlo.rng_algorithm<
  ::mlir::mhlo::RngAlgorithm   # value
>

Enum cases:

  • DEFAULT ( DEFAULT )
  • THREE_FRY ( THREE_FRY )
  • PHILOX ( PHILOX )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::RngAlgorithm an enum of type RngAlgorithm

RngDistributionAttr

XLA PRNG distribution to be used.

Sintaxis:

#mhlo.rng_distribution<
  ::mlir::mhlo::RngDistribution   # value
>

Enum cases:

  • UNIFORM ( UNIFORM )
  • NORMAL ( NORMAL )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::RngDistribution an enum of type RngDistribution

ScatterDimensionNumbersAttr

Attribute that models the dimension information for scatter

Parámetros:

Parámetro C++ type Descripción
updateWindowDims ::llvm::ArrayRef<int64_t> Dimensión
insertedWindowDims ::llvm::ArrayRef<int64_t> Dimensión
inputBatchingDims ::llvm::ArrayRef<int64_t> Dimensión
scatterIndicesBatchingDims ::llvm::ArrayRef<int64_t> Dimensión
scatterDimsToOperandDims ::llvm::ArrayRef<int64_t> Dimensión
indexVectorDim int64_t

SparsityDescriptorAttr

Describes structured (N:M) sparsity configuration

Sintaxis:

#mhlo.sparsity<
  int64_t,   # dimension
  int64_t,   # n
  int64_t   # m
>

This attribute is defined for a sparse dot operation with a structured sparse input tensor. With (N=2,M=4), every 4 consecutive logical elements have exactly 2 non-zero physical elements in the input tensor.

$dimension defines the index of the contracting dimension that is sparse (it has to be the most minor dimension). The additional metadata operand in the sparse dot operation defines which logical elements are zeroed out.

Parámetros:

Parámetro C++ type Descripción
dimensión int64_t
norte int64_t
metro int64_t

TransposeAttr

Transpose options

Sintaxis:

#mhlo.transpose<
  ::mlir::mhlo::Transpose   # value
>

Enum cases:

  • TRANSPOSE_INVALID ( TRANSPOSE_INVALID )
  • NO_TRANSPOSE ( NO_TRANSPOSE )
  • TRANSPOSE ( TRANSPOSE )
  • ADJOINT ( ADJOINT )

Parámetros:

Parámetro C++ type Descripción
valor ::mlir::mhlo::Transpose an enum of type Transpose

TypeExtensionsAttr

Attribute that extends tensor type with MHLO type properties.

Sintaxis:

#mhlo.type_extensions<
  ::llvm::ArrayRef<int64_t>   # bounds
>

This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.

See HLO_BoundedAttrInterface for documentation for bounds .

Parámetros:

Parámetro C++ type Descripción
límites ::llvm::ArrayRef<int64_t>

Tipos

AsyncBundleType

Opaque collection of other types

Sintaxis:

!mhlo.async_bundle<
  ::llvm::ArrayRef<Type>   # types
>

Parámetros:

Parámetro C++ type Descripción
tipos ::llvm::ArrayRef<Type>

Enums

ComparisonDirection

Which comparison operation to perform.

Cases:

Símbolo Valor Cadena
EQ 0 EQ
nordeste 1 nordeste
GE 2 GE
GT 3 GT
LE 4 LE
LT 5 LT

ComparisonType

Which comparison type to use.

Cases:

Símbolo Valor Cadena
NOTYPE 0 NOTYPE
FLOTAR 1 FLOTAR
TOTALORDER 2 TOTALORDER
SIGNED 3 SIGNED
NO FIRMADO 4 NO FIRMADO

CustomCallApiVersion

Custom call API version

Cases:

Símbolo Valor Cadena
API_VERSION_UNSPECIFIED 0 API_VERSION_UNSPECIFIED
API_VERSION_ORIGINAL 1 API_VERSION_ORIGINAL
API_VERSION_STATUS_RETURNING 2 API_VERSION_STATUS_RETURNING
API_VERSION_STATUS_RETURNING_UNIFIED 3 API_VERSION_STATUS_RETURNING_UNIFIED
API_VERSION_TYPED_FFI 4 API_VERSION_TYPED_FFI

CustomCallSchedule

Specifies the desired schedule for the custom-call.

Cases:

Símbolo Valor Cadena
NINGUNO 0 NINGUNO
EL ÚLTIMO 1 EL ÚLTIMO
EARLIEST 2 EARLIEST

DequantizeMode

Dequantization mode. Only MIN_COMBINED is supported.

Cases:

Símbolo Valor Cadena
MIN_COMBINED 0 MIN_COMBINED

DomainKind

Kind of domain metatdata attached to an HLO domain.

Cases:

Símbolo Valor Cadena
sharding 0 sharding

FftType

XLA fast fourier transform type.

Cases:

Símbolo Valor Cadena
FFT 0 FFT
IFFT 1 IFFT
RFFT 2 RFFT
IRFFT 3 IRFFT

FusionKind

fusion kind

Cases:

Símbolo Valor Cadena
kLoop 0 kLoop
kInput 1 kInput
kOutput 2 kOutput
kCustom 3 kCustom

Precisión

XLA precision for an operand. Has backend specific meaning.

Cases:

Símbolo Valor Cadena
POR DEFECTO 0 POR DEFECTO
ALTO 1 ALTO
HIGHEST 2 HIGHEST
PACKED_NIBBLE 3 PACKED_NIBBLE

RngAlgorithm

XLA PRNG algorithm to be used.

Cases:

Símbolo Valor Cadena
POR DEFECTO 0 POR DEFECTO
THREE_FRY 1 THREE_FRY
PHILOX 2 PHILOX

RngDistribution

XLA PRNG distribution to be used.

Cases:

Símbolo Valor Cadena
UNIFORME 1 UNIFORME
NORMAL 2 NORMAL

Transponer

Transpose options

Cases:

Símbolo Valor Cadena
TRANSPOSE_INVALID 0 TRANSPOSE_INVALID
NO_TRANSPOSE 1 NO_TRANSPOSE
TRANSPONER 2 TRANSPONER
ADJOINT 3 ADJOINT