TensorFlow.org で表示 | Google Colab で実行 | GitHub でソースを表示 | ノートブックをダウンロード |
概要
現在、TensorFlow Lite はモデルを TensorFlow から TensorFlow Lite のフラットバッファ形式に変換する際に、アクティベーションを 16 ビット整数値に、重みを 8 ビット整数値に変換することをサポートしています。このモードは「16x8 量子化モード」と呼ばれています。このモードでは、アクティベーションが量子化の影響を受けやすい場合に、量子化モデルの精度を大幅に向上させ、モデルサイズを約 1/3〜1/4 に縮小することができます。また、この完全に量子化されたモデルは、整数のみのハードウェアアクセラレータで使用できます。
次のようなモデルでは、このモードのトレーニング後の量子化が有用です。
- 超解像
- ノイズキャンセリングやビームフォーミングなどのオーディオ信号処理
- 画像ノイズ除去
- 単一の画像からの HDR 再構成
このチュートリアルでは、MNIST モデルを新規にトレーニングし、TensorFlow でその精度を確認してから、このモードを使用してモデルを Tensorflow Lite フラットバッファに変換します。最後に、変換されたモデルの精度を確認し、元の float32 モデルと比較します。この例は、このモードの使用法を示しており、TensorFlow Liteで利用可能な他の量子化手法と比較した場合の利点は示していません。
MNIST モデルの構築
セットアップ
import logging
logging.getLogger("tensorflow").setLevel(logging.DEBUG)
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pathlib
16x8 量子化モードが使用可能であることを確認します
tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8
モデルをトレーニングしてエクスポートする
# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0
# Define the model architecture
model = keras.Sequential([
keras.layers.InputLayer(input_shape=(28, 28)),
keras.layers.Reshape(target_shape=(28, 28, 1)),
keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
keras.layers.MaxPooling2D(pool_size=(2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(10)
])
# Train the digit classification model
model.compile(optimizer='adam',
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(
train_images,
train_labels,
epochs=1,
validation_data=(test_images, test_labels)
)
この例では、モデルを 1 エポックでトレーニングしたので、トレーニングの精度は 96% 以下になります。
TensorFlow Lite モデルに変換する
TensorFlow Lite Converter を使用して、トレーニング済みモデルを TensorFlow Lite モデルに変換できるようになりました。
次に、TFliteConverter
を使用してモデルをデフォルトの float32 形式に変換します。
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
.tflite
ファイルに書き込みます。
tflite_models_dir = pathlib.Path("/tmp/mnist_tflite_models/")
tflite_models_dir.mkdir(exist_ok=True, parents=True)
tflite_model_file = tflite_models_dir/"mnist_model.tflite"
tflite_model_file.write_bytes(tflite_model)
モデルを 16x8 量子化モードに量子化するには、最初にoptimizations
フラグを設定してデフォルトの最適化を使用します。次に、16x8 量子化モードがターゲット仕様でサポートされる必要な演算であることを指定します。
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8]
int8 トレーニング後の量子化の場合と同様に、コンバーターオプションinference_input(output)_type
を tf.int16 に設定することで、完全整数量子化モデルを生成できます。
キャリブレーションデータを設定します。
mnist_train, _ = tf.keras.datasets.mnist.load_data()
images = tf.cast(mnist_train[0], tf.float32) / 255.0
mnist_ds = tf.data.Dataset.from_tensor_slices((images)).batch(1)
def representative_data_gen():
for input_value in mnist_ds.take(100):
# Model has only one input so each data point has one element.
yield [input_value]
converter.representative_dataset = representative_data_gen
最後に、通常どおりにモデルを変換します。デフォルトでは、変換されたモデルは呼び出しの便宜上、浮動小数点の入力と出力を引き続き使用します。
tflite_16x8_model = converter.convert()
tflite_model_16x8_file = tflite_models_dir/"mnist_model_quant_16x8.tflite"
tflite_model_16x8_file.write_bytes(tflite_16x8_model)
生成されるファイルのサイズが約1/3
であることに注目してください。
ls -lh {tflite_models_dir}
TensorFlow Lite モデルを実行する
Python TensorFlow Lite インタープリタを使用して TensorFlow Lite モデルを実行します。
モデルをインタープリタに読み込む
interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file))
interpreter.allocate_tensors()
interpreter_16x8 = tf.lite.Interpreter(model_path=str(tflite_model_16x8_file))
interpreter_16x8.allocate_tensors()
1 つの画像でモデルをテストする
test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
interpreter.set_tensor(input_index, test_image)
interpreter.invoke()
predictions = interpreter.get_tensor(output_index)
import matplotlib.pylab as plt
plt.imshow(test_images[0])
template = "True:{true}, predicted:{predict}"
_ = plt.title(template.format(true= str(test_labels[0]),
predict=str(np.argmax(predictions[0]))))
plt.grid(False)
test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)
input_index = interpreter_16x8.get_input_details()[0]["index"]
output_index = interpreter_16x8.get_output_details()[0]["index"]
interpreter_16x8.set_tensor(input_index, test_image)
interpreter_16x8.invoke()
predictions = interpreter_16x8.get_tensor(output_index)
plt.imshow(test_images[0])
template = "True:{true}, predicted:{predict}"
_ = plt.title(template.format(true= str(test_labels[0]),
predict=str(np.argmax(predictions[0]))))
plt.grid(False)
モデルを評価する
# A helper function to evaluate the TF Lite model using "test" dataset.
def evaluate_model(interpreter):
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
# Run predictions on every image in the "test" dataset.
prediction_digits = []
for test_image in test_images:
# Pre-processing: add batch dimension and convert to float32 to match with
# the model's input data format.
test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
interpreter.set_tensor(input_index, test_image)
# Run inference.
interpreter.invoke()
# Post-processing: remove batch dimension and find the digit with highest
# probability.
output = interpreter.tensor(output_index)
digit = np.argmax(output()[0])
prediction_digits.append(digit)
# Compare prediction results with ground truth labels to calculate accuracy.
accurate_count = 0
for index in range(len(prediction_digits)):
if prediction_digits[index] == test_labels[index]:
accurate_count += 1
accuracy = accurate_count * 1.0 / len(prediction_digits)
return accuracy
print(evaluate_model(interpreter))
16x8 量子化モデルで評価を繰り返します。
# NOTE: This quantization mode is an experimental post-training mode,
# it does not have any optimized kernels implementations or
# specialized machine learning hardware accelerators. Therefore,
# it could be slower than the float interpreter.
print(evaluate_model(interpreter_16x8))
この例では、モデルの精度を低下することなく、16x8 に量子化しました。サイズは 1/3 に縮小されました。