ดูบน TensorFlow.org | ทำงานใน Google Colab | ดูแหล่งที่มาบน GitHub | ดาวน์โหลดโน๊ตบุ๊ค |
ภาพรวม
คุณสามารถใช้ตัวประมาณการแบบกำหนดเองเพื่อสร้างแบบจำลองแบบโมโนโทนิกตามอำเภอใจได้โดยใช้เลเยอร์ TFL คู่มือนี้สรุปขั้นตอนที่จำเป็นในการสร้างตัวประมาณดังกล่าว
ติดตั้ง
การติดตั้งแพ็คเกจ TF Lattice:
pip install tensorflow-lattice
การนำเข้าแพ็คเกจที่จำเป็น:
import tensorflow as tf
import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
from tensorflow import feature_column as fc
from tensorflow_estimator.python.estimator.canned import optimizers
from tensorflow_estimator.python.estimator.head import binary_class_head
logging.disable(sys.maxsize)
กำลังดาวน์โหลดชุดข้อมูล UCI Statlog (หัวใจ):
csv_file = tf.keras.utils.get_file(
'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
df = pd.read_csv(csv_file)
target = df.pop('target')
train_size = int(len(df) * 0.8)
train_x = df[:train_size]
train_y = target[:train_size]
test_x = df[train_size:]
test_y = target[train_size:]
df.head()
การตั้งค่าเริ่มต้นที่ใช้สำหรับการฝึกอบรมในคู่มือนี้:
LEARNING_RATE = 0.1
BATCH_SIZE = 128
NUM_EPOCHS = 1000
คอลัมน์คุณลักษณะ
สำหรับประมาณการ TF อื่น ๆ ความต้องการข้อมูลที่จะส่งผ่านไปยังประมาณการซึ่งโดยปกติจะผ่าน input_fn และแยกวิเคราะห์โดยใช้ FeatureColumns
# Feature columns.
# - age
# - sex
# - ca number of major vessels (0-3) colored by flourosopy
# - thal 3 = normal; 6 = fixed defect; 7 = reversable defect
feature_columns = [
fc.numeric_column('age', default_value=-1),
fc.categorical_column_with_vocabulary_list('sex', [0, 1]),
fc.numeric_column('ca'),
fc.categorical_column_with_vocabulary_list(
'thal', ['normal', 'fixed', 'reversible']),
]
หมายเหตุว่าตรงเด็ดขาดไม่จำเป็นต้องถูกห่อด้วยคอลัมน์คุณลักษณะหนาแน่นตั้งแต่ tfl.laysers.CategoricalCalibration
ชั้นโดยตรงสามารถใช้ดัชนีหมวดหมู่
กำลังสร้าง input_fn
สำหรับตัวประมาณอื่นๆ คุณสามารถใช้ input_fn เพื่อป้อนข้อมูลไปยังแบบจำลองสำหรับการฝึกอบรมและการประเมิน
train_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
x=train_x,
y=train_y,
shuffle=True,
batch_size=BATCH_SIZE,
num_epochs=NUM_EPOCHS,
num_threads=1)
test_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
x=test_x,
y=test_y,
shuffle=False,
batch_size=BATCH_SIZE,
num_epochs=1,
num_threads=1)
กำลังสร้าง model_fn
มีหลายวิธีในการสร้างตัวประมาณการแบบกำหนดเอง ที่นี่เราจะสร้าง model_fn
ที่เรียกรุ่น Keras ในการป้อนข้อมูลแจงเทนเซอร์ ที่จะแยกคุณลักษณะการป้อนข้อมูลที่คุณสามารถใช้ tf.feature_column.input_layer
, tf.keras.layers.DenseFeatures
หรือ tfl.estimators.transform_features
หากคุณใช้ส่วนหลัง คุณไม่จำเป็นต้องห่อคุณลักษณะตามหมวดหมู่ด้วยคอลัมน์คุณลักษณะที่หนาแน่น และเมตริกซ์ที่เป็นผลลัพธ์จะไม่ถูกต่อกัน ซึ่งทำให้ใช้งานคุณลักษณะในเลเยอร์การปรับเทียบได้ง่ายขึ้น
ในการสร้างแบบจำลอง คุณสามารถผสมและจับคู่เลเยอร์ TFL หรือเลเยอร์ Keras อื่นๆ ได้ ที่นี่ เราสร้างแบบจำลอง Keras แลตทิซที่ปรับเทียบแล้วจากเลเยอร์ TFL และกำหนดข้อจำกัดความซ้ำซากจำเจหลายข้อ จากนั้นเราใช้โมเดล Keras เพื่อสร้างตัวประมาณแบบกำหนดเอง
def model_fn(features, labels, mode, config):
"""model_fn for the custom estimator."""
del config
input_tensors = tfl.estimators.transform_features(features, feature_columns)
inputs = {
key: tf.keras.layers.Input(shape=(1,), name=key) for key in input_tensors
}
lattice_sizes = [3, 2, 2, 2]
lattice_monotonicities = ['increasing', 'none', 'increasing', 'increasing']
lattice_input = tf.keras.layers.Concatenate(axis=1)([
tfl.layers.PWLCalibration(
input_keypoints=np.linspace(10, 100, num=8, dtype=np.float32),
# The output range of the calibrator should be the input range of
# the following lattice dimension.
output_min=0.0,
output_max=lattice_sizes[0] - 1.0,
monotonicity='increasing',
)(inputs['age']),
tfl.layers.CategoricalCalibration(
# Number of categories including any missing/default category.
num_buckets=2,
output_min=0.0,
output_max=lattice_sizes[1] - 1.0,
)(inputs['sex']),
tfl.layers.PWLCalibration(
input_keypoints=[0.0, 1.0, 2.0, 3.0],
output_min=0.0,
output_max=lattice_sizes[0] - 1.0,
# You can specify TFL regularizers as tuple
# ('regularizer name', l1, l2).
kernel_regularizer=('hessian', 0.0, 1e-4),
monotonicity='increasing',
)(inputs['ca']),
tfl.layers.CategoricalCalibration(
num_buckets=3,
output_min=0.0,
output_max=lattice_sizes[1] - 1.0,
# Categorical monotonicity can be partial order.
# (i, j) indicates that we must have output(i) <= output(j).
# Make sure to set the lattice monotonicity to 'increasing' for this
# dimension.
monotonicities=[(0, 1), (0, 2)],
)(inputs['thal']),
])
output = tfl.layers.Lattice(
lattice_sizes=lattice_sizes, monotonicities=lattice_monotonicities)(
lattice_input)
training = (mode == tf.estimator.ModeKeys.TRAIN)
model = tf.keras.Model(inputs=inputs, outputs=output)
logits = model(input_tensors, training=training)
if training:
optimizer = optimizers.get_optimizer_instance_v2('Adagrad', LEARNING_RATE)
else:
optimizer = None
head = binary_class_head.BinaryClassHead()
return head.create_estimator_spec(
features=features,
mode=mode,
labels=labels,
optimizer=optimizer,
logits=logits,
trainable_variables=model.trainable_variables,
update_ops=model.updates)
การฝึกอบรมและประมาณการ
ใช้ model_fn
เราสามารถสร้างและฝึกอบรมประมาณการ
estimator = tf.estimator.Estimator(model_fn=model_fn)
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('AUC: {}'.format(results['auc']))
2021-09-30 20:51:11.094402: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected AUC: 0.5946115255355835