Visualizza su TensorFlow.org | Esegui in Google Colab | Visualizza la fonte su GitHub | Scarica taccuino |
Panoramica
Gli stimatori predefiniti sono modi semplici e veloci per addestrare i modelli TFL per casi d'uso tipici. Questa guida delinea i passaggi necessari per creare uno stimatore fisso TFL.
Impostare
Installazione del pacchetto TF Lattice:
pip install tensorflow-lattice
Importazione dei pacchetti richiesti:
import tensorflow as tf
import copy
import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
from tensorflow import feature_column as fc
logging.disable(sys.maxsize)
Download del dataset UCI Statlog (Heart):
csv_file = tf.keras.utils.get_file(
'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
df = pd.read_csv(csv_file)
target = df.pop('target')
train_size = int(len(df) * 0.8)
train_x = df[:train_size]
train_y = target[:train_size]
test_x = df[train_size:]
test_y = target[train_size:]
df.head()
Impostazione dei valori predefiniti utilizzati per l'allenamento in questa guida:
LEARNING_RATE = 0.01
BATCH_SIZE = 128
NUM_EPOCHS = 500
PREFITTING_NUM_EPOCHS = 10
Colonne caratteristiche
Come per qualsiasi altro stimatore TF, esigenze di dati da passare allo stimatore, che è tipicamente tramite un input_fn e analizzati utilizzando FeatureColumns .
# Feature columns.
# - age
# - sex
# - cp chest pain type (4 values)
# - trestbps resting blood pressure
# - chol serum cholestoral in mg/dl
# - fbs fasting blood sugar > 120 mg/dl
# - restecg resting electrocardiographic results (values 0,1,2)
# - thalach maximum heart rate achieved
# - exang exercise induced angina
# - oldpeak ST depression induced by exercise relative to rest
# - slope the slope of the peak exercise ST segment
# - ca number of major vessels (0-3) colored by flourosopy
# - thal 3 = normal; 6 = fixed defect; 7 = reversable defect
feature_columns = [
fc.numeric_column('age', default_value=-1),
fc.categorical_column_with_vocabulary_list('sex', [0, 1]),
fc.numeric_column('cp'),
fc.numeric_column('trestbps', default_value=-1),
fc.numeric_column('chol'),
fc.categorical_column_with_vocabulary_list('fbs', [0, 1]),
fc.categorical_column_with_vocabulary_list('restecg', [0, 1, 2]),
fc.numeric_column('thalach'),
fc.categorical_column_with_vocabulary_list('exang', [0, 1]),
fc.numeric_column('oldpeak'),
fc.categorical_column_with_vocabulary_list('slope', [0, 1, 2]),
fc.numeric_column('ca'),
fc.categorical_column_with_vocabulary_list(
'thal', ['normal', 'fixed', 'reversible']),
]
Gli stimatori fissi TFL utilizzano il tipo di colonna caratteristica per decidere quale tipo di livello di calibrazione utilizzare. Usiamo un tfl.layers.PWLCalibration
strato per feature colonne numeriche e tfl.layers.CategoricalCalibration
strato per feature colonne categoriali.
Si noti che le colonne di funzionalità categoriali non sono racchiuse in una colonna di funzionalità di incorporamento. Vengono direttamente inseriti nello stimatore.
Creazione input_fn
Come per qualsiasi altro stimatore, puoi utilizzare un input_fn per fornire dati al modello per l'addestramento e la valutazione. Gli stimatori TFL possono calcolare automaticamente i quantili delle caratteristiche e usarli come punti chiave di input per il livello di calibrazione PWL. Per farlo, hanno bisogno di passare un feature_analysis_input_fn
, che è simile alla formazione input_fn ma con una singola epoca o di un sottocampione dei dati.
train_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
x=train_x,
y=train_y,
shuffle=False,
batch_size=BATCH_SIZE,
num_epochs=NUM_EPOCHS,
num_threads=1)
# feature_analysis_input_fn is used to collect statistics about the input.
feature_analysis_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
x=train_x,
y=train_y,
shuffle=False,
batch_size=BATCH_SIZE,
# Note that we only need one pass over the data.
num_epochs=1,
num_threads=1)
test_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
x=test_x,
y=test_y,
shuffle=False,
batch_size=BATCH_SIZE,
num_epochs=1,
num_threads=1)
# Serving input fn is used to create saved models.
serving_input_fn = (
tf.estimator.export.build_parsing_serving_input_receiver_fn(
feature_spec=fc.make_parse_example_spec(feature_columns)))
Configurazioni delle funzioni
Calibrazione delle funzioni e configurazioni per-feature vengono impostati tramite tfl.configs.FeatureConfig
. Le configurazioni delle funzioni contengono vincoli di monotonia, per-feature regolarizzazione (vedi tfl.configs.RegularizerConfig
), e le dimensioni del reticolo di modelli reticolari.
Se nessuna configurazione è definita per una caratteristica ingresso, la configurazione predefinita in tfl.config.FeatureConfig
viene utilizzato.
# Feature configs are used to specify how each feature is calibrated and used.
feature_configs = [
tfl.configs.FeatureConfig(
name='age',
lattice_size=3,
# By default, input keypoints of pwl are quantiles of the feature.
pwl_calibration_num_keypoints=5,
monotonicity='increasing',
pwl_calibration_clip_max=100,
# Per feature regularization.
regularizer_configs=[
tfl.configs.RegularizerConfig(name='calib_wrinkle', l2=0.1),
],
),
tfl.configs.FeatureConfig(
name='cp',
pwl_calibration_num_keypoints=4,
# Keypoints can be uniformly spaced.
pwl_calibration_input_keypoints='uniform',
monotonicity='increasing',
),
tfl.configs.FeatureConfig(
name='chol',
# Explicit input keypoint initialization.
pwl_calibration_input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
monotonicity='increasing',
# Calibration can be forced to span the full output range by clamping.
pwl_calibration_clamp_min=True,
pwl_calibration_clamp_max=True,
# Per feature regularization.
regularizer_configs=[
tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
],
),
tfl.configs.FeatureConfig(
name='fbs',
# Partial monotonicity: output(0) <= output(1)
monotonicity=[(0, 1)],
),
tfl.configs.FeatureConfig(
name='trestbps',
pwl_calibration_num_keypoints=5,
monotonicity='decreasing',
),
tfl.configs.FeatureConfig(
name='thalach',
pwl_calibration_num_keypoints=5,
monotonicity='decreasing',
),
tfl.configs.FeatureConfig(
name='restecg',
# Partial monotonicity: output(0) <= output(1), output(0) <= output(2)
monotonicity=[(0, 1), (0, 2)],
),
tfl.configs.FeatureConfig(
name='exang',
# Partial monotonicity: output(0) <= output(1)
monotonicity=[(0, 1)],
),
tfl.configs.FeatureConfig(
name='oldpeak',
pwl_calibration_num_keypoints=5,
monotonicity='increasing',
),
tfl.configs.FeatureConfig(
name='slope',
# Partial monotonicity: output(0) <= output(1), output(1) <= output(2)
monotonicity=[(0, 1), (1, 2)],
),
tfl.configs.FeatureConfig(
name='ca',
pwl_calibration_num_keypoints=4,
monotonicity='increasing',
),
tfl.configs.FeatureConfig(
name='thal',
# Partial monotonicity:
# output(normal) <= output(fixed)
# output(normal) <= output(reversible)
monotonicity=[('normal', 'fixed'), ('normal', 'reversible')],
),
]
Modello lineare calibrato
Per costruire un TFL scatola stimatore, costruire un modello di configurazione da tfl.configs
. Un modello lineare calibrato è costruito utilizzando tfl.configs.CalibratedLinearConfig
. Applica la calibrazione lineare a tratti e categorica sulle caratteristiche di input, seguita da una combinazione lineare e una calibrazione lineare a tratti di output opzionale. Quando si utilizza la calibrazione dell'output o quando vengono specificati i limiti dell'output, il livello lineare applicherà la media ponderata sugli input calibrati.
Questo esempio crea un modello lineare calibrato sulle prime 5 feature. Usiamo tfl.visualization
per tracciare il grafico modello con le trame del calibratore.
# Model config defines the model structure for the estimator.
model_config = tfl.configs.CalibratedLinearConfig(
feature_configs=feature_configs,
use_bias=True,
output_calibration=True,
regularizer_configs=[
# Regularizer for the output calibrator.
tfl.configs.RegularizerConfig(name='output_calib_hessian', l2=1e-4),
])
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
feature_columns=feature_columns[:5],
model_config=model_config,
feature_analysis_input_fn=feature_analysis_input_fn,
optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Calibrated linear test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph)
2021-09-30 20:54:06.660239: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected Calibrated linear test AUC: 0.834586501121521
Modello a reticolo calibrato
Un modello reticolare calibrato è costruito utilizzando tfl.configs.CalibratedLatticeConfig
. Un modello reticolare calibrato applica la calibrazione lineare a tratti e categorica sulle caratteristiche di input, seguita da un modello reticolare e una calibrazione lineare a tratti di output opzionale.
Questo esempio crea un modello reticolare calibrato sulle prime 5 feature.
# This is calibrated lattice model: Inputs are calibrated, then combined
# non-linearly using a lattice layer.
model_config = tfl.configs.CalibratedLatticeConfig(
feature_configs=feature_configs,
regularizer_configs=[
# Torsion regularizer applied to the lattice to make it more linear.
tfl.configs.RegularizerConfig(name='torsion', l2=1e-4),
# Globally defined calibration regularizer is applied to all features.
tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
])
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
feature_columns=feature_columns[:5],
model_config=model_config,
feature_analysis_input_fn=feature_analysis_input_fn,
optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Calibrated lattice test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph)
Calibrated lattice test AUC: 0.8427318930625916
Ensemble reticolo calibrato
Quando il numero di feature è elevato, è possibile utilizzare un modello di insieme, che crea più reticoli più piccoli per i sottoinsiemi delle feature e calcola la media del loro output invece di creare un unico enorme reticolo. Modelli reticolari Ensemble sono costruiti usando tfl.configs.CalibratedLatticeEnsembleConfig
. Un modello di insieme reticolare calibrato applica la calibrazione lineare a tratti e categoriale sulla funzione di input, seguita da un insieme di modelli reticolari e una calibrazione lineare a tratti di output opzionale.
Ensemble di reticoli casuali
La seguente configurazione del modello utilizza un sottoinsieme casuale di funzionalità per ogni reticolo.
# This is random lattice ensemble model with separate calibration:
# model output is the average output of separately calibrated lattices.
model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
feature_configs=feature_configs,
num_lattices=5,
lattice_rank=3)
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
feature_columns=feature_columns,
model_config=model_config,
feature_analysis_input_fn=feature_analysis_input_fn,
optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Random ensemble test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph, calibrator_dpi=15)
Random ensemble test AUC: 0.9003759026527405
RTL Layer Random Lattice Ensemble
Il seguente modello di configurazione utilizza un tfl.layers.RTL
strato che utilizza un sottoinsieme casuale di caratteristiche per ciascun reticolo. Notiamo che tfl.layers.RTL
supporta solo i vincoli di monotonia e deve avere la stessa dimensione reticolare per tutte le funzioni e nessun regolarizzazione per-feature. Si noti che utilizzando un tfl.layers.RTL
strato consente di scalare a formazioni molto più grandi rispetto all'utilizzo separati tfl.layers.Lattice
istanze.
# Make sure our feature configs have the same lattice size, no per-feature
# regularization, and only monotonicity constraints.
rtl_layer_feature_configs = copy.deepcopy(feature_configs)
for feature_config in rtl_layer_feature_configs:
feature_config.lattice_size = 2
feature_config.unimodality = 'none'
feature_config.reflects_trust_in = None
feature_config.dominates = None
feature_config.regularizer_configs = None
# This is RTL layer ensemble model with separate calibration:
# model output is the average output of separately calibrated lattices.
model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
lattices='rtl_layer',
feature_configs=rtl_layer_feature_configs,
num_lattices=5,
lattice_rank=3)
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
feature_columns=feature_columns,
model_config=model_config,
feature_analysis_input_fn=feature_analysis_input_fn,
optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Random ensemble test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph, calibrator_dpi=15)
Random ensemble test AUC: 0.8903509378433228
Cristalli Lattice Ensemble
TFL fornisce anche un algoritmo caratteristica disposizione euristica, chiamato Cristalli . I cristalli algoritmo primi treni un modello di premontaggio che le stime a coppie funzionalità interazioni. Quindi dispone l'insieme finale in modo tale che le caratteristiche con più interazioni non lineari siano negli stessi reticoli.
Per i modelli Cristalli, sarà inoltre necessario fornire un prefitting_input_fn
che viene utilizzato per addestrare il modello premontaggio, come descritto sopra. Il modello di prefitting non ha bisogno di essere completamente addestrato, quindi alcune epoche dovrebbero essere sufficienti.
prefitting_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
x=train_x,
y=train_y,
shuffle=False,
batch_size=BATCH_SIZE,
num_epochs=PREFITTING_NUM_EPOCHS,
num_threads=1)
È quindi possibile creare un modello di cristallo impostando lattice='crystals'
nel modello di configurazione.
# This is Crystals ensemble model with separate calibration: model output is
# the average output of separately calibrated lattices.
model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
feature_configs=feature_configs,
lattices='crystals',
num_lattices=5,
lattice_rank=3)
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
feature_columns=feature_columns,
model_config=model_config,
feature_analysis_input_fn=feature_analysis_input_fn,
# prefitting_input_fn is required to train the prefitting model.
prefitting_input_fn=prefitting_input_fn,
optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
prefitting_optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Crystals ensemble test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph, calibrator_dpi=15)
Crystals ensemble test AUC: 0.8840851783752441
È possibile tracciare caratteristica calibratori con maggiori dettagli utilizzando il tfl.visualization
modulo.
_ = tfl.visualization.plot_feature_calibrator(model_graph, "age")
_ = tfl.visualization.plot_feature_calibrator(model_graph, "restecg")