Modele funkcji agregatów TF w sieciach

Zobacz na TensorFlow.org Uruchom w Google Colab Wyświetl źródło na GitHub Pobierz notatnik

Przegląd

TFL predefiniowanych funkcji zbiorczej Modele są szybkie i łatwe sposoby tworzenia TFL tf.keras.model instancji do nauki skomplikowanych funkcji agregacji. W tym przewodniku przedstawiono kroki potrzebne do skonstruowania wstępnie utworzonego modelu funkcji agregującej TFL i przeszkolenia/testowania go.

Ustawiać

Instalowanie pakietu TF Lattice:

pip install -q tensorflow-lattice pydot

Importowanie wymaganych pakietów:

import tensorflow as tf

import collections
import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
logging.disable(sys.maxsize)

Pobieranie zbioru danych Puzzli:

train_dataframe = pd.read_csv(
    'https://raw.githubusercontent.com/wbakst/puzzles_data/master/train.csv')
train_dataframe.head()
test_dataframe = pd.read_csv(
    'https://raw.githubusercontent.com/wbakst/puzzles_data/master/test.csv')
test_dataframe.head()

Wyodrębnij i konwertuj funkcje i etykiety

# Features:
# - star_rating       rating out of 5 stars (1-5)
# - word_count        number of words in the review
# - is_amazon         1 = reviewed on amazon; 0 = reviewed on artifact website
# - includes_photo    if the review includes a photo of the puzzle
# - num_helpful       number of people that found this review helpful
# - num_reviews       total number of reviews for this puzzle (we construct)
#
# This ordering of feature names will be the exact same order that we construct
# our model to expect.
feature_names = [
    'star_rating', 'word_count', 'is_amazon', 'includes_photo', 'num_helpful',
    'num_reviews'
]
def extract_features(dataframe, label_name):
  # First we extract flattened features.
  flattened_features = {
      feature_name: dataframe[feature_name].values.astype(float)
      for feature_name in feature_names[:-1]
  }

  # Construct mapping from puzzle name to feature.
  star_rating = collections.defaultdict(list)
  word_count = collections.defaultdict(list)
  is_amazon = collections.defaultdict(list)
  includes_photo = collections.defaultdict(list)
  num_helpful = collections.defaultdict(list)
  labels = {}

  # Extract each review.
  for i in range(len(dataframe)):
    row = dataframe.iloc[i]
    puzzle_name = row['puzzle_name']
    star_rating[puzzle_name].append(float(row['star_rating']))
    word_count[puzzle_name].append(float(row['word_count']))
    is_amazon[puzzle_name].append(float(row['is_amazon']))
    includes_photo[puzzle_name].append(float(row['includes_photo']))
    num_helpful[puzzle_name].append(float(row['num_helpful']))
    labels[puzzle_name] = float(row[label_name])

  # Organize data into list of list of features.
  names = list(star_rating.keys())
  star_rating = [star_rating[name] for name in names]
  word_count = [word_count[name] for name in names]
  is_amazon = [is_amazon[name] for name in names]
  includes_photo = [includes_photo[name] for name in names]
  num_helpful = [num_helpful[name] for name in names]
  num_reviews = [[len(ratings)] * len(ratings) for ratings in star_rating]
  labels = [labels[name] for name in names]

  # Flatten num_reviews
  flattened_features['num_reviews'] = [len(reviews) for reviews in num_reviews]

  # Convert data into ragged tensors.
  star_rating = tf.ragged.constant(star_rating)
  word_count = tf.ragged.constant(word_count)
  is_amazon = tf.ragged.constant(is_amazon)
  includes_photo = tf.ragged.constant(includes_photo)
  num_helpful = tf.ragged.constant(num_helpful)
  num_reviews = tf.ragged.constant(num_reviews)
  labels = tf.constant(labels)

  # Now we can return our extracted data.
  return (star_rating, word_count, is_amazon, includes_photo, num_helpful,
          num_reviews), labels, flattened_features
train_xs, train_ys, flattened_features = extract_features(train_dataframe, 'Sales12-18MonthsAgo')
test_xs, test_ys, _ = extract_features(test_dataframe, 'SalesLastSixMonths')
# Let's define our label minimum and maximum.
min_label, max_label = float(np.min(train_ys)), float(np.max(train_ys))
min_label, max_label = float(np.min(train_ys)), float(np.max(train_ys))

Ustawianie wartości domyślnych używanych do szkolenia w tym przewodniku:

LEARNING_RATE = 0.1
BATCH_SIZE = 128
NUM_EPOCHS = 500
MIDDLE_DIM = 3
MIDDLE_LATTICE_SIZE = 2
MIDDLE_KEYPOINTS = 16
OUTPUT_KEYPOINTS = 8

Konfiguracje funkcji

Funkcja kalibracji i konfiguracji per-feature są ustawiane za pomocą tfl.configs.FeatureConfig . Konfiguracje funkcji zawiera ograniczenia monotoniczności, uregulowania per-funkcji (patrz tfl.configs.RegularizerConfig ) i rozmiary kratowe dla modeli sieciowych.

Pamiętaj, że musimy w pełni określić konfigurację funkcji dla każdej funkcji, którą nasz model ma rozpoznawać. W przeciwnym razie model nie będzie miał możliwości dowiedzenia się, że taka cecha istnieje. W przypadku modeli agregacji te funkcje będą automatycznie brane pod uwagę i odpowiednio obsługiwane jako nierówne.

Oblicz kwantyle

Chociaż domyślne ustawienie dla pwl_calibration_input_keypoints w tfl.configs.FeatureConfig jest kwantyle „”, dla modeli predefiniowanych musimy ręcznie zdefiniować keypoints wejściowych. Aby to zrobić, najpierw definiujemy naszą własną funkcję pomocniczą do obliczania kwantyli.

def compute_quantiles(features,
                      num_keypoints=10,
                      clip_min=None,
                      clip_max=None,
                      missing_value=None):
  # Clip min and max if desired.
  if clip_min is not None:
    features = np.maximum(features, clip_min)
    features = np.append(features, clip_min)
  if clip_max is not None:
    features = np.minimum(features, clip_max)
    features = np.append(features, clip_max)
  # Make features unique.
  unique_features = np.unique(features)
  # Remove missing values if specified.
  if missing_value is not None:
    unique_features = np.delete(unique_features,
                                np.where(unique_features == missing_value))
  # Compute and return quantiles over unique non-missing feature values.
  return np.quantile(
      unique_features,
      np.linspace(0., 1., num=num_keypoints),
      interpolation='nearest').astype(float)

Definiowanie naszych konfiguracji funkcji

Teraz, gdy możemy obliczyć nasze kwantyle, definiujemy konfigurację funkcji dla każdej funkcji, którą nasz model ma przyjąć jako dane wejściowe.

# Feature configs are used to specify how each feature is calibrated and used.
feature_configs = [
    tfl.configs.FeatureConfig(
        name='star_rating',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['star_rating'], num_keypoints=5),
    ),
    tfl.configs.FeatureConfig(
        name='word_count',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['word_count'], num_keypoints=5),
    ),
    tfl.configs.FeatureConfig(
        name='is_amazon',
        lattice_size=2,
        num_buckets=2,
    ),
    tfl.configs.FeatureConfig(
        name='includes_photo',
        lattice_size=2,
        num_buckets=2,
    ),
    tfl.configs.FeatureConfig(
        name='num_helpful',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['num_helpful'], num_keypoints=5),
        # Larger num_helpful indicating more trust in star_rating.
        reflects_trust_in=[
            tfl.configs.TrustConfig(
                feature_name="star_rating", trust_type="trapezoid"),
        ],
    ),
    tfl.configs.FeatureConfig(
        name='num_reviews',
        lattice_size=2,
        monotonicity='increasing',
        pwl_calibration_num_keypoints=5,
        pwl_calibration_input_keypoints=compute_quantiles(
            flattened_features['num_reviews'], num_keypoints=5),
    )
]

Model funkcji agregującej

Skonstruować model predefiniowanych TFL najpierw budować konfiguracji modelu z tfl.configs . Agregat modelu funkcja jest zbudowany przy użyciu tfl.configs.AggregateFunctionConfig . Stosuje kalibrację odcinkowo liniową i kategoryczną, a następnie model sieci dla każdego wymiaru nierównego sygnału wejściowego. Następnie nakłada warstwę agregacji na dane wyjściowe dla każdego wymiaru. Następnie następuje opcjonalna wyjściowa kalibracja odcinkowo-liniowa.

# Model config defines the model structure for the aggregate function model.
aggregate_function_model_config = tfl.configs.AggregateFunctionConfig(
    feature_configs=feature_configs,
    middle_dimension=MIDDLE_DIM,
    middle_lattice_size=MIDDLE_LATTICE_SIZE,
    middle_calibration=True,
    middle_calibration_num_keypoints=MIDDLE_KEYPOINTS,
    middle_monotonicity='increasing',
    output_min=min_label,
    output_max=max_label,
    output_calibration=True,
    output_calibration_num_keypoints=OUTPUT_KEYPOINTS,
    output_initialization=np.linspace(
        min_label, max_label, num=OUTPUT_KEYPOINTS))
# An AggregateFunction premade model constructed from the given model config.
aggregate_function_model = tfl.premade.AggregateFunction(
    aggregate_function_model_config)
# Let's plot our model.
tf.keras.utils.plot_model(
    aggregate_function_model, show_layer_names=False, rankdir='LR')

png

Dane wyjściowe każdej warstwy agregacji to uśrednione dane wyjściowe skalibrowanej sieci po nierównych danych wejściowych. Oto model użyty w pierwszej warstwie agregacji:

aggregation_layers = [
    layer for layer in aggregate_function_model.layers
    if isinstance(layer, tfl.layers.Aggregation)
]
tf.keras.utils.plot_model(
    aggregation_layers[0].model, show_layer_names=False, rankdir='LR')

png

Teraz, jak w przypadku każdego innego tf.keras.Model , możemy skompilować i dopasować model do naszych danych.

aggregate_function_model.compile(
    loss='mae',
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE))
aggregate_function_model.fit(
    train_xs, train_ys, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, verbose=False)
<tensorflow.python.keras.callbacks.History at 0x7fee7d3033c8>

Po wytrenowaniu naszego modelu, możemy go ocenić na naszym zestawie testowym.

print('Test Set Evaluation...')
print(aggregate_function_model.evaluate(test_xs, test_ys))
Test Set Evaluation...
7/7 [==============================] - 2s 3ms/step - loss: 53.4633
53.4632682800293